Effects of broccoli extract and various essential oils on intestinal and faecal microflora and on xenobiotic enzymes and the antioxidant system of piglets

HTML  Download Download as PDF (Size: 349KB)  PP. 78-98  
DOI: 10.4236/ojas.2012.22012    6,202 Downloads   12,807 Views  Citations

ABSTRACT

Objective: Since the ban of antibiotics as growth promoting feed additives in the EU in 2006 research in alternatives has gained importance. Phytogenic feed additives represent a heterogenous class of different plant derived substances that are discussed to improve the health of farm animals by direct and indirect antioxidant effects and by influencing microbial eubiosis in the gastrointestinal tract. Consequently our study aimed to investigate the influence of broccoli extract and the essential oils of tur- meric, oregano, thyme and rosemary, as selected individual additives, on intestinal and faecal microflora, on xenobiotic enzymes, and on the antioxidant system of piglets. Methods: 48 four weeks old male weaned piglets were assigned to 6 groups of 8. The piglets were housed individually in stainless steel pens with slatted floor. The control group (Con) was fed a diet without an additive for 4 weeks. The diet of group BE contained 0.15 g/kg sulforaphane in form of a broccoli extract. 535, 282, 373 and 476 mg/kg of the essential oils of turmeric (Cuo), oregano (Oo), thyme (To) and rosemary (Ro) were added to the diets of the remaining 4 groups to stan-dardise supplementation to 150 mg/kg of the oils’ key terpene compounds ar-turmerone, carvacrol, thymol and 1,8-cineole. The composition of bacterial microflora was examined by cultivating samples of jejeunal and colonic mucosa and of faeces under specific conditions. The mRNA expression of xenobiotic and antioxidant enzymes was determined by reversing transcrip- tase real time detection PCR (RT-PCR). Total antioxidant status was assayed using the Trolox Equivalent Antioxidant Capacity (TEAC), and lipid peroxidation was determined by measuring thiobarbioturic acid reactive substances (TBA- RS). Results: Compared to Con piglets all additives positively influenced weight gain and feed conversion in week 1. Over the whole trial period no significant differences in performance parameters existed between the experimental groups. Compared to group Con performance of Ro piglets was, however, slightly impaired. Com- pared to Con piglets Cuo, Oo and To increased the ratio of Lactobacilli:E. coli attached to the jejunal mucosa, whereas BE and Ro impaired this ratio slightly. In contrast in colonic mucosa Ro improved Lactobacilli:E. coli ratio. In faecal samples an improvement of Lactobacilli:E. coli ratio could be analysed for To and Ro. Ro was the only additive that reduced the incidence rate of piglets tested positive for enterotoxic E. coli (ETEC). All additives significantly increased jejunal TEAC and reduced TBA-RS. In the liver BE, Cuo, Oo and To increased TEAC in tendency and Ro significantly. Liver TBA-RS were slightly reduced by all additives compared to Con piglets. Whereas the influence of BE, To and Ro on jejunal TEAC mainly was derived from the induction of xenobiotic and antioxidant enzymes (indirect antioxidant effects), Cuo and Oo influenced TEAC by direct antioxidant effects. Discussion and Conclusions: Our results have shown: That within the labiatae oils Oo and To have the potential to improve performance slightly. That phytogenic substances have a small but not sig- nificant influence on intestinal microflora. That phytogenic feed additives up-regulate the anti- oxidant system of piglets either by direct or by indirect antioxidant effects and that they may thereby improve health status. That within the labiatae oils Oo has a high direct antioxidant potential whereas Ro potently induces xenobiotic and antioxidant enzymes. That broccoli extract is an attractive new phytogenic additive, improving antioxidant status by indirect antioxidant effects. That defined combinations of selected phytogenic substances may produce additive effects. That health promoting effects of phytogenic additives in the future should be studied systematically under the challenge with pathogenic microorganisms or food derived to-xins.

Share and Cite:

Mueller, K. , Blum, N. , Kluge, H. , Bauerfeind, R. , Froehlich, J. , Mader, A. , Wendler, K. and Mueller, A. (2012) Effects of broccoli extract and various essential oils on intestinal and faecal microflora and on xenobiotic enzymes and the antioxidant system of piglets. Open Journal of Animal Sciences, 2, 78-98. doi: 10.4236/ojas.2012.22012.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.