Share This Article:

A Distributed Compressed Sensing for Images Based on Block Measurements Data Fusion

Full-Text HTML Download Download as PDF (Size:314KB) PP. 134-139
DOI: 10.4236/jsea.2012.512B026    2,885 Downloads   4,140 Views Citations
Author(s)

ABSTRACT

Compressed sensing (CS) is a new technique for simultaneous data sampling and compression. In this paper, we propose a novel method called distributed compressed sensing for image using block measurements data fusion. Firstly, original image is divided into small blocks and each block is sampled independently using the same measurement operator, to obtain the smaller encoded sparser coefficients and stored measurements matrix and its vectors.  Secondly, original image is reconstructed using the block measurements fusion and recovery transform. Finally, several numerical experiments demonstrate that our method has a much lower data storage and calculation cost as well as high quality of reconstruction when compared with other existing schemes. We believe it is of great practical potentials in the network communication as well as pattern recognition domain.

Cite this paper

H. Chen and J. Liu, "A Distributed Compressed Sensing for Images Based on Block Measurements Data Fusion," Journal of Software Engineering and Applications, Vol. 5 No. 12B, 2012, pp. 134-139. doi: 10.4236/jsea.2012.512B026.

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.