Synthesis, spectral, 3D molecular modeling and antibacterial studies of dibutyltin (IV) Schiff base complexes derived from substituted isatin and amino acids

HTML  Download Download as PDF (Size: 336KB)  PP. 170-178  
DOI: 10.4236/ns.2012.43025    9,398 Downloads   17,512 Views  Citations

ABSTRACT

New dibutyltin(IV) complexes of Schiff base derived from 5-chloroindoline-2,3-dione, indoline- 2,3-dione with amino acids (tryptophan, alanine and valine) were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, and biological activity. The analytical data showed that the Schiff base ligand acts as bidentate towards metal ions via the azomethine nitrogen and carboxylate oxygen by a stoichiometric reaction of M:L (1:2) to form metal complexes. NMR (1H, 13C and 119Sn) spectral data of the ligands and metal complex agree with proposed structures. The conductivity values between 14 - 27 ohm-1cm2mol-1 in DMF imply the presence of non-electrolyte species. 3D molecular modeling and analysis of bond lengths and bond angles have also been conducted for a representative compound, [Bu2Sn(L2)2], to substantiate the proposed structures. Antibacterial results indicate that the metal complexes are more active than the free ligands.

Share and Cite:

Singh, H. and Singh, J. (2012) Synthesis, spectral, 3D molecular modeling and antibacterial studies of dibutyltin (IV) Schiff base complexes derived from substituted isatin and amino acids. Natural Science, 4, 170-178. doi: 10.4236/ns.2012.43025.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.