

J. Intelligent Learning Systems & Applications, 2010, 2, 55-118
Published Online May 2010 in SciRes (http://www.SciRP.org/journal/jilsa/)

Copyright © 2010 SciRes. JILSA

TABLE OF CONTENTS

Volume 2 Number 2 May 2010

Editorial: Special Section on Reinforcement Learning and Approximate Dynamic Programming

X. Xu…………………………………………………..……………………….………………………………..………..………55

Self-play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning

M. A. Wiering…………………………………………………..………………………………………………..………..………57

Relational Reinforcement Learning with Continuous Actions by Combining Behavioural Cloning and
Locally Weighted Regression

J. H. Zaragoza, E. F. Morales……………………………………………………………………………………………….………69

An Experience Based Learning Controller

D. Goswami, P. Jiang……………………………………………………….……………………………………………..………80

Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise
Data

S. Dutta, S. Bandopadhyay, R. Ganguli, D. Misra……………………………………………………………….…………..……86

Design of Hybrid Fuzzy Neural Network for Function Approximation

A. Mishra, Zaheeruddin…………………….……………………………………………………………………..………………97

Implementation of Adaptive Neuro Fuzzy Inference System in Speed Control of Induction Motor Drives

K. N. Sujatha, K. Vaisakh……110

Journal of Intelligent Learning Systems and Applications (JILSA)

Journal Information

SUBSCRIPTIONS

The Journal of Intelligent Learning Systems and Applications (Online at Scientific Research Publishing, www.SciRP.org) is

published quarterly by Scientific Research Publishing, Inc., USA.

Subscription rates:

Print: $50 per issue.

To subscribe, please contact Journals Subscriptions Department, E-mail: sub@scirp.org

SERVICES

Advertisements

Advertisement Sales Department, E-mail: service@scirp.org

Reprints (minimum quantity 100 copies)

Reprints Co-ordinator, Scientific Research Publishing, Inc., USA.

E-mail: sub@scirp.org

COPYRIGHT

Copyright©2010 Scientific Research Publishing, Inc.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as described below, without the

permission in writing of the Publisher.

Copying of articles is not permitted except for personal and internal use, to the extent permitted by national copyright law, or under

the terms of a license issued by the national Reproduction Rights Organization.

Requests for permission for other kinds of copying, such as copying for general distribution, for advertising or promotional purposes,

for creating new collective works or for resale, and other enquiries should be addressed to the Publisher.

Statements and opinions expressed in the articles and communications are those of the individual contributors and not the statements

and opinion of Scientific Research Publishing, Inc. We assumes no responsibility or liability for any damage or injury to persons or

property arising out of the use of any materials, instructions, methods or ideas contained herein. We expressly disclaim any implied

warranties of merchantability or fitness for a particular purpose. If expert assistance is required, the services of a competent

professional person should be sought.

PRODUCTION INFORMATION

For manuscripts that have been accepted for publication, please contact:

E-mail: jilsa@scirp.org

J. Intelligent Learning Systems & Applications, 2010, 2, 55-56
doi:10.4236/jilsa.2010.22008 Published Online May 2010 (http://www.SciRP.org/journal/jilsa)

Copyright © 2010 SciRes. JILSA

Editorial: Special Section on Reinforcement Learning
and Approximate Dynamic Programming

Approximate dynamic programming (ADP) is to com-
pute near-optimal solutions to Markov decision problems
(MDPs) with large or continuous spaces. In recent years,
the research works on ADP have been brought together
with the reinforcement learning (RL) community [1-4].
RL is a machine learning framework for solving sequen-
tial decision making problems that can also be modeled
as the MDP formalism. The common objective of RL
and ADP is to develop efficient algorithms for sequential
decision making under uncertain complex conditions.
Therefore, there are many potential applications of RL
and ADP in real-world problems such as autonomous
robots, intelligent control, resource allocation, network
routing, etc.
 This special section of JILSA focuses on key research
problems emerging at the junction of RL and ADP. After
a rigorous reviewing process, three papers were accepted
for publication in this special section.
 The first paper by M. A. Wiering [5] focuses on the
applications of reinforcement learning with value func-
tion approximation in game playing. In the paper, three
different schemes were studied for learning to play Back-
gammon with temporal difference learning. The three
training schemes include: 1) self-play, 2) playing against
an expert program, and 3) viewing experts play against
each other. Extensive experimental results using tempo-
ral difference methods with neural networks were pro-
vided to compare the three learning schemes. It was il-
lustrated that the drawback of learning from experts is
that the learning program has few chances for explora-
tion. The results also indicate that observing an expert
play is the worst method and learning by playing against
an expert seems to be the best strategy.
 The second paper by J. H. Zaragoza, and E. F.
Morales [6] proposed a relational reinforcement learning
approach with continuous actions, called TS-RRLCA,
which is based on the combination of behavioral cloning
and locally weighted regression. The TS-RRLCA ap-
proach includes two main stages to learn continuous ac-
tion policy for robots in partially known environments.
The first stage is to develop a relational representation of
robot states and actions and the rQ-learning algorithm is
applied with behavioral cloning so that optimized control
policies with discrete actions can be obtained efficiently.
In the second stage, the learned policy is transformed
into a relational policy with continuous actions through a

Locally Weighted Regression (LWR) process. The pro-
posed method was successfully applied to a simulated
and a real service robot for navigation and following
tasks with different conditions.
 The combination of reinforcement learning or ap-
proximate dynamic programming with learning from
demonstration is studied in the third paper [7]. A learn-
ing strategy was proposed to generate a control field for
a mobile robot in an unknown and uncertain environment,
which integrates learning, generalization, and explora-
tion into a unified architecture. Some Simulation results
were provided to evaluate the performance of the pro-
posed method.
 Although RL and ADP provide efficient ways for de-
veloping machine intelligence in a trial-and-error manner,
the incorporation of human intelligence is important for
the successful applications of RL and ADP. In this spe-
cial section on RL and ADP, all the three papers studied
the relationships between machine intelligence and hu-
man intelligence in different aspects. The results of the
first paper demonstrate that an expert program for game
playing will be very helpful to develop computer pro-
grams using RL [5]. The usage of relational RL to in-
corporate human examples was investigated in the sec-
ond paper [6]. In the third paper [7], the method of
learning from human demonstration was employed to
generate initial control field for an autonomous mobile
robots. Therefore, the results in this special section will
be good references for future research in related topics.
 At last, I would like to thank all of the authors and
reviewers who have made contributions to this special
section.

