Share This Article:

Saturated Hydraulic Conductivity Changes with Time and Its Prediction at SAR and Salinity in Quevedo Region Soils

HTML Download Download as PDF (Size:2619KB) PP. 1561-1573
DOI: 10.4236/jwarp.2014.617143    3,439 Downloads   4,165 Views Citations


Darcy’s law is applied to describe the steady flow processes in which the flux remains constant with time along the conducting system. Due to the dispersion and migration of colloidal particles and lodging in the soil pores the reduction in hydraulic conductivity occurs with time in particular when the soil and the percolating solution are affected by electrolyte concentration. Hence, the aim of this study is to find empirical equations that can be used to predict the flux with time. Data for the effluent volume versus time (up to 6 hours) which was collected for three soils (located at Quevedo-Los Rios region) treated by two salt solutions (5 and 50 meq/l) with different SAR values were used to test certain mathematical forms of equations. Only four empirical equations were found to perfectly fit the data (flux vs time) whereas, fitting the calculated and measured data of the hydraulic conductivity for all soils produced regression factors R2 ≥ 0.99. So, these equations can be applied to predict the hydraulic conductivity and to characterize the flow process at saturated conditions of the studied soils with great confidence. The Hoerl function model was the best of all equations for application as the fitting degrees were almost perfect for all studied soils at 5 and 50 meq/l. It was observed for all equations that one of the fitting parameters would always represent the initial hydraulic conductivity (Kos) that was evaluated graphically at zero time by extrapolation.

Cite this paper

Amer, A. , Suarez, C. , Valverde, F. , Carranza, R. , Matute, L. and Delfini, G. (2014) Saturated Hydraulic Conductivity Changes with Time and Its Prediction at SAR and Salinity in Quevedo Region Soils. Journal of Water Resource and Protection, 6, 1561-1573. doi: 10.4236/jwarp.2014.617143.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.