Biography

Prof. Mingjie Jin

Nanjing University of Science and Technology, China


Email: jinmingjie@njust.edu.cn


Qualifications

2012 Ph.D., Chemical Engineering & Quantitative biology, Michigan State University, USA

2008 M.Sc., Biochemical Engineering, Nanjing University of Technology, China

2005 B.Sc., Bioengineering, Nanjing University of Technology, China


Publications(Selected)

  1. Fan, T.-T., Chen, C., Zeng, D.-W., Wang, F.-L., Xu, Z.-X., Jin, M.-J., Zou, Y., Li, J., & Zhao, X.-Q. (2025). Stress-Driven Production of γ-Aminobutyric Acid Using Non-Conventional Yeast Strains Kluyveromyces marxianus JMY140K and Metschnikowia reukaufii JMY075. Journal of Fungi, 11(1), 20. https://doi.org/10.3390/jof11010020
  2. Jin, M., Dale, B.E. (2024). AFEX™ Pretreatment-Based Biorefinery Technologies. In: Bisaria, V. (eds) Handbook of Biorefinery Research and Technology: Biomass Logistics to Saccharification. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6308-1_2
  3. Sha, Y., Ge, M., Lu, M., Xu, Z., Zhai, R., & Jin, M. (2024). Advances in metabolic engineering for enhanced acetyl-CoA availability in yeast. Critical Reviews in Biotechnology, 1–19. https://doi.org/10.1080/07388551.2024.2399542
  4. Zhang, C., Liu, S., Chen, S. et al. Biomass pretreatment method affects the physicochemical properties of biochar prepared from residues of lignocellulosic ethanol production. Biomass Conv. Bioref. 14, 17115–17125 (2024). https://doi.org/10.1007/s13399-023-03908-4
  5. Shen L, Yang Q, Jin M, Ma K, Long X. Pilot-scale fermentative production of mannosylerythritol lipids by Pseudozyma aphidis DSM 70725 and their application in the pesticide industry. Authorea Preprints; 2024. DOI: 10.22541/au.170665360.04878536/v1.
  6. Gao, J., Yu, W., Li, Y. et al. Engineering co-utilization of glucose and xylose for chemical overproduction from lignocellulose. Nat Chem Biol 19, 1524–1531 (2023). https://doi.org/10.1038/s41589-023-01402-6
  7. Yu, J., Xu, Z., He, H. et al. Integration of corn ethanol and corn stover ethanol processes for improving xylose fermentation performance. Biomass Conv. Bioref. 13, 6989–6999 (2023). https://doi.org/10.1007/s13399-021-01642-3
  8. Sitong Chen et al. ,Big data mining, rational modification, and ancestral sequence reconstruction inferred multiple xylose isomerases for biorefinery.Sci. Adv.9,eadd8835(2023).DOI:10.1126/sciadv.add8835
  9. Liu, S., Yu, Y., Xu, Z., Chen, S., Shen, G., Yuan, X., Deng, Q., Shen, W., Yang, S., Zhang, C., Chen, X., & Jin, M. (2022). Efficient Corncob Biorefinery for Ethanol Initiated by a Novel Pretreatment of Densifying Lignocellulosic Biomass with Sulfuric Acid. Fermentation, 8(11), 661. https://doi.org/10.3390/fermentation8110661
  10. Cai, C., Xu, Z., Li, J., Zhou, H., & Jin, M. (2022). Developing Rhodococcus opacus and Sphingobium sp. co-culture systems for valorization of lignin-derived dimers. Biotechnology and Bioengineering, 119, 3162–3177. https://doi.org/10.1002/bit.28215
  11. Yang, Y., Wang, Z., Xu, Y., Xia, J., Xu, Z., Zhu, S., & Jin, M. (2022). Preparation of Chitosan/Recombinant Human Collagen-Based Photo-Responsive Bioinks for 3D Bioprinting. Gels, 8(5), 314. https://doi.org/10.3390/gels8050314
  12. Sun Y, Kong M, Li X, Li Q, Xue Q, Hou J, Jia Z, Lei Z, Xiao W, Shi S and Cao L (2022) Metabolic and Evolutionary Engineering of Diploid Yeast for the Production of First- and Second-Generation Ethanol. Front. Bioeng. Biotechnol. 9:835928. doi: 10.3389/fbioe.2021.835928
  13. Chenggu Cai et al. ,Valorization of lignin components into gallate by integrated biological hydroxylation, O-demethylation, and aryl side-chain oxidation.Sci. Adv.7,eabg4585(2021).DOI:10.1126/sciadv.abg4585
  14. Liu L, Jin M, Huang M, Zhu Y, Yuan W, Kang Y, Kong M, Ali S, Jia Z, Xu Z, Xiao W and Cao L (2021) Engineered Polyploid Yeast Strains Enable Efficient Xylose Utilization and Ethanol Production in Corn Hydrolysates. Front. Bioeng. Biotechnol. 9:655272. doi: 10.3389/fbioe.2021.655272
  15. Wang, Z., Zhou, L., Lu, M. et al. Adaptive laboratory evolution of Yarrowia lipolytica improves ferulic acid tolerance. Appl Microbiol Biotechnol 105, 1745–1758 (2021). https://doi.org/10.1007/s00253-021-11130-3
  16. Jiang, J., Jin, M., Li, X. et al. Recent progress and trends in the analysis and identification of rhamnolipids. Appl Microbiol Biotechnol 104, 8171–8186 (2020). https://doi.org/10.1007/s00253-020-10841-3
  17. Li R, Jin M, Du J, Li M, Chen S and Yang S (2020) The Magnesium Concentration in Yeast Extracts Is a Major Determinant Affecting Ethanol Fermentation Performance of Zymomonas mobilis. Front. Bioeng. Biotechnol. 8:957. doi: 10.3389/fbioe.2020.00957
  18. Zhiqiang Wen, Sufang Zhang, Chuks Kenneth Odoh, Mingjie Jin, Zongbao K Zhao, Rhodosporidium toruloides - A potential red yeast chassis for lipids and beyond, FEMS Yeast Research, Volume 20, Issue 5, August 2020, foaa038, https://doi.org/10.1093/femsyr/foaa038
  19. Wen Z, Ledesma-Amaro R, Lu M, et al. Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial Clostridium community. Biotechnology and Bioengineering. 2020; 117: 2008–2022. https://doi.org/10.1002/bit.27333
  20. Z. Wen, M. Lu, R. Ledesma-Amaro, Q. Li, M. Jin, S. Yang, TargeTron Technology Applicable in Solventogenic Clostridia: Revisiting 12 Years’ Advances. Biotechnol. J. 2019, 15, 1900284. https://doi.org/10.1002/biot.201900284

Profile Details

https://ebe.njust.edu.cn/6a/ab/c5080a92843/page.htm

Free SCIRP Newsletters
Copyright © 2006-2025 Scientific Research Publishing Inc. All Rights Reserved.
Top