 Xin Xu
 Editor-in-Chief,
 JILSA

REFERENCES

[1] F. Y. Wang, H. G. Zhang and D. R. Liu, “Adaptive Dy-
namic Programming: An Introduction,” IEEE Computa-
tional Intelligence Magazine, May 2009, pp. 39-47.

[2] W. B. Powell, “Approximate Dynamic Programming:
Solving the Curses of Dimensionality,” Wiley, Princeton,

Editorial: Special Section on Reinforcement Learning and Approximate Dynamic Programming 56

NJ, 2007.
[3] R. S. Sutton and A. G. Barto, “Reinforcement Learning:

an Introduction,” MIT Press, Cambridge, MA, 1998.
[4] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-Dynamic

Programming. Belmont,” Athena Scientific, MA, 1996.
[5] M. A. Wiering, “Self-play and Using an Expert to Learn

to Play Backgammon with Temporal Difference Learn-
ing,” Journal of Intelligent Learning Systems and Appli-
cations, Vol. 2, 2010, pp. 55-66.

[6] J. H. Zaragoza and E. F. Morales, “Relational Rein-
forcement Learning with Continuous Actions by Com-
bining Behavioural Cloning and Locally Weighted Re-
gression,” Journal of Intelligent Learning Systems and
Applications, Vol. 2, 2010, pp. 67-77.

[7] D. Goswami and P. Jiang, “Experience Based Learning
Controller,” Journal of Intelligent Learning Systems and
Applications, Vol. 2, 2010, pp. 78-83.

Copyright © 2010 SciRes. JILSA

J. Intelligent Learning Systems & Applications, 2010, 2: 57-68
doi:10.4236/jilsa.2010.22009 Published Online May 2010 (http://www.SciRP.org/journal/jilsa)

Copyright © 2010 SciRes. JILSA

57

Self-Play and Using an Expert to Learn to Play
Backgammon with Temporal Difference Learning

Marco A. Wiering*

Department of Artificial Intelligence, University of Groningen, Groningen, Netherlands.
Email: m.a.wiering@rug.nl

Received October 22nd, 2009; revised January 10th, 2010; accepted January 30th, 2010.

ABSTRACT

A promising approach to learn to play board games is to use reinforcement learning algorithms that can learn a game
position evaluation function. In this paper we examine and compare three different methods for generating training
games: 1) Learning by self-play, 2) Learning by playing against an expert program, and 3) Learning from viewing ex-
perts play against each other. Although the third possibility generates high-quality games from the start compared to
initial random games generated by self-play, the drawback is that the learning program is never allowed to test moves
which it prefers. Since our expert program uses a similar evaluation function as the learning program, we also examine
whether it is helpful to learn directly from the board evaluations given by the expert. We compared these methods using
temporal difference methods with neural networks to learn the game of backgammon.

Keywords: Board Games, Reinforcement Learning, TD(λ), Self-Play, Learning From Demonstration

1. Introduction

The success of the backgammon learning program
TD-Gammon of Tesauro (1992, 1995) was probably the
greatest demonstration of the impressive ability of ma-
chine learning techniques to learn to play games. TD-
Gammon used reinforcement learning [1,2] techniques,
in particular temporal difference (TD) learning [2,3], for
learning a backgammon evaluation function from train-
ing games generated by letting the program play against
itself. This has led to a large increase of interest in such
machine learning methods for evolving game playing
computer programs from a randomly initialized program
(i.e., initially there is no a priori knowledge of the game
evaluation function, except for a human extraction of
relevant input features). Samuel (1959, 1967) pioneered
research in the use of machine learning approaches in his
work on learning a checkers program. In his work he
already proposed an early version of temporal difference
learning for learning an evaluation function.

For learning to play games, value function based rein-
forcement learning (or simply reinforcement learning) or
evolutionary algorithms are often used. Evolutionary
algorithms (EAs) have been used for learning to play
backgammon [4], checkers [5], and Othello [6] and were
quite successful. Reinforcement learning has been ap-
plied to learn a variety of games, including backgammon
[7,8], chess [9,10], checkers [11,12,13], and Go [14].

Other machine learning approaches learn an opening
book, rules for classifying or playing the endgame, or use
comparison training to mimic the moves selected by hu-
man experts. We will not focus on these latter ap-
proaches and refer to [15] for an excellent survey of ma-
chine learning techniques applied to the field of game-
playing.

EAs and reinforcement learning (RL) methods con-
centrate on evolving or learning an evaluation function
for a game position and after learning choose positions
that have the largest utility or value. By mapping inputs
describing a position to an evaluation of that position or
input, the game program can choose a move using some
kind of look-ahead planning. For the evaluation function
many function approximators can be used, but commonly
weighted symbolic rules (a kind of linear network), or a
multi-layer perceptron that can automatically learn non-
linear functions of the input is used.

A difference between EAs and reinforcement learning
algorithms is that the latter usually have the goal to learn
the exact value function based on the long term reward
(e.g., a win gives 1 point, a loss –1, and a draw 0),
whereas EAs directly search for a policy which plays
well without learning or evolving a good approximation
of the result of a game. Learning an evaluation function
with reinforcement learning has some advantages such as
better fine-tuning of the evaluation function once it is

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 58

quite good and the possibility to learn from single moves
without playing an entire game. Finally, the evaluation
function allows feedback to a player and can in combina-
tion with multiple outputs for different outcomes also be
used for making the game-playing program play more or
less aggressive.

