Pseudo DNA Sequence Generation of Non-Coding Distributions Using Variant Maps on Cellular Automata

HTML  XML Download Download as PDF (Size: 1026KB)  PP. 153-174  
DOI: 10.4236/am.2014.51018    3,893 Downloads   5,699 Views  Citations

ABSTRACT

In a recent decade, many DNA sequencing projects are developed on cells, plants and animals over the world into huge DNA databases. Researchers notice that mammalian genomes encoding thousands of large noncoding RNAs (lncRNAs), interact with chromatin regulatory complexes, and are thought to play a role in localizing these complexes to target loci across the genome. It is a challenge target using higher dimensional tools to organize various complex interactive properties as visual maps. In this paper, a Pseudo DNA Variant MapPDVM is proposed following Cellular Automata to represent multiple maps that use four Meta symbols as well as DNA or RNA representations. The system architecture of key components and the core mechanism on the PDVM are described. Key modules, equations and their I/O parameters are discussed. Applying the PDVM, two sets of real DNA sequences from both the sample human (noncoding DNA) and corn (coding DNA) genomes are collected in comparison with two sets of pseudo DNA sequences generated by a stream cipher HC-256 under different modes to show their intrinsic properties in higher levels of similar relationships among relevant DNA sequences on 2D maps. Sample 2D maps are listed and their characteristics are illustrated under a controllable environment. Various distributions can be observed on both noncoding and coding conditions from their symmetric properties on 2D maps.

Share and Cite:

J. Zheng, J. Luo and W. Zhou, "Pseudo DNA Sequence Generation of Non-Coding Distributions Using Variant Maps on Cellular Automata," Applied Mathematics, Vol. 5 No. 1, 2014, pp. 153-174. doi: 10.4236/am.2014.51018.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.