Following Inhibition of BCL-2 by Antisense Oligonucleotides Compensatory Suppression of Apoptosis Involves the Direct Signal Transduction Pathway of LNCaP Cells

HTML  XML Download Download as PDF (Size: 3604KB)  PP. 1-10  
DOI: 10.4236/ojapo.2015.41001    3,054 Downloads   3,870 Views  Citations

ABSTRACT

Previously we have shown that when LNCaP cells are treated with antisense oligonucleotides (oligos) directed against BCL-2, compensatory changes in non-targeted genes take place in attempts to restore apoptosis and promote tumor aggressiveness. In addition to the inhibition of BCL-2, we find that the apoptosis promoter caspase-3 activity is suppressed, the transcription activity of STAT-3 is enhanced, while other regulators (bax, clusterin, AKT-1) associated with mitochondrial regulated apoptosis and caspase cascade are either unchanged or undetectable. We now evaluate proteins associated with the second pathway of apoptosis activation mediated by direct signal transduction involving fas, fas-ligand (a tumor necrosis factor-like cell surface receptor aka CD95), as well as the similar programmed death cell surface receptor (PD-1) and its respective ligand (PD-1L). This study evaluates the growth inhibition of in vitro propagating LNCaP cells employing mono- and bispecific oligos directed against BCL-2 [the second binding site was directed against the epidermal growth factor receptor (EGFR)]; and employing RT-PCR. The expression of these four proteins was evaluated. Expression of fas-ligand, PD-1 and PD-L1 were all significantly enhanced, whereas fas itself was undetectable. This suggests that in addition to pathways associated with the mitochondrial pathway of apoptosis, compensatory changes occur in the direct signal transduction pathway of this process. In addition to alterations in androgen sensitivity, growth factor expression and oncogene expression, these data suggest that suppressive BCL-2 therapy involves multiple pathways, including those involved with immune targeting and cytotoxicity and must be taken into account to make gene therapy more efficacious.

Share and Cite:

Rubenstein, M. , Hollowell, C. and Guinan, P. (2015) Following Inhibition of BCL-2 by Antisense Oligonucleotides Compensatory Suppression of Apoptosis Involves the Direct Signal Transduction Pathway of LNCaP Cells. Open Journal of Apoptosis, 4, 1-10. doi: 10.4236/ojapo.2015.41001.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.