In this paper we study the class of reinforcement
learning methods named temporal difference (TD)
methods. Temporal difference learning [3,7] uses the
difference between two successive positions for back-
propagating the evaluations of the successive positions to
the current position. Since this is done for all positions
occurring in a game, the outcome of a game is incorpo-
rated in the evaluation function of all positions, and
hopefully the evaluation functions improves after each
game. Unfortunately there is no convergence proof that
current RL methods combined with non-linear function
approximators such as feed-forward neural networks will
find or converge to an optimal value function.

For learning a game evaluation function for mapping
positions to moves (which is done by the agent), there are
the following three possibilities for obtaining experiences
or training examples; 1) Learning from games played by
the agent against itself (learning by self-play), 2) Learn-
ing by playing against a (good) opponent, 3) Learning
from observing other (strong) players play games against
each other. The third possibility might be done by letting
a strong program play against itself and let a learner pro-
gram learn the game evaluation function from observing
these games or from database games played by human
experts.

Research Questions. In this paper we compare dif-
ferent methods for acquiring and learning from training
examples. We pose ourselves the following research
questions:

1) Which method combined with temporal difference
learning results in the best performance after a fixed
number of games? Is observing an expert player, playing
against an expert, or self-play the best method?

2) When the learning program immediately receives
accurate evaluations of encountered board positions, will
it then learn faster than when it uses its initially random-
ized function approximator and TD-learning to get the
board evaluations?

3) Is a function approximator with more trainable pa-
rameters more efficient for learning to play the game of
backgammon than a smaller representation?

4) Which value for λ in TD (λ) works best for obtain-
ing the best performance after a fixed number of games?

Outline. This paper first describes game playing pro-
grams in section 2. Section 3 describes reinforcement
learning algorithms. Then section 4 presents experimen-
tal results with learning the game of backgammon for
which the above mentioned three possible methods for

generating training games are compared. Section 5 con-
cludes this paper.

2. Game Playing Programs

Game playing is an interesting control problem often
consisting of a huge number of states, and therefore has
inspired research in artificial intelligence for a long time.
In this paper we deal with two person, zero-sum, alterna-
tive move games such as backgammon, Othello, draughts,
Go, and chess. Furthermore, we assume that there is no
hidden state such as in most card games. Therefore our
considered board games consist of:

1) A set of possible board positions.
2) A set of legal moves in a position.
3) Rules for carrying out moves.
4) Rules for deciding upon termination and the result

of a game.
A game playing program consists of a move generator,

a look-ahead algorithm, and an evaluation function. The
move generator just generates all legal moves, possibly
in some specific order (taking into account some priority).
The look-ahead algorithm deals with inaccurate evalua-
tion functions. If the evaluation function would be com-
pletely accurate, look-ahead would only need to examine
board positions resulting from each legal move. For most
games an accurate evaluation function is very hard to
make, however. Therefore, by looking ahead many moves,
positions much closer to the end of a game can be exam-
ined and the difference in evaluations of the resulting
positions is larger and therefore the moves can be more
easily compared. A well known method for looking ahead
in games is the Minimax algorithm, however faster algo-
rithms such as alpha-beta pruning, Negascout, or princi-
pal variation search [16,17] are usually used for good
game playing programs.

If we examine the success of current game playing
programs, such as Deep Blue which won against Kas-
parov in 1997 [18], then it relies heavily on the use of
very fast computers and look-ahead algorithms. Deep
Blue can compute the evaluation of about 1 million posi-
tions in a second, much more than a human being who
examines less than 100 positions in a second. Also
draughts playing programs currently place emphasis on
look-ahead algorithms for comparing a large number of
positions. Expert backgammon playing programs only
use 3-ply look-ahead, however, and focus therefore much
more on the evaluation function.

Board games can have a stochastic element such as
backgammon. In backgammon dice are rolled to deter-
mine the possible moves. Although the dice are rolled
before the move is made, and therefore for a one-step
look-ahead the dice are no computational problem, this
makes the branching factor for computing possible posi-
tions after two or more moves much larger (since then
look-ahead needs to take into account the 21 outcomes of

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 59

the two dice). This is the reason that looking ahead many
moves in stochastic games is infeasible for human ex-
perts or computers. For this Monte Carlo simulations [19]
can still be helpful for evaluating a position, but due to
the stochasticity of these games, many games have to be
simulated.

On the other hand, we argue that looking ahead is not
very necessary due to the stochastic element. Since the
evaluation function is determined by dice, the evaluation
function will become smoother since a position’s value is
the average evaluation of positions resulting from all dice
rolls. In fact, in backgammon it often does not matter too
much whether some single stone or field occupied by 2
or more stones are shifted one place or not. This can be
again explained by the dice rolls, since different dice in
similar positions can results in a large number of equal
subsequent positions. Looking ahead multiple moves for
backgammon may be helpful since it combines approxi-
mate evaluations of many positions, but the variance may
be larger. A search of 3-ply is commonly used by the
best backgammon playing programs [7,8].

This is different with e.g. chess or draughts, since for
these games (long) tactical sequences of moves can be
computed which let a player win immediately. Therefore,
the evaluations of many positions later vary significantly
and are more easily compared. Furthermore, for chess or
draughts moving a piece one position can make the dif-
ference between a winning and losing position. Therefore
the evaluation function is much less smooth (evaluations
of close positions can be very different) and harder to
learn. We think that the success of learning to play
backgammon [8] relies on this smoothness of the evalua-
tion function. It is well known that learning smooth func-
tions requires less parameter for a machine learning al-
gorithm and therefore faster search for a good solution
and better generalization.

In the next section we will explain how we can use TD
methods for learning to play games. After that the results
of using TD learning for learning the game of Back-
gammon using different strategies for obtaining training
examples will be presented.

