Predicting the Mechanical Properties of BHA-Li2O Composites Using Artificial Neural Networks

HTML  Download Download as PDF (Size: 313KB)  PP. 98-101  
DOI: 10.4236/jbnb.2011.21013    4,782 Downloads   8,528 Views  Citations

Affiliation(s)

.

ABSTRACT

In this study the mechanical properties of bovine hydroxyapatite (BHA)-Li2O composites are predicted using artificial neural networks (ANN) and then compared with obtained experimental values. BHA was mixed with lithium carbonate (Li2CO3) and sintered at various temperatures between 900-1300°C. Selected experimental values obtained for the compression strength, microhardness and density were used to define and train the ANN system. Intermediate data values not used to train the ANN model were then used to compare and determine the reliability of the ANN system. The results demonstrate the viable potential in using the ANN approach in predicting mechanical properties even with limited data sets.

Share and Cite:

H. Celik, O. Gunduz, N. Ekren, Z. Ahmad and F. Oktar, "Predicting the Mechanical Properties of BHA-Li2O Composites Using Artificial Neural Networks," Journal of Biomaterials and Nanobiotechnology, Vol. 2 No. 1, 2011, pp. 98-101. doi: 10.4236/jbnb.2011.21013.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.