Arbuscular Mycorrhizal Technology in Reclamation and Revegetation of Coal Mine Spoils under Various Revegetation Models

HTML  Download Download as PDF (Size: 903KB)  PP. 683-689  
DOI: 10.4236/eng.2010.29088    7,237 Downloads   14,564 Views  Citations

Affiliation(s)

.

ABSTRACT

Reclamation and revegetation of a coal mine spoils with various revegetation models utilizing the mycorrhizal technology were studied. The models with different combination of plant species were designed to test the hypothesis of speedy revegetation. Root colonization and spore density of arbuscular mycorrhizae (AM) were lowest in plants seeded directly on slopes of the overburden (coal mine dump). At flat surfaces, the mycorrhizal colonization in plant species was higher than that observed at slopes. In other revegetation models, i.e., tree monoculture, tree monoculture + crop species (agroforestry), and two strata plantations (combination of different plant species), maximum AM colonization was recorded for tree species grown along with crop species. This was followed by two strata plantations and tree monoculture. In two strata plantations three categories of AM associations were recognized: 1) every plant in the combination, possessed high mycorrhizal association, 2) only one plant in the combination possessed high mycorrhizal association, and 3) none of the plants in the combination possessed high mycorrhizal association. Azadirachta indica, Pongamia pinnata, Leucaena leucocephala and Acacia catechu were most effective in catching mycorrhizae, and can be used as the effective tool in rehabilitation of the degraded ecosystems.

Share and Cite:

A. Kumar, R. Raghuwanshi and R. Upadhyay, "Arbuscular Mycorrhizal Technology in Reclamation and Revegetation of Coal Mine Spoils under Various Revegetation Models," Engineering, Vol. 2 No. 9, 2010, pp. 683-689. doi: 10.4236/eng.2010.29088.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.