3. Reinforcement Learning

Reinforcement learning algorithms are able to let an
agent learn from its experiences generated by its interac-
tion with an environment. We assume an underlying
Markov decision process (MDP) which does not have to
be known to the agent. A finite MDP is defined as; 1)
The state-space S = {s1, s2, . . . , sn}, where st ∈ S de-
notes the state of the system at time t; 2) A set of actions
available to the agent in each state A(s), where at ∈ A(st)
denotes the action executed by the agent at time t; 3) A
transition function P (s, a, s’) mapping state action pairs s,
a to a probability distribution of successor states s’; 4) A

reward function R(s, a, s’) which denotes the average
reward obtained when the agent makes a transition from
state s to state s’ using action a, where rt denotes the
(possibly stochastic) reward obtained at time t; 5) A dis-
count factor 0 ≤ γ ≤ 1 which discounts later rewards
compared to immediate rewards.

3.1 Value Functions and Dynamic Programming

In optimal control or reinforcement learning, we are in-
terested in computing or learning an optimal policy for
mapping states to actions. We denote an optimal deter-
ministic policy as π∗(s) → a∗|s. It is well known that for
each MDP, one or more optimal deterministic policies
exist. An optimal policy is defined as a policy that re-
ceives the highest possible cumulative discounted re-
wards in its future from all states.

In order to learn an optimal policy, value-function
based reinforcement learning [1,2,3] uses value functions
to summarize the results of experiences generated by the
agent in the past. We denote the value of a state Vπ(s) as
the expected cumulative discounted future reward when
the agent starts in state s and follows a particular policy
π:

Vπ(s) = E (∑i = 0 γ
iri |s0 = s, π)

The optimal policy is the one which has the largest
state-value in all states. It is also well-known that there
exists a recursive equation known as the Bellman opti-
mality equation [20] which relates a state value of the
optimal value function to other optimal state values
which can be reached from that state using a single local
transition:

V∗(s) =∑s’ P (s, π∗(s), s’) (R(s, π∗(s), s’) + γV∗(s’))

Value iteration can be used for computing the optimal
V-function. For this we repeat the following update many
times for all states:

Vk+1(s) = maxa ∑s’ P (s, a, s’) (R(s, a, s’) + γVk(s’))

The agent can then select optimal actions using:

π∗(s) = argmaxa ∑s’ P (s, a, s’) (R(s, a, s’) + γV∗(s’))

3.2 Reinforcement Learning

Although dynamic programming algorithms can be effi-
ciently used for computing optimal solutions for particu-
lar MDPs, they have some problems for more practical
applicability; 1) The MDP should be known a-priori; 2)
For large state-spaces the computational time would be-
come very large; 3) They cannot be directly used in con-
tinuous state-action spaces.

Reinforcement learning algorithms can cope with
these problems; first of all the MDP does not need to be
known a-priori, all that is required is that the agent is
allowed to interact with an environment which can be
modeled as an MDP; secondly, for large or continuous

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 60

state-spaces, an RL algorithm can be combined with a
function approximator for learning the value function.
When combined with a function approximator, the agent
does not have to compute state-action values for all pos-
sible states, but can concentrate itself on parts of the
state-space where the best policies lead into.

There are a number of reinforcement learning algo-
rithms, the first one known as temporal difference learn-
ing or TD(0) [3] computes an update of the state value
function after making a transition from state st to state
st+1 and receiving a reward of rt on this transition by us-
ing the temporal difference learning rule:

V(st) = V(st) + α(rt + γV(st+1) − V(st))

where 0 < α ≤ 1 is the learning rate (which is treated here
as a constant, but should decay over time for conver-
gence proofs). Although it does not compute action-value
functions, it can be used to learn the value function of a
fixed policy (policy-evaluation). Furthermore, if com-
bined with a model of the environment, the agent can use
a learned state value function to select actions:

π(s) = argmaxa ∑s’ P (s, a, s’)(R(s, a, s’) + γV(s’))

It is possible to learn the V-function of a changing pol-
icy that selects greedy actions according to the value
function. This still requires the use of a transition func-
tion, but can be used effectively for e.g. learning to play
games [7,8].

There exists a whole family of temporal difference
learning algorithms known as TD(λ)-algorithms [3]
which are parameterized by the value λ which makes the
agent look further in the future for updating its value
function. It has been proved [21] that this complete fam-
ily of algorithms converges under certain conditions to
the same optimal state value function with probability 1
if tabular representations are used. The TD(λ)-algorithm
works as follows. First we define the TD(0)-error of V(st)
as:

δt = (rt + γV(st + 1) − V(st))

TD(λ) uses a factor λ ∈ [0, 1] to discount TD-errors
of future time steps:

V(st) ← V(st) + αδt
λ

where the TD(λ)-error δt
λ is defined as

δt
λ = ∑i = 0 (γλ)i δt+i

Eligibility traces. The updates above cannot be made
as long as TD errors of future time steps are not known.
We can compute them incrementally, however, by using
eligibility traces [3,22]. For this we use the update rule:

V(s) = V(s) + αδtet(s)

for all states, where et(s) is initially zero for all states and
updated after every step by:

et(s) = γλet−1(s) + ηt(s)

where ηt(s) is the indicator function which returns 1 if
state s occurred at time t, and 0 otherwise. A faster algo-
rithm to compute exact updates is described in [23]. The
value of λ determines how much the updates are influ-
enced by events that occurred much later in time. The
extremes are TD(0) and TD(1) where (online) TD(1)
makes the same updates as Monte Carlo sampling. Al-
though Monte Carlo sampling techniques that only learn
from the final result of a game do not suffer from biased
estimates, the variance in updates is large and that leads
to slow convergence. A good value for λ depends on the
length of an epoch and varies between applications, al-
though often a value between 0.6 and 0.9 works best.

