Characteristics of SnO2:F Thin Films Deposited by Ultrasonic Spray Pyrolysis: Effect of Water Content in Solution and Substrate Temperature

HTML  Download Download as PDF (Size: 1142KB)  PP. 690-696  
DOI: 10.4236/msa.2012.310101    21,085 Downloads   56,446 Views  Citations

ABSTRACT

Fluorine doped tin oxide, SnO2:F, thin films were deposited by ultrasonic chemical spray starting from tin chloride and hydrofluoric acid. The physical characteristics of the films as a function of both water content in the starting solution and substrate temperature were studied. The film structure was polycrystalline in all cases, showing that the intensity of (200) peak increased with the water content in the starting solution. The electrical resistivity decreased with the water content, reaching a minimum value, in the order of 8 × 10-4 Ωcm, for films deposited at 450℃ from a starting solution with a water content of 10 ml per 100 ml of solution; further increase in water content increased the corresponding resistivity. Optical transmittances of SnO2:F films were high, in the order of 75%, and the band gap values oscillated around 3.9 eV. SEM analysis showed uniform surface morphologies with different geometries depending on the deposition conditions. Composition analysis showed a stoichiometric compound with a [Sn/O] ratio around 1:2 in all samples. The presence of F into the SnO2 lattice was detected, within 2 at % respect to Sn.

Share and Cite:

M. Sánchez-García, A. Maldonado, L. Castañeda, R. Silva-González and M. Olvera, "Characteristics of SnO2:F Thin Films Deposited by Ultrasonic Spray Pyrolysis: Effect of Water Content in Solution and Substrate Temperature," Materials Sciences and Applications, Vol. 3 No. 10, 2012, pp. 690-696. doi: 10.4236/msa.2012.310101.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.