Molecular Dynamics Study on Mechanical Properties in the Structure of Self-Assembled Quantum Dot

HTML  Download Download as PDF (Size: 1476KB)  PP. 189-195  
DOI: 10.4236/wjnse.2012.24025    5,241 Downloads   7,782 Views  Citations

ABSTRACT

Stress and strain in the structure of self-assembled quantum dots constructed in the Ge/Si(001) system is calculated by using molecular dynamics simulation. Pyramidal hut cluster composed of Ge crystal with {105} facets surfaces observed in the early growth stage are computationally modeled. We calculate atomic stress and strain in relaxed pyramidal structure. Atomic stress for triplet of atoms is approximately defined as an average value of pairwise (virial) quantity inside triplet, which is the product of vectors between each two atoms. Atomic strain by means of atomic strain measure (ASM) which is formulated on the Green’s definition of continuum strain. We find the stress (strain) relaxation in pyramidal structure and stress (strain) concentration in the edge of pyramidal structure. We discuss size dependency of stress and strain distribution in pyramidal structure. The relationship between hydrostatic stress and atomic volumetric strain is basically linear for all models, but for the surface of pyramidal structure and Ge-Si interface. This means that there is a reasonable correlation between atomic stress proposed in the present study and atomic strain measure, ASM.

Share and Cite:

T. Yamaguchi and K. Saitoh, "Molecular Dynamics Study on Mechanical Properties in the Structure of Self-Assembled Quantum Dot," World Journal of Nano Science and Engineering, Vol. 2 No. 4, 2012, pp. 189-195. doi: 10.4236/wjnse.2012.24025.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.