Gene Expression Changes and Signal Transduction Pathway Alterations in Primary Human Oral Epithelial Cells Exposed to Smokeless Tobacco Extracts

HTML  XML Download Download as PDF (Size: 4009KB)  PP. 3558-3571  
DOI: 10.4236/ajps.2014.524372    2,731 Downloads   3,715 Views  Citations

ABSTRACT

Smokeless tobacco (ST), an alternative to smoking, has gained wide popularity among tobacco users. This study is conducted to determine the time course of gene expression associated with specific signaling pathways in human oral epithelial cells after exposure to smokeless tobacco extract (STE). A differentiated layer of epithelial cell is created as a way to mimic reasonably similar physiological atmosphere. A dose and time dependent response is observed for cell viability and cell proliferation assays indicating that this model system is responsive to the treatment. Expressions of 84 genes representing 18 different signal transduction pathways are quantitated. This is accomplished by using real-time polymerase chain reaction arrays at 1 h, 3 h, 6 h and 24 h time points following exposure to STE. Changes in gene expression are observed on many cellular processes including cell cycle regulation, cell adhesion, inflammation, apoptosis, and DNA breaks-down including Akt pathway activation. Short time exposure (1 h) leads more genes to down regulate whereas longer incubation time results in more genes up regulation. Most notable differences in the expression of genes during the course of treatment are BCL2A1, BIRC3, CCL20, CDK2, EGR1, FOXA2, HOXA1, IGFBP3, IL1A, IL-8, MMP10, NOS2, NRIP1, PTGS2, SELPLG and TNF-a. This study provides an insight on gene expression on oral epithelial cells as a result of STE exposure. This may also postulate greater understanding on biological effects and the mechanism of action of STE particularly at the transcriptional level.

Share and Cite:

Rajapakse, R. , Basu, A. , Shahid, S. and P. Timko, M. (2014) Gene Expression Changes and Signal Transduction Pathway Alterations in Primary Human Oral Epithelial Cells Exposed to Smokeless Tobacco Extracts. American Journal of Plant Sciences, 5, 3558-3571. doi: 10.4236/ajps.2014.524372.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.