Diffusion models for the description of seedless grape drying using analytical and numerical solutions

HTML  Download Download as PDF (Size: 1120KB)  PP. 545-556  
DOI: 10.4236/as.2012.34065    5,433 Downloads   9,354 Views  Citations

ABSTRACT

This article compares diffusion models used to describe seedless grape drying at low temperature. The models were analyzed, assuming the following characteristics of the drying process: boundary conditions of the first and the third kind; constant and variable volume, V; constant and variable effective mass diffusivity, D; constant convective mass transfer coefficient, h. Solutions of the diffusion equation (analytical and numerical) were used to determine D and h for experimental data of seedless grape drying. Comparison of simulations of drying kinetics indicates that the best model should consider: 1) shrinkage; 2) convective boundary condition; 3) variable effective mass diffusivity. For the analyzed experimental dataset, the best function to represent the effective mass diffusivity is a hyperbolic cosine. In this case, the statistical indicators of the simulation can be considered excellent (the determination coefficient is R2 = 0.9999 and the chi-square is χ2 = 3.241 × 10–4).

Share and Cite:

Silva, W. , Silva e Silva, C. , Precker, J. , Gomes, J. , Nascimento, P. and Silva, L. (2012) Diffusion models for the description of seedless grape drying using analytical and numerical solutions. Agricultural Sciences, 3, 545-556. doi: 10.4236/as.2012.34065.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.