Share This Article:

Applying Neural Network Architecture for Inverse Kinematics Problem in Robotics

Full-Text HTML Download Download as PDF (Size:5272KB) PP. 230-239
DOI: 10.4236/jsea.2010.33028    6,664 Downloads   13,026 Views Citations

ABSTRACT

One of the most important problems in robot kinematics and control is, finding the solution of Inverse Kinematics. Inverse kinematics computation has been one of the main problems in robotics research. As the Complexity of robot increases, obtaining the inverse kinematics is difficult and computationally expensive. Traditional methods such as geometric, iterative and algebraic are inadequate if the joint structure of the manipulator is more complex. As alternative approaches, neural networks and optimal search methods have been widely used for inverse kinematics modeling and control in robotics This paper proposes neural network architecture that consists of 6 sub-neural networks to solve the inverse kinematics problem for robotics manipulators with 2 or higher degrees of freedom. The neural networks utilized are multi-layered perceptron (MLP) with a back-propagation training algorithm. This approach will reduce the complexity of the algorithm and calculation (matrix inversion) faced when using the Inverse Geometric Models implementation (IGM) in robotics. The obtained results are presented and analyzed in order to prove the efficiency of the proposed approach.

Cite this paper

B. Daya, S. Khawandi and M. Akoum, "Applying Neural Network Architecture for Inverse Kinematics Problem in Robotics," Journal of Software Engineering and Applications, Vol. 3 No. 3, 2010, pp. 230-239. doi: 10.4236/jsea.2010.33028.

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.