Home > JAMP>

Prof. Hari Mohan Srivastava

Department of Mathematics and Statistics

University of Victoria, Canada

Professor Emeritus

Email: harimsri@math.uvic.ca


2007 D.Sc. (Honoris Causa), Mathematical and Physical sciences, University of Alba Iulia, Romania

2006 D.Sc. (Honoris Causa), Mathematical and Physical Sciences, Chung Yuan Christian University, Taiwan, China

1965 Ph.D., Applied Mathematics, J. N. Vyas University of Jodhpur, India

1959 M.Sc., Applied Mathematics, University of Allahabad, India

1957 B.Sc., Mathematics, Physics, Chemistry Department, University of Allahabad, India

Publications (Selected and Most Recent)

1. P. Mokhtary, F. Ghoreishi and H. M. Srivastava (2016), The Mntz-Legendre Tau method for fractional differential equations, Appl. Math. Modelling 40, 671-684.

2. C. Adiga, N. A. S. Bulkhali, D. Ranganatha and H. M. Srivastava (2016), Some new modular relations for the Rogers-Ramanujan type functions of order eleven with applications to partitions, J. Number Theory 158, 281-297.

3. H. M. Srivastava and M. A. Abdlhusein (2016), New forms of the Cauchy operator and some of their applications, Russian J. Math. Phys. 23, 124-134.

4. M. Mursaleen, M. Nasiruzzaman and H. M. Srivastava (2016), Approximations by bicomplex beta operators in compact BC-disks, Math. Meth. Appl. Sci. 39, 2916-2929.

5. H. M. Srivastava and A. K. Mishra (2016), Pick's theorems for dissipative operators, Filomat 30, 1591-1599.

6. H. M. Srivastava, K. R. Alhindi and M. Darus (2016), An investigation into the polylogarithm function and its associated class of meromorphic functions, Maejo Internat. J. Sci. Tech. 10, 166174.

7. X.-J. Yang, H. M. Srivastava and J. A. T. Machado (2016), A new fractional derivative without singular kernel: Application to the modelling of the steady heat ow, Thermal Sci. 20, 753-756.

8. H. M. Srivastava, M. R. Khan and M. Ra_q (2016), Some subclasses of close-to-convex mappings associated with conic regions, Appl. Math. Comput. 285, 94-102.

9. J.-J. Liao, K.-N. Huang, K.-J. Chung, P.-S. Ting, S.-D. Lin and H. M. Srivastava (2016), Some mathematical analytic arguments for determining valid optimal lot size for deteriorating items with limited storage capacity under permissible delay in payments, Appl. Math. Inform. Sci. 10, 915-925.

10. S. Devi, H. M. Srivastava and A. Swaminathan (2016), Inclusion properties of a class of functions involving the Dziok-Srivastava operator, Korean J. Math. 24, 139-168.

11. X.-J. Yang, J. A. T. Machado and H. M. Srivastava (2016), A new numerical technique for solvingthe local fractional diffusion equation: Two-dimensional extended differential transform approach, Appl.Math. Comput. 274, 143-151.

12. M. Mursaleen, H. M. Srivastava, and S. K. Sharma, Generalized statistically convergent sequences of fuzzy numbers, J. Intelligent Fuzzy Systems 30 (2016), 1511-1518.

13. H. M. Srivastava, R. M. El-Ashwah and N. Breaz (2016), A certain subclass of multivalent functions involving higher-order derivatives, Filomat 30, 113-124.

14. H. M. Srivastava, M. I. Qureshi, C. W. Mohammad and M. S. Baboo (2016), Some summation and Laplace transformation formulas for the Gauss hypergeometric series, Adv. Stud. Contemp. Math. 26, 11-20.

15. Y. J. Sim, O. S. Kwon, N. E. Cho and H. M. Srivastava, Some sets of sufficient conditions for Carathodory functions, J. Comput. Anal. Appl. 21, 1243-1254.

16. H. M. Srivastava, S. B. Joshi, S. S. Joshi and H. Pawar (2016), Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math. 5 (Special Issue: 1), 250-258.

17. D. Zhao, X.-J. Yang and H. M. Srivastava (2015), On the fractal heat transfer problems with local fractional calculus, Thermal Sci. 19, 1867-1871.

18. Y. Zhang, H. M. Srivastava and M.-C. Baleanu (2015), Local fractional variational iteration algorithm II for non-homgeneous model associated with the non-differentiable heat ow, Adv. Mech. Engrg. 7 (10), 1-5.

19. X.-J. Yang, H. M. Srivastava and D. Baleanu (2015), Initial-boundary value problems for local fractional Laplace equation arising in fractal electrostatics, J. Appl. Nonlinear Dyn. 4, 349-356.

20. H. M. Srivastava, S. S. Eker and R. M. Ali (2015), Coefficient estimates for a certain class of analytic and bi-univalent functions, Filomat 29, 1839-1845.

21. J. Ahmad, S. T. Mohyud-Din, H. M. Srivastava and X.-J. Yang (2015), Analytic solutions of the Helmholz and Laplace equations by using local fractional derivative operators, Waves Wavelets Fractals Adv. Anal. 1, 22-26.

Profile Details