3.3 Reinforcement Learning with Neural
Networks

To learn value functions for problems with many state
variables, there is the curse of dimensionality; the num-
ber of states increases exponentially with the number of
state variables, so that a tabular representation would
quickly become infeasible in terms of storage space and
computational time. Also when we have continuous states,
a tabular representation requires a good discretization
which has to be done a-priori using knowledge of the
problem, and a fine-grained discretization will also qui-
ckly lead to a large number of states. Therefore, instead
of using tabular representations it is more appropriate to
use function approximators to deal with large or con-
tinuous state spaces.

There are many function approximators available such
as neural networks, self-organizing maps, locally
weighted learning, and support vector machines. When
we want to combine a function approximator with rein-
forcement learning, we want it to learn fast and online
after each experience, and be able to represent continu-
ous functions. Appropriate function approximators com-
bined with reinforcement learning are therefore feed-
forward neural networks [24].

In this paper we only consider fully-connected feed-
forward neural networks with a single hidden layer. The
architecture consist of one input layer with input units
(when we refer to a unit, we also mean its activation):
I1, . . . , I|I |, where |I | is the number of input units, one
hidden layer H with hidden units: H1 , . . . , H|H|, and one
output layer with output units: O1, . . . , O|O|. The network
has weights: wih for all input units Ii to hidden units Hh,
and weights: who for all hidden Hh to output units Oo.
Each hidden unit and output unit has a bias bh or bo with
a constant activation of 1. The hidden units most often
use sigmoid activation functions, whereas the output
units use linear activation functions.

Forward propagation. Given the values of all input
units, we can compute the values for all output units with

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 61

forward propagation. The forward propagation algorithm
looks as follows:

1) Clamp the input vector I by perceiving the envi-
ronment.

2) Compute the values for all hidden units Hh ∈ H as
follows:

Hh = σ (∑i wih Ii + bh), where σ(x) is the Sigmoid func-
tion: σ(x) = 1/(1+e-x).

3) Compute the values for all output units Oo = ∑h who
Hh + bo.

Backpropagation. For training the system we can use
the back-propagation algorithm [25]. The learning goal is
to learn a mapping from the inputs to the desired outputs
Do for which we update the weights after each example.
For this we use backpropagation to minimize the squared
error measure:

E = ½∑o (Do – Oo)
2

To minimize this error function, we update the weights
and biases in the network using gradient descent steps
with learning rate α. We first compute the delta values of
the output units (for a linear activation function):

δO (o) = (Do − Oo)

Then we compute the delta values of all hidden units
(for a sigmoid activation function):

δH (h) = ∑o δO(o)who Hh(1 − Hh)

Then we change all hidden-output weights and output
bias values:

who = who + αδO(o)Hh; bo = bo + αδO(o)

And finally we change all input-hidden weights and
hidden bias values:

wih = wih + αδH(h)Ii; bh = bh + αδH(h)

Offline TD-methods. All we need is a desired output
and then backpropagation can be used to compute weight
updates to minimize the error-function on every different
example. To get the desired output, we can simply use
offline temporal difference learning [26] which waits
until an epoch has ended and then computes desired val-
ues for the different time-steps. For learning to play
games this is useful, since learning from the first moves
will not immediately help to play the rest of the game
better. In this paper we used the offline TD(λ) method
which provides the desired values for each board position,
taking into account the result of a game and the predic-
tion of the result by the next state. The final position at
time-step T is scored with the result rT of the game, i.e. a
win for white (= 1), a win for black (= –1) or a draw (= 0).

V′(sT) = rT (1)

The desired values of the other positions are given by
the following function:

V′(st) = γV(st+1) + rt + λγ(V′(st+1) − V(st+1))

After this, we use V′(st) as the desired value of state
st and use back-propagation to update all weights. In
Backgammon, we used a minimax TD-rule for learning
the game evaluation function. Instead of using an input
that indicates which player is allowed to move, we al-
ways reverted the position so that white was to move. In
this case, evaluations of successive positions are related
by V(st) = −V(st + 1). Without immediate reward and a
discount factor of 1, the minimax TD-update rule be-
comes:

V′(st) = −V(st+1) + λ(V(st+1) − V′(st+1))

4. Experiments with Backgammon

Tesauro’s TD-Gammon program learned after about
1,000,000 games to play at human world class level, but
already after 300,000 games TD-Gammon turned out to
be a good match against the human grand-master Rober-
tie. After this TD-Gammon was enhanced by a 3-ply
look-ahead strategy that made it even stronger. Currently,
TD-Gammon is still probably the best backgammon
playing program in the world, but other programs such as
BGBlitz from Frank Berger or Fredrik Dahl’s Jellyfish
also rely on neural networks as evaluation functions and
obtained a very good playing level. All of these programs
are much better than Berliner’s backgammon playing
program BKG [27] which was implemented using human
designed weighted symbolic rules to get an evaluation
function.

4.1 Learning an Expert Backgammon Program

We use an expert backgammon program against which
we can train other learning programs and which can be
used for generating games that can be observed by a
learning program. Furthermore, in later experiments we
can evaluate the learning programs by playing test-games
against this expert. To make the expert player we used
TD-learning combined with learning from self-play using
hierarchical neural network architecture. This program
was trained by playing more than 1 million games
against itself. Since the program was not always improv-
ing by letting it play more training games, we tested the
program after each 10,000 games for 5,000 test games
against the best previous saved version. Then we re-
corded the score for each test and the weights of the
network architecture with the highest score were saved.
Then after each 100,000 games we made a new opponent
which was the previous network with the highest score
over all tests and this program was also used as learning
program and further trained by self-play while testing it
against the previous best program. This was repeated
until there was no more progress, i.e. the learning pro-
gram was not able to significantly beat the previous best
learned program anymore. This was after more than
1,000,000 training games.

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 62

Architecture. We used modular neural network ar-
chitecture, since different strategic positions require dif-
ferent knowledge for evaluating the positions [28]. There-
fore we used a neural network architecture consisting of
the following 9 neural networks for different strategic
position classes, and we also show how many learning
examples these networks received during training this
architecture by self-play:

1) One network for the endgame; all stones are in the
inner-board for both players or taken out (10.7 million
examples).

