Optimum Dark Adaptation Period for Evaluating the Maximum Quantum Efficiency of Photosystem II in Ozone-Exposed Rice Leaves

HTML  Download Download as PDF (Size: 299KB)  PP. 1750-1757  
DOI: 10.4236/ajps.2013.49215    4,538 Downloads   6,679 Views  Citations

ABSTRACT

Because the transient O3 injury of leaves is lost with time, the evaluation of O3 effect on the maximum quantum efficiency of PSII (Fv/Fm) is difficult. Thus, the authors examined Fv/Fm in rice leaves exposed to different O3 concentrations (0, 0.1, and 0.3 cm3·m-3, expressed as O0, O0.1, and O0.3) under different dark adaptation periods (0, 1, 5, 10, 20, and 30 min, expressed as D0, D1, D5, D10, D20, and D30) to ascertain its optimum time span. Fv/Fm was inhibited by O3; however in the O0 and O0.1 plants, it recovered during dark adaptation. In the O0.3 plants, Fv/Fm decreased gradually with time. F0 was found to be increased by O3, and it increased further in the O0.3 plants during dark adaptation. Under a high light intensity, Fm was decreased by O3, and the O3-induced damage to Fv/Fm was therefore more pronounced. However, the sensitivity of F

Share and Cite:

H. Hiroki Kobayakawa and K. Imai, "Optimum Dark Adaptation Period for Evaluating the Maximum Quantum Efficiency of Photosystem II in Ozone-Exposed Rice Leaves," American Journal of Plant Sciences, Vol. 4 No. 9, 2013, pp. 1750-1757. doi: 10.4236/ajps.2013.49215.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.