Associate Professor
Email: zhong@uidaho.edu
Qualifications
Ph.D., Biochemistry, University of Novi Sad, Yugoslavia
M.S., Biochemistry, University of Novi Sad, Yugoslavia
B.S., Agronomy, Fujian Agricultural University, China
Publications (Selected )
- Xie B, Hong Z (2011) Unplugging the callose plug from sieve pores. Plant Signaling & Behavior, 6:491-493.
- Xie B, Wang X, Zhu M, Zhang Z, Hong Z (2011) CalS7 encodes a callose synthase responsible for callose deposition in the phloem. Plant J 65:1–14.
- Kang H, Zhu H, Chu X, Yang Z, Yuan S, Yu D, Wang C, Hong Z, Zhang Z (2011) A novel interaction between CCaMK and a protein containing the Scythe_N ubiquitin-like domain in Lotus japonicus. Plant Physiol 155: 1312-1324.
- Guseman JM, Lee JS, Bogenschutz NL, Peterson KM, Virata RE, Xie B, Kanaoka MM, Hong Z, Torii KU (2010) Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis CHORUS (GLUCAN SYNTHASE-LIKE 8). Development 137: 1731-1741
- Xie B, Wang X, Hong Z (2010) Precocious pollen germination in Arabidopsis lines with altered callose deposition during microsporogenesis. Planta 231: 809-823
- Ma L, Xie B, Hong Z, Verma DPS, Zhang Z (2008) A novel RNA-binding protein associated with cell plate formation. Plant Physiol. 148: 223-234
- Zhu H, Chen T, Zhu M, Fang Q, Kang H, Hong Z, Zhang Z (2008) A novel ARID DNA-binding protein interacts with SymRK and is expressed during early nodule development in Lotus japonicus. Plant Physiol. 148: 337-347
- Dong X, Hong Z, Chatterjee J, Kim S, Verma DPS (2008). Expression of callose synthase genes and its connection with Npr1 signaling pathway during pathogen infection. Planta 229: 87-98
- Ma L, Hong Z, Zhang Z (2007) Perinuclear and nuclear envelope localizations of Arabidopsis Ran proteins. Plant Cell Rep. 26: 1373-1382
- Verma DPS, Hong Z (2005). The ins and outs in membrane dynamics: Tubulation and vesiculation. Trends Plant Sci. 10: 159-165.
- Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma DPS (2005) Callose synthase (CalS5) is required for exine formation during microgametogenesis and pollen viability in Arabidopsis. Plant J. 42: 315-328.
- Hong Z, Bednarek S, Blumwald E, Hwang I, Jurgens G, Menzel D, Osteryoung K, Raikhel N, Shinozaki K, Tsutsumi N, Verma DPS (2003a). A unified nomenclature for Arabidopsis dynamin-related large GTPases based on homology and possible functions. Plant Mol. Biol. 53: 261-265.
- Hong Z, Geisler-Lee J, Zhang Z, Verma DPS (2003b). Phragmoplastin dynamics: multiple forms, microtubule association and their roles in cell plate formation in plants. Plant Mol. Biol. 53: 297-312. (including the Cover Picture of the Journal)
- Geisler-Lee, J., Hong, Z., and Verma, D.P.S. (2002) Overexpression of the cell plate-associated dynamin-like GTPase, phragmoplastin, results in the accumulation of callose at the cell plate and arrest of plant growth. Plant Sci. 163: 33-42.
- Verma DPS, Hong Z (2001) Plant callose synthase complexes. Plant Mol. Biol. 47: 693-701.
- Hong Z, Delauney AJ and Verma DPS (2001a) A cell plate-specific callose synthase and its interaction with phragmoplastin and UDP-glucose transferase. Plant Cell 13: 755-768
- Hong Z, Zhang Z, Olson J. and Verma DPS (2001b) A novel UDP glucose transferase interacts with callose synthase and phragmoplastin at the forming cell plate. Plant Cell 13, 769-780
- Zhang Z, Hong Z and Verma DPS (2000) Phragmoplastin polymerizes into spiral coiled structures via two self-assembly domains. J Biol Chem 275: 8779-8784
- Hong Z, Lakkineni K, Zhang Z and Verma DPS (2000) Removal of feedback inhibition of D1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 122: 1129-1136.
- Verma DPS and Hong Z (1996) Biogenesis of peribacteroid membrane in root nodules. Trends in Microbiology 4(9): 364-368.
- Kavi Kishor PB, Hong Z, Miao G-H and Verma DPS (1995) Overexpression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387-1394.
- Hong Z and Verma DPS (1994) A new phosphatidylinositol 3-kinase is induced during soybean nodule organogenesis and is associated with membrane proliferation. Proc. Natl. Acad. Sci. USA 91: 9617-9621.
- Verma DPS, Cheon C-I and Hong Z (1994) Small GTP-binding proteins and membrane biogenesis in plants. Plant Physiol. 106: 1-6.
- Cheon C-I, Hong Z and Verma DPS (1994) Nodulin-24 follows a novel pathway for integration into the peribacteroid membrane in soybean root nodules. J. Biol. Chem. 269: 6598-6602.
- Miao G-H*, Hong Z* and Verma DPS (1993) Two functional soybean genes encoding p34cdc2 protein kinases are regulated by different plant developmental pathways. Proc. Natl. Acad. Sci. USA 90: 943-947. (*Authors contributed equally to this work).
- Hong Z, Miao G-H and Verma DPS (1993) A p34cdc2 protein kinase homolog from mothbean (Vigna aconitifolia). Plant Physiol. 101:1399-1400.
- Miao G-H, Hong Z and Verma DPS (1992) Topology and phosphorylation of soybean nodulin-26, an intrinsic protein of the peribacteroid membrane. J. Cell. Biol. 118:481-490.
- Szoke A, Miao G-H, Hong Z and Verma DPS (1992) Subcellular location of D1-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol. 99:1642-1649.