2) One network for the racing game or long endgame;
the stones can not be beaten anymore by another stone
(10.7 million examples).

3) One network for positions in which there are no
stones on the bar or stones in the first 6 fields for both
players (1.9 million examples).

4) One network if the player has a prime of 5 fields or
more and the opponent has one piece trapped by it (5.5
million examples).

5) One network for back-game positions where one
player has a significant pip-count disadvantage and at
least three stones in the first 6 fields (6.7 million exam-
ples).

6) One network for a kind of holding game; the player
has a field with two stones or more or one of the 18, 19,
20, or 21 points (5.9 million examples).

7) One network if the player has all its stones further
than the 8 point (3.3 million examples).

8) One network if the opponent has all its stones fur-
ther than the 8 point (3.2 million examples).

9) One default network for all other positions (34.2
million examples).

For each position which needs to be evaluated, our
symbolic categorization module uses the above rules to
choose one of the 9 networks to evaluate (and learn) a
position. The rules are followed from the first category to
the last one, and if no rule applies then the default cate-
gory and network is used.

Input features. Using this modular design, we also
used different features for different networks. E.g., the
endgame network does not need to have inputs for all
fields since all stones have been taken out or are in the
inner-board of the players. For the above mentioned
neural network modules, we used different inputs for the
first (endgame), second (racing game), and other (general)
categories. The number of inputs for them is:

1) For the endgame we used 68 inputs, consisting of
56 inputs describing raw input information and 12 higher
level features.

2) For the racing game (long endgame) we used 277
inputs, consisting of the same 68 inputs as for the end-
game, another 192 inputs describing the raw board in-
formation, and 17 additional higher level features.

3) For the rest of the networks (general positions) we
used 393 inputs consisting of 248 inputs describing raw
board information and 145 higher level features includ-
ing for example the probabilities that stones can be hit by
the opponent in the next move.

For the neural networks we used 7 output units in
which one output learned on the average result and the
other six outputs learned a specific outcome (such as
winning with 3, 2, or 1 point or losing with 3, 2, or 1
point). The good thing of using multiple output units is
that there is more learning information going in the net-
works. Therefore the hidden units of the neural networks
need to be useful for storing predictive information for
multiple related subtasks, possibly resulting in better
representations [29]. For choosing moves, we combined
the average output with the combined outputs of the
other output neurons to get a single board position
evaluation. For this we took the average of the single
output (with a value between –3 and 3) and the combined
value of the other outputs times their predicted probabil-
ity values. Each output unit only learned from the same
output unit in the next positions using TD-learning (so
the single output only learned from its own evaluations
of the next positions). Finally, the number of hidden units
(which use a sigmoid activation function) was 20 for the
endgame and long endgame, and 40 for all other neural
networks. We call the above described network architec-
ture the large neural network architecture and trained it
by self-play using TD(λ) learning with a learning rate of
0.01, a discount factor γ of 1.0, and a value for λ of 0.6.
After learning we observed that the 2 different evaluation
scores were always quite close and that the 6 output units
usually had a combined activity close to 1.0 with only
sometimes small negative values (such as –0.002) for
single output units if the probability of the result was 0,
which only have a small influence on the evaluation of a
position.

Now we obtained an expert program, we can use it for
our experiments in analyzing the results of new learners
that train by self-play, train by playing against this expert,
or learn by viewing games played by the expert against
itself.

4.2 Experiments with Learning Backgammon

We first made a number of simulations in which 200,000
training games were used and after each 5,000 games we
played 5,000 test games between the learner and the ex-
pert to evaluate the learning program. Because these
simulations took a lot of time (several days for one
simulation), they were only repeated two times for every
setup.

The expert program was always the same as described
before. For the learning program we also made use of a
smaller architecture consisting of three networks; one for
the endgame of 20 hidden units, one for the long end-

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 63

game (racing game) of 20 hidden units, and one for the
other board positions with 40 hidden units. We also used
a larger network architecture with the same three net-
works, but with 80 hidden units for the other board posi-
tions, and finally we used an architecture with 20, 20, 40
hidden units with a kind of radial basis activation func-

tion: Hj = .These architectures were trained
by playing training games against the expert. We also
experimented with a small network architecture that
learns by self-play or by observing games played by the
expert against itself.

ij i j(W I +b)2e 

Because the evaluation scores fluctuate a lot during the
simulation, we smoothed them a bit by replacing the
evaluation of each point (test after n games) by the aver-
age of it and its two adjacent evaluations. Since we used
2 simulations, each point is therefore an average of 6
evaluations obtained by testing the program 5,000 games
against the expert (without the possibility of doubling the
cube). For all these experiments we used extended back-
propagation [30] and TD(λ)-learning with a learning rate
of 0.01 and an eligibility trace factor λ of 0.6 that gave
the best results in preliminary experiments. Figures 1
and 2 show the obtained results.

First of all, it can be noted that the neural network ar-
chitecture with RBF like activation functions for the
hidden units works much worse. Furthermore, it can be
seen that most other approaches work quite well and
reach equity of almost 0.5. Table 1 shows that all archi-
tectures, except for the architecture using RBF neurons,
obtained an equity higher than 0.5 in at least one of

Figure 1. Results for different architectures from learning
against the expert, and the small architecture that learns by
self-play or by observing games of the expert

Figure 2. Results for different architectures from learning
against the expert, and the small architecture that learns by
self-play or by observing games of the expert. More detailed
plot without the architecture with RBF hidden units

Table 1. Results for the different methods as averages of 6
matches of 5,000 games played against the expert. Note that
the result after 5,000 games is the average of the tests after
100, 5000, and 10000 games

Architecture 5000 100,000 175,000
Max
after

Max
eval

Small Network 0.327 0.483 0.478 190,000 0.508

Large architecture 0.290 0.473 0.488 80,000 0.506

Network 80 hidden 0.309 0.473 0.485 155,000 0.505

Network 40 RBF 0.162 0.419 0.443 120,000 0.469

Small network Self-play 0.298 0.471 0.477 200,000 0.502

Small network Observing 0.283 0.469 0.469 110,000 0.510

the 80 tests. Testing these found solutions 10 times for
5000 games against the expert indicated that their play-
ing strengths were equal. If we take a closer look at Fig-
ure 2, we can see that the large architecture with many
module finally performs a bit better than the other ap-
proaches and that learning by observing the expert
reaches a slightly worse performance.

