Ligand-induced dimerization of syndecan-3 at the cell surface

HTML  Download Download as PDF (Size: 1150KB)  PP. 36-44  
DOI: 10.4236/abb.2013.46A006    4,017 Downloads   6,246 Views  Citations

ABSTRACT

Syndecan-3 (N-syndecan) is a transmembrane heparan sulfate proteoglycan abundantly expressed in developing brain. In addition to acting as a coreceptor, syndecan-3 acts as a signaling receptor upon binding of its ligand HB-GAM (heparin-binding growth-associated molecule; pleiotrophin), which activates the cortactin-src kinase signaling pathway. This leads to rapid neurite extension in neuronal cells, which makes syndecan-3 as an interesting transmembrane receptor in neuronal development and regeneration. However, little is known about the signaling mechanism of syndecan-3. Here we have analyzed formation of ligand-N-syndecan signaling complexes at the cell surface using fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET). We show that ligand binding leads to dimerization of syndecan-3 at the cell surface. The dimerized syndecan-3 colocalizes with actin in the filopodia of cells. Several amino acid residues (K383, G392 and G396) in the transmembrane domain are shown to be important for the ligand-induced dimerization, whereas the cytosolic domain is not required for the dimerization.

Share and Cite:

Kulesskiy, E. , Tumova, S. and Rauvala, H. (2013) Ligand-induced dimerization of syndecan-3 at the cell surface. Advances in Bioscience and Biotechnology, 4, 36-44. doi: 10.4236/abb.2013.46A006.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.