Cognitive Radio Sensor Node Empowered Mobile Phone for Explosive Trace Detection

HTML  Download Download as PDF (Size: 745KB)  PP. 33-41  
DOI: 10.4236/ijcns.2011.41004    6,811 Downloads   13,209 Views  Citations

Affiliation(s)

.

ABSTRACT

Usefulness of sensor network applications in human life is increasing day by day and the concept of wireless connection promises new application areas. Sensor network can be very beneficial in saving human life from terrorist attacks causing explosion in certain areas leading to casualties. But realization of the sensor network application in explosive detection requires high scalability of the sensor network and fast transmission of the information through real time monitoring and control. In this paper a novel mechanism for explosive trace detection in any populated area by the use of mobile telephony has been described. The aim is to create a system that will assure common men, local population and above all the nation a secured environment, without disturbing their freedom of movement. It would further help the police in detection of explosives more quickly, isolation of suicide bombers, remediation of explosives manufacturing sites, and forensic and criminal investigation. To achieve this, the paper has projected an idea that can combine the strength of the mobile phones, the polymer sensor and existing cellular network. The idea is to design and embed a tiny cog-nitive radio sensor node into the mobile phone that adapts to the changing environment by analyzing the RF surroundings and adjusting the spectrum use appropriately. The system would be capable of detecting explo-sives within a defined territory. It would communicate the location of the detected explosives to the respec-tive service provider, which in turn would inform the law and enforcement agency or Police.

Share and Cite:

S. Chatterjee, M. Chakraborty and J. Chakraborty, "Cognitive Radio Sensor Node Empowered Mobile Phone for Explosive Trace Detection," International Journal of Communications, Network and System Sciences, Vol. 4 No. 1, 2011, pp. 33-41. doi: 10.4236/ijcns.2011.41004.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.