Smaller simulations. We also performed a number of
smaller simulations of 15,000 training games where we
tested after each 500 games for 500 testing games. We
repeated these simulations 5 times for each neural net-
work architecture and method for generating training

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 64

games. Because there is an expert available with the
same kind of evaluation function, it is also possible to
learn with TD-learning using the evaluations of the ex-
pert itself. This is very similar to supervised learning,
although the agent generates its own moves (depending
on the method for generating games). In this way, we can
analyze what the impact of bootstrapping on an initially
bad evaluation function is compared to learning immedi-
ately from outputs for positions generated by a better
evaluation function. Again we used extended back-
propagation [30] and TD(λ) with a learning rate of 0.01
and set λ = 0.6.

In Figure 3, we show the results of the smaller archi-
tecture consisting of three networks with 20, 20, and 40
hidden units. We also show the results in Figure 4 where
we let the learning programs learn from evaluations
given by the expert program, but for which we still use
TD-learning on the expert’s evaluations with λ = 0.6 to
make training examples.

The results show that observing the expert play and
learning from these generated games progress slower and
reach slightly worse results within 15,000 games if the
program learns from its own evaluation function. In Fig-
ure 4 we can see faster learning and better final results
if the programs learn from the expert’s evaluations
(which is like supervised learning), but the differences are
not very large compared to learning from the own evalua-
tion function. It is remarkable that good performance

Figure 3. Results for the small architecture when using a
particular method for generating games. The evaluation on
which the agent learns is its own

Figure 4. Results when the expert gives the evaluations of
positions

has already been obtained after only 5,000 training games.

In Table 2 we can see that if we let the learning pro-
gram learn from games played against the expert, in the
beginning it almost always loses (its average test-result
or equity after 100 training games is 0.007), but already
after 500 training games the equity has increased to an
average value of 0.26. We can conclude that the learning
program can learn its evaluation function by learning
from the good positions of its opponent. This good
learning performance can be attributed to the minimax
TD-learning rule, since otherwise always losing will
quickly result in a simple evaluation function that always
returns a negative result. However, using the minimax
TD-learning rule, the program does not need to win
many games in order to learn the evaluation function.
Learning by self-play performs almost as good as learn-
ing from playing against the expert. If we use the ex-
pert’s evaluation function then learning progresses much
faster in the beginning, although after 10,000 training
games almost the same results are obtained. Learning by
observing the expert playing against itself progresses
slower and reaches worse results if the learning program
learns from its own evaluation function. If we look at the
learning curve, we can still see that it is improving how-
ever.

We repeated the same simulations for the large archi-
tecture consisting of 9 modules. The results are shown in
Figures 5 and 6. The results show that learning with the
large network architecture progresses much slower,
which can be explained by the much larger number of

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 65

Table 2. Results for the three different methods for gener-
ating training games with learning from the own or the
expert’s evaluation function. The results are averages of 5
simulations

Method Eval-function 100 500 1000 5000 10,000

Self-play Own 0.006 0.20 0.36 0.41 0.46

Self-play Expert 0.15 0.33 0.38 0.46 0.46

Against expert Own 0.007 0.26 0.36 0.45 0.46

Against expert Expert 0.20 0.35 0.39 0.47 0.47

Observing expert Own 0.003 0.01 0.16 0.41 0.43

Observing expert Expert 0.05 0.22 0.32 0.45 0.46

Figure 5. Results for the large architecture when using a
particular method for generating games. The evaluation on
which the agent learns is its own

parameters which need to be trained and the fewer ex-
amples for each individual network. The results also
show that learning from observing the expert play against
itself performs worse than the other methods, although
after 15,000 games this method also reaches quite high
equities, comparable with the other methods. The best
method for training the large architecture is when games
are generated by playing against the expert. Figure 6
shows faster progress if the expert’s evaluations are used.

Effect of λ. Finally, we examine what the effect of dif-
ferent values for λ is when the small architecture learns
by playing against the expert. We tried values for λ of 0.0,
0.2, 0.4, 0.6, 0.8, and 1.0. When using λ = 1 we needed to
use a smaller learning-rate, since otherwise initially the

weights became much too large. Therefore we used a
learning rate of 0.001 for λ = 1.0 and a learning rate of
0.01 for the other values for λ. Figure 7 shows the results
averaged over 5 simulations. It can be seen that a λ-value
of 1.0 works much worse and that values of 0.6 or 0.8
perform the best. Table 3 shows the results after 100,
500, 1000, 5000, and 10,000 games. We can see that
higher values of λ initially result in faster learning which

Figure 6. Results for the large architecture when using a
particular method for generating games. Results when the
expert gives the evaluations

Figure 7. Results for the small architecture when using dif-
ferent values for λ. The games are generated by self-play

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 66

Table 3. Results for different values of λ when the small
architecture learns against the expert

λ 100 500 1000 5000 10,000

0.0 0.004 0.13 0.31 0.42 0.43

0.2 0.002 0.24 0.34 0.43 0.45

0.4 0.002 0.26 0.35 0.44 0.44

0.6 0.007 0.26 0.36 0.45 0.46

0.8 0.06 0.34 0.39 0.44 0.45

1.0 0.12 0.23 0.31 0.39 0.40

can be explained by the fact that bootstrapping from the
initially random evaluation function does not work too
well and therefore larger eligibility traces are profitable.
After a while λ values between 0.2 and 0.8 perform all
similarly.

