Home > OJDM>

Prof. Toufik Mansour

Department of Mathematics

University of Haifa, Israel



Email: tmansour@univ.haifa.ac.il



2001  Ph.D., University of Haifa, Israel

1998  M.Sc., University of Haifa, Israel

1992  B.Sc., Technion Institute of Technology, Israel


Publications (Selected)

  1. Mansour, T. and Vainshtein, A. 2000. Restricted permutations, continued fractions, and Chebyshev polynomials, The Electronic Journal of Combinatorics 7, #R17.
  2. Mansour, T. and Vainshtein, A., 2002. Counting occurrences of 132 in a permutation, Advances in Applied Mathematics 28:2, 185-195.
  3. Mansour, T., 2002. Combinatorial identities and inverse binomial coefficients, Advances in Applied Mathematics 28:2, 196-202.
  4. Guibert, O. and Mansour, T., 2002. Some statistics on restricted 132 involutions, Annals of Combinatorics 6:3-4, 349-374.
  5. Mansour, T., 2004. On an open problem of Green and Losonczy: exact enumeration of freely braided permutations, Discrete Mathematics and Theoretical Computer Science 6:2, 461-470.
  6. Branden, P. and Mansour, T., 2005. Finite automata and pattern avoidance in words, Journal Combinatorial Theory Series A 110:1, 127-145.
  7. Braunstein, S.L., Ghosh, S., Mansour, T., Severini, S. and Wilson, R.C., 2006. Some families of density matrices for which separability is easily tested, Physical Review A 73, 012320, 1-10.
  8. Mansour, T., 2006. Restricted 132-avoiding k-ary words, Chebyshev polynomials, and Continued fractions, Advances in Applied Mathematics 36:2, 175-193.
  9. Mansour, T., Schork, M. and Severini, S., 2007. A generalization of the boson normal ordering, Physics Letters A 364:3-4, 214-220.
  10. Mansour, T., Schork, M. and Severini, S., 2007. Wick's theorem for q-deformed boson operators, Journal of Physics A: Mathematical and Theoretical 40, 8393-8401.
  11. Li, Nelson Y. and Mansour, T., 2008. An identity involving Narayana numbers, European Journal of Combinatorics 29:3, 672-675.
  12. Jelinek V. and Mansour, T., 2008. On pattern-avoiding partitions, Electronic Journal of Combinatorics 15, #R39.
  13. Dukes, W.M.B., Jelinek, V., Mansour, T. and Reifegerste, A., 2009. New equivalences for pattern avoidance for involutions, Proceedings of the American Mathematical Society 137, 457-465.
  14. Mansour, T., 2009. Identities for sums q-analogue of polylogarithm functions, Letters in Mathematical Physics 87:1-2, 1-18.
  15. Jelinek V. and Mansour, T., 2009. Wilf-equivalence on k-ary words, compositions, and parking functions, Electronic Journal of Combinatorics 16, #R58.
  16. Mansour T. and S. Severini, S., 2009. Counting paths in Bratteli diagrams for SU(2)k, EPL-A Letters Journal Exploring the Frontiers of Physics (Europhsics Letters) 86, 33001.
  17. Hamma, A., Mansour, T. and Severini, S., 2009. Diffusion on an Ising chain with kinks, Physics Letters A 373:31, 2622-2628.
  18. Mansour, T., Shattuck, M. and Yan, Sherry H.F., 2010. Counting subwords in a partition of a set, Electronic Journal of Combinatorics 17, #R19.
  19. Iguri S. and Mansour, T., 2010. Some recursive formulas for Selberg-type integrals, Journal of Physics A: Mathematical and Theoretical 43, 065201.
  20. Knopfmacher, A., Mansour, T. and Wagner, S., 2010. Records in set partitions, Electronic Journal of Combinatorics 17, #R109.
  21. Bates B. and Mansour, T., 2011. The q-Calkin-Wilf Tree, Journal of Combinatorial Theory, Series A 118, 1143-1151.
  22. Bevilacqua, G., Biancalana, V., Dancheva, Y., Mansour, T. and L. Moi, 2011. A new class of sum rules for products of Bessel functions, Journal of Mathematical Physics 52 (2011) 033508.
  23. Mansour T. and Schork, M., 2011. The commutation relation xy=qyx+hf(y) and Newton's binomial formula, The Ramanujan Journal 25, 405-445.
  24. Chen, Y., Gross J.L. and Mansour, T., 2013. Total embedding distributions of circular ladders, Journal Graph Theory 73:2, 32-57.
  25. Gross, J.L., Mansour, T., Tucker T.W. and Wang, David G.L., 2015. Log-Concavity of combinations of sequences and applications to Genus distributions, SIAM Discrete Mathematics 29:2, 1002-1029.

Profile Details