Predictability of Al-Mn Alloy Exposure Time Based on Its As-Cast Weight and Corrosion Rate in Sea Water Environment

HTML  Download Download as PDF (Size: 224KB)  PP. 307-314  
DOI: 10.4236/jmmce.2013.16046    2,801 Downloads   3,904 Views  Citations

ABSTRACT

This paper presents the predictability of aluminium-manganese alloy exposure time based on its as-cast weight and corrosion rate in sea water environment. The validity of the derived model: α = 26.67γ + 0.55β  0.29 is rooted on the core expression: 0.0375α = γ + 0.0206β  0.0109 where both sides of the expression are correspondingly approximately equal. Statistical analysis of model-predicted and experimentally evaluated exposure time for each value of as-cast weight and alloy corrosion rate considered shows a standard error of 0.0017% & 0.0044% and 0.0140% & 0.0150% respectively. The depths of corrosion penetration (at increasing corrosion rate: 0.0104 - 0.0157 mm/yr) as predicted by derived model and obtained from experiment are 0.7208 × 10-4 & 1.0123 × 10-4 mm and 2.5460 × 10-4 & 1.8240 × 10-4 mm (at decreasing corrosion rate: 0.0157 - 0.0062 mm/yr) respectively. Deviational analysis indicates that the maxi- mum deviation of the model-predicted alloy exposure time from the corresponding experimental value is less than 10%.

Share and Cite:

C. Nwoye, S. Neife, E. Ameh, A. Nwobasi and N. Idenyi, "Predictability of Al-Mn Alloy Exposure Time Based on Its As-Cast Weight and Corrosion Rate in Sea Water Environment," Journal of Minerals and Materials Characterization and Engineering, Vol. 1 No. 6, 2013, pp. 307-314. doi: 10.4236/jmmce.2013.16046.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.