Laser Irradiated Nucleation Reduction Strategy of AMHP (Ammonium Magnesium Hydrogen Phosphate, In-Vivo Approach-1) Crystals in Gel Medium and its Characterization Studies

HTML  Download Download as PDF (Size: 1228KB)  PP. 265-275  
DOI: 10.4236/jmmce.2008.73020    4,215 Downloads   5,358 Views  Citations

ABSTRACT

Kidney stone consists of various organic, inorganic and semi organic compounds. Mineral oxalate monohydrate and di-hydrate is the main inorganic constituent of kidney stones. However, mechanisms leading to the formation of mineral oxalate kidney stones are not clearly understood. In this field of study, there are several hypotheses including nucleation, crystal growth and or aggregation of formation of AOMH (Ammonium oxalate monohydrate) and AODH (Ammonium oxalate di-hydrate) crystals. The effect of some urinary species such as ammonium oxalates, calcium, citrate, proteins and trace elements were reported by the author. The kidney stone constituents are grown in the kidney environments, the silica gel medium (SMS) which provides the necessary growth simulation (in-vivo). In the artificial urinary stone growth process, identification of growth parameters with in the different chemical environment was carried out and reported for the urinary crystals such as CHP, SHP, BHP and MHP. In the present study, AMHP (Ammonium magnesium hydrogen phosphate) crystals are grown in three different growth faces to attain the total nucleation reduction. Extension of this research is that many characterization studies have been carried out and the results are reported.

Share and Cite:

G. Kanchana, P. Sundaramoorthi and G. Jeyanthi, "Laser Irradiated Nucleation Reduction Strategy of AMHP (Ammonium Magnesium Hydrogen Phosphate, In-Vivo Approach-1) Crystals in Gel Medium and its Characterization Studies," Journal of Minerals and Materials Characterization and Engineering, Vol. 7 No. 3, 2008, pp. 265-275. doi: 10.4236/jmmce.2008.73020.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.