Home > EPE>

Dr. Jesús M. Blanco

University of the Basque Country, Spain

Email: jesusmaria.blanco@ehu.es 


1996 Ph.D., Public University of Navarre, Spain, Industrial engineering

2009 M.Sc., Cranfield University, UK, Research in turbomachinery 


  1. Blanco JM., Armendáriz E. and Esarte J., (2014), A Parametric Study of Heat Transfer for the Optimization of Fin Sinks, Journal of Advanced Thermal Science Research, 1: 3-8.
  2. Blanco JM., Arriaga P., Rojí E. and Cuadrado J., (2014), Investigating the thermal behavior of double-skin perforated sheet façades: Part A: Model characterization and validation procedure, Building and Environment, 82: 50-62.
  3. Vazquez L., Blanco JM., Peña F. and Rodriguez JM. (2014), Power plant monitoring and diagnosis: Development of a visual steady state detector, Memoria Investigaciones en Ingeniería, 1: 17-29.
  4. Remaki L., Ramezani A., Blanco JM., Antolín JI., (2014), Efficient rotating frame simulation in turbomachinery, Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition GT2014, Düsseldorf, Germany.
  5. García J. and Blanco JM., (2014), Leading to promote a sustainable energy consumption among the new generations, despite today’s scenario of state energy policies; A case study, International Journal for Knowledge, Science and Technology, 1(6): 31-37.
  6. Blanco JM., Vazquez L., Peña F. and Díaz, D., (2013), New Investigation on Diagnosing Steam Production Systems from Multivariate Time Series Applied to Thermal Power Plants, Applied Energy, 101: 589-599.
  7. Blanco J.M., García J. and Rojí E., (2013), Recent Patents on Geothermal Power Extraction Devices, Recent Patents on Engineering, 7(1): 2-24.
  8. Blanco JM., Vazquez L. and Peña F., (2012), Investigation on a new methodology for thermal power plant assessment through live diagnosis monitoring of selected process parameters; application to a case study, Energy, 42: 170-180.
  9. Blanco JM. and Peña F., (2012), Optimizing the process for emptying carbon dioxide cylinders used for hydrogen sweeping in high-power electrical generators, Applied Thermal Engineering, 39: 132-139.
  10. Developing innovative photovoltaic materials in the dawn of a new era: self-generation and small scale electricity consumption, Fuelling the Future: Advances in Science and Technologies Transmission and Storage, Brown Walker Press Publishers, 2012:553-557, (ISBN-13: 978-1-61233-558-2).
  11. Heat Dissipaters. Thermoelectrics and its Energy Harvesting, Modules, Systems and Applications, Taylor and Francis Eds., Handbook of Thermoelectrics,2012, 2: 1-40, chapter 20, (ISBN: 978-1-4398-7472-1).
  12. Blanco JM. and Peña F., (2011), Increasing thermal efficiency at thermoelectric power plants through combustion exhaust gases management, Inf. Tecnológica, 22(4): 15-22.
  13. Analysis of exhaust gases from internal combustion engines and gas turbines burning both fossil and biomass derived fuels; environmental impact considering acidic emissions NOVA Science Publishers, 2011, chapter 1, (I.S.B.N.: 978-1-61122-956-1).
  14. Blanco JM. and Peña F., (2010), New trends for the implementation of new technologies according to E.C.T.S requirements; proceedings of a survey, International Journal for Knowledge, Science and Technology, 2(1): 66-73.
  15. Optimizing preliminary design of industrial equipment involving different thermal engineering calculation procedures over a power plant. Thermal engineering research, NOVA Science Publishers, 2010, chapter 1, (I.S.B.N: 978-1-60741-497-1).
  16. Blanco JM. and Peña F., (2008), Analytical study of the effects of the clogging of a mechanical precipitator unit in air preheaters in a high-performance thermoelectric power plant based on available data, ASME Journal of Engineering for Gas Turbines and Power, 130(2): 22001-22007.
  17. Progress in natural gas, burning technologies, general considerations and other fuel alternatives mostly used for firing up thermal power plants. Natural Gas Research Progress, NOVA Science Publishers, 2008, chapter 5, (I.S.B.N:978-1-60456-700-7).
  18. Environmental and economical cost of the acid emissions involving thermal power plants burning different fuels, based on available data. Acid Rain Research Focus, NOVA Science Publishers, 2008, chapter 1, (I.S.B.N.: 978-1-60456-373-3).
  19. Blanco JM. and Peña, F., (2007), Increase in the boiler’s performance in terms of the acid dew point temperature; environmental advantages of replacing fuels, Applied Thermal Engineering, 28(7): 77-784.
  20. Peña F. and Blanco JM., (2006), Evaluation of the physical dew point in the economizer of a combined cycle burning natural gas, Applied Thermal Engineering, 27, 2153-2158.
  21. Chacón J., Sala JM. and Blanco JM., (2006), Investigation on the Design and Optimization of a Low NOx-CO Emission Burner both experimentally and through CFD simulations, Energy and Fuels, 21, 42-58.
  22. BlancoJM.and Peña, F., (2006), Obtención del Valor Real de las Pérdidas de Difícil Evaluación, Aplicables al Cálculo del Rendimiento de Calderas, Inf. Tecnol., 17(3): 123-128.
  23. Blanco JM., Mendía F. and Peña F., (2006), Comparative analysis of CO2 and SO2 emissions between combined and conventional cycles with natural gas and fuel oil consumption over the Spanish thermal power plants, Fuel,85(9): 1280-85.
  24. Blanco JM., Armentia I., González A. and Sala JM., (1998), Determination nation of energy and exergy of waste heats at the industry of the Basque Country, Applied Thermal Engineering, 18(3-4): 187-197.
  25. Blanco JM., Sala JM. and López LM., (1997), Technological recovery potential of waste heat in the industry of the Basque Country, Applied Thermal Engineering, 17(3): 283-288.