Share This Article:

The Effect of Photosynthetic Active Radiation and Temperature on Growth and Flowering of Ten Flowering Pot Plant Species

Full-Text HTML XML Download Download as PDF (Size:2527KB) PP. 1907-1917
DOI: 10.4236/ajps.2014.513204    2,995 Downloads   4,002 Views Citations
Author(s)

ABSTRACT

Hibiscus rosa-sinensis, Rosa sp. (miniature roses), Sinningia speciosa, Gerbera hybrida, Kalanchoe blossfeldiana, Hydrangea, Begonia x hiemalis, Calceolaria, Cyclamen persicum and Pelargonium domesticum were grown at six photon flux densities (85, 130, 170, 215, 255 and 300 μmol·m-2·s-1, PFD) during lighting periods of 20 h·day-1 at three air temperatures (18°C, 21°C and 24°C) in midwinter at latitude 59° north. This corresponded to photosynthetic active radiations (PAR) ranging from 6.1 to 21.6 mol·m-2·day-1. Time until flowering decreased in all species except Cyclamen when the temperature increased from 18°C to 21°C, particularly at lower PFD levels. A further increase in temperature, from 21°C to 24°C, clearly decreased time until flowering in six of the ten tested species. Generally, this represented a reduction in the time until flowering between 20% and 40%. The dry weight of the plants at time of flowering increased up to 170 μmol·m-2·s-1 PFD (12.2 mol·m-2·day-1 PAR) in Hibiscus, miniature rose, Kalanchoe and Pelargonium, while the dry weight reached a maximum at 85 to 130 μmol·m-2·s-1 PFD mol·m-2·day-1 (6.1 to 9.4 mol·m-2·day-1)in the other species. Based on the present results a PAR level of 6 to 8 mol m-2·day-1 is recommended for Calceolaria and Cyclamen, of 8 to 10 mol·m-2·day-1 for Sinningia, Gerbera, Kalanchoe, Hydrangea and Begonia, of 10 to 12 mol·m-2·day-1 for Pelargonium and of 12 to 15 mol·m-2 day-1 for Hibiscus and miniature roses.

Cite this paper

Mortensen, L. (2014) The Effect of Photosynthetic Active Radiation and Temperature on Growth and Flowering of Ten Flowering Pot Plant Species. American Journal of Plant Sciences, 5, 1907-1917. doi: 10.4236/ajps.2014.513204.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.