Influencing Factors and Process on in Situ Degradation of Poly(Butylene Succinate) Film by Strain Bionectria ochroleuca BFM-X1 in Soil

HTML  XML Download Download as PDF (Size: 1520KB)  PP. 523-532  
DOI: 10.4236/jep.2012.36063    3,977 Downloads   7,132 Views  Citations

ABSTRACT

This is the first report on the PBS film degraded by any Bionectria ochroleuca fungal strain. The fungal strain BFM-X1 was isolated from an air environment on a vegetable field and was capable of degrading poly(butylene succinate) (PBS). The taxonomic identity of the strain BFM-X1 was confirmed to be Bionectria ochroleuca (showing a 99% similarity to B. ochroleuca in a BLAST search) through an ITS rRNA analysis. The bio-degradation of the PBS film by strain BFM-X1 was studied. Approximately 97.9% of the PBS film was degraded after strain BFM-X1 was inoculated at 28?C for 14 days. The degradation efficiency of BFM-X1 against PBS film under different soil environmental conditions was characterized. The results indicated that 62.78% of the PBS film loss was recorded in a 30-d experimental run in a sterile soil environment indoors. On adding strain BFM-X1 to a soil sample, the PBS degradation rate accelerated approximately fivefold. Furthermore, both temperature and humidity influenced the in situ degradation of the PBS by strain BFM-X1, and temperature may be the major regulating factor. The degradation was particularly effective in the warm season, with 90% of weight loss occurring in July and August. Scanning electron microscope observations showed surface changes to the film during the degradation process, which suggested that strain BFM-X1preferentially degraded an amorphous part of the film from the surface. These results suggested that the strain B. ochroleuca BFM-X1 was a new resource for degrading PBS film and has high potential in the bioremediation of PBS-plastic-contaminated soil environment

Share and Cite:

X. Mei, C. Tian, Q. Dong and Y. Liang, "Influencing Factors and Process on in Situ Degradation of Poly(Butylene Succinate) Film by Strain Bionectria ochroleuca BFM-X1 in Soil," Journal of Environmental Protection, Vol. 3 No. 6, 2012, pp. 523-532. doi: 10.4236/jep.2012.36063.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.