Share This Article:

Modified Newtonian Dynamics as an Entropic Force

Full-Text HTML XML Download Download as PDF (Size:286KB) PP. 786-793
DOI: 10.4236/jmp.2015.66084    4,594 Downloads   4,927 Views Citations


Under natural assumptions on the thermodynamic properties of space and time with the holo-graphic principle, we reproduce a MOND-like behaviour of gravity on particular scales of mass and length, where Newtonian gravity requires a modification or extension if no dark matter component is introduced in the description of gravitational phenomena. The result is directly obtained with the assumption that a fundamental constant of nature with dimensions of acceleration needs to be introduced into gravitational interactions. This in turn allows for modifications or extensions of the equipartion law and/or the holographic principle. In other words, MOND-like phenomenology can be reproduced when appropriate generalised concepts at the thermodynamical level of space and/or at the holographic principle are introduced. Thermodynamical modifications are reflected in extensions to the equipartition law which occur when the temperature of the system drops below a critical value, equals to Unruh’s temperature evaluated at the acceleration constant scale introduced for the description of the gravitational phenomena. Our calculations extend the ones by [1] in which Newtonian gravity is shown to be an emergent phenomenon, and together with it reinforces the idea that gravity at all scales is emergent.

Cite this paper

Carranza, D. and Mendoza, S. (2015) Modified Newtonian Dynamics as an Entropic Force. Journal of Modern Physics, 6, 786-793. doi: 10.4236/jmp.2015.66084.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.