Analysis of Urea in Petfood Matrices: Comparison of Spectro-Colorimetric, Enzymatic and Liquid Chromatography Electrospray Ionization High Resolution Mass Spectrometry Methods

HTML  Download Download as PDF (Size: 489KB)  PP. 613-621  
DOI: 10.4236/ajac.2012.39080    9,381 Downloads   14,344 Views  Citations

ABSTRACT

Adulteration may consist in non authorized source of nitrogen addition to increase the protein content of some raw materials. Urea which is authorized for feed is a non nutritional source of nitrogen in food and pet food. Adulteration of food or pet food raw material by urea is thus monitored by manufacturer and governmental authorities with official methods which are either enzymatic (Association of Official Agricultural Chemists, AOAC) or spectro-colorimetric (European Community, EC). Each method gives results which are not comparable and spectro-colorimetric methods may result in false-positive urea detection. Liquid chromatographic (LC/UV-DAD) analysis of extracts from spectro-colorimetric method indicates that presence of free amino-acid may interfere with colorimetric detection of urea in the EC method with pet food samples. Liquid chromatography electrospray ionization high resolution mass spectrometry (LC/ESI-HRMS) has allowed to quantify low content (<0.01%) of urea in pet food water extracts for samples which resulted in significant urea detection with colorimetric method and in content below the detection threshold with enzymatic method. This study demonstrates the EC colorimetric method is not applicable to pet food and also food samples which have a complex composition with significant levels of free amino acids. On the other hand we clearly evidenced by means of the LC/ESI-HRMS results that the AOC Enzymatic method is applicable to urea quantification in pet food samples and gives reliable results.

Share and Cite:

P. Pibarot and S. Pilard, "Analysis of Urea in Petfood Matrices: Comparison of Spectro-Colorimetric, Enzymatic and Liquid Chromatography Electrospray Ionization High Resolution Mass Spectrometry Methods," American Journal of Analytical Chemistry, Vol. 3 No. 9, 2012, pp. 613-621. doi: 10.4236/ajac.2012.39080.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.