Corrosion Behaviour of Modified HVOF Sprayed WC Based Cermet Coatings on Stainless Steel

HTML  Download Download as PDF (Size: 5471KB)  PP. 989-1005  
DOI: 10.4236/jmmce.2011.1011076    7,643 Downloads   10,119 Views  Citations

ABSTRACT

WC based cermet coatings have been considered as alternative replacements to the more traditional hard chrome plating for improved surface properties of aircraft landing gear. While these coatings are used in engineering applications requiring superior hardness and improved wear resistance, little is known about the corrosion resistance. In this study, three WC based composite coatings were deposited onto ferritic stainless steel substrates using high velocity oxy fuel (HVOF) technology. Salt spray testing and potentiodynamic scanning studies in a saline environment were conducted on the coatings. Characterisation of the coating structure, composition and morphology, was carried out, prior to and after corrosion testing, using optical microscopy, scanning electron microscopy and EDX elemental analysis. The results showed that poor corrosion performance was exhibited by all three coatings. This was attributed to the high levels of porosity and the presence of micro-cracks within the coatings, resulting in attack of the substrate directly by the saline environment and possible galvanic coupling effects between the substrate and the coating. Dissolution and / or erosion of specific phases within the coating, resulting in the formation of micro-channels and increased number / size of voids may have accelerated corrosion of the system.

Share and Cite:

L. Ward, B. Hinton, D. Gerrard and K. Short, "Corrosion Behaviour of Modified HVOF Sprayed WC Based Cermet Coatings on Stainless Steel," Journal of Minerals and Materials Characterization and Engineering, Vol. 10 No. 11, 2011, pp. 989-1005. doi: 10.4236/jmmce.2011.1011076.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.