4.3 Discussion

Learning a good evaluation function for backgammon
with temporal difference learning appears to succeed
very well. Already within few thousands of games which
can be played in less than one hour a good playing level
is learned with equity of around 0.45 against the expert
program. We expect this equity to be similar to a human
player who regularly plays backgammon. The results
show that learning by self-play and by playing against
the expert obtain the same performance.

Learning by observing an expert play progresses ap-
proximately two or three times slower than the other
methods. In our current experiments the learning pro-
gram observed another program that still needed to select
moves. Therefore there was no computational gain in
generating training games. However, if we would have
used a database, then in each position also one-step
look-ahead would not be needed. Since the branching
factor for a one-step look-ahead search is around 16 for
backgammon, we would gain 94% of the computational
time for generating and learning from a single game.
Therefore learning from database games could still be
advantageous compared to learning by self-play or play-
ing against an expert. A problem of using a (small) data-
base is that overfitting the evaluation function may occur.
This may be solved by combining this approach with
learning by self-play. In the large experiment, the learn-
ing behavior of the method that learns by observing the
expert is a bit more fluctuating, but it still obtained equity
a bit larger than 0.5 during one of the test-games in the
large experiment and additional tests indicated that its
playing strength at that point was equal to the expert
player.

We also noted that training large architectures initially
takes longer which can be simply explained by the larger
number of parameters which need to be learned and
fewer examples for individual modules. After training for
a longer time, such bigger architectures can reach higher
performance levels than smaller architectures. We note
that since the agent learns on the same problem as on
which it is tested, in these cases overfitting does not oc-
cur. A large value for λ (larger than 0.8) initially helps to
improve the learning speed, but after some time smaller
values for λ (smaller than 0.8) perform better. An an-
nealing schedule for λ may therefore be useful. Finally
we observed in all experiments that the learning pro-
grams are not always improving by playing more games.
This can be explained by the fact that there is no conver-
gence guarantee for RL and neural networks. Therefore
testing the learning program against other fixed programs
on a regular basis is necessary to be able to save the best
learning program. It is interesting to note the similarity to
evolutionary algorithms evolving game playing programs
which also use tests. However, we expect that temporal
difference learning and gradient descent is better for
fine-tuning the evaluation function than a more random-
ized evolutionary search process.

Another approach that receives a lot of attention in re-
cent RL research and good results for particular control
problems is kernel-based least policy iteration (LSPI)
learning [31]. However, it is unlikely that RBF kernels
will generalize well to the huge state space of backgam-
mon and that therefore kernel based LSPI is not likely to
be successful. In fact, we implemented Support vector
machines with RBF kernels for the game of Othello, and
this showed indeed that RBF kernels are not good for
games involving huge state-spaces. For this sigmoid
functions are needed, but they are difficult to use as ker-
nels, since they require a lot of structural design. The use
of neural networks with sigmoid activation functions is
therefore the current method of choice for difficult
games.

5. Conclusions

In this paper different strategies for obtaining training
examples for learning game evaluation functions have
been examined. The possible advantage of playing against
or observing an expert, namely that games are initially
played at a high level was not clearly shown in the ex-
perimental results. We will now return to our research
questions and answer them here.

1) Question 1. Which method combined with temporal
difference learning results in the best performance after a
fixed number of games? Is observing an expert player,
playing against an expert, or self-play the best method?

Answer. The results indicate that observing an expert
play is the worst method. The reason can be that the
learning program is never actively involved in playing

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning 67

and therefore can not learn to penalize particular moves
that it may have overestimated. Learning by playing
against an expert seems to be the best strategy. Another
approach that could be useful is learning from the expert
combined with learning by self-play.

2) Question 2. When the learning program immedi-
ately receives accurate evaluations of encountered board
positions, will it then learn faster than when it uses its
initially randomized function approximator and TD-
learning to estimate the board evaluations?

Answer. Initially, learning goes much faster when ac-
curate evaluations are given. However, after 10,000
training games, the disadvantage of the initially random-
ized function approximator has almost disappeared.

3) Question 3. Is a function approximator with more
trainable parameters more efficient for learning to play
the game of backgammon than a smaller representation?

Answer. Yes, in general the larger function approxi-
mators obtain better performance levels, although in the
beginning they learn at a slower rate. Since the agent is
tested on exactly the same problem as on which it is
trained (different from supervised learning), overfitting
does not occur in reinforcement learning.

4) Question 4. Which value for λ in TD(λ) works best
for obtaining the best performance after a fixed number
of games?

Answer. Initially larger values for λ result in a faster
learning rate. However, the final performance is best for
intermediate values of λ around 0.6. It should be noted
that this observation is quite problem specific.

Future work. Although in this paper it was demon-
strated that learning from observing an expert is not prof-
itable to learn to play backgammon, we also mentioned
some advantages of using an expert or a database. Ad-
vantages of learning from experts are that the system
does not explore the whole huge state-space and that in
some applications it is a safer method for obtaining ex-
periences than learning by trial-and-error. Furthermore,
learning game evaluation functions from databases has
the advantage that no look-ahead during game-play is
necessary.

Learning from experts or databases can also be used
for other applications, such as learning in action or stra-
tegic computer games for which human games played
with a joystick can be easily recorded. Furthermore, for
therapy planning in medicine, databases of therapies may
be available and could therefore be used for learning
policies. For robotics, behavior may be steered by hu-
mans and these experiences can be recorded and then
learned by the robot [32]. Thus, we still think that learn-
ing from observing an expert has many advantages and
possibilities for learning control knowledge, although
care should be taken that the learner tries out its own
behavior during learning.

REFERENCES
[1] L. P. Kaelbling, M. L. Littman and A. W. Moore, “Rein-

forcement Learning: A Survey,” Journal of Artificial In-
telligence Research, Vol. 4, 1996, pp. 237-285.

[2] R. S. Sutton and A. G. Barto, “Reinforcement Learning:
An Introduction,” The MIT press, Cambridge, MA, 1998.

[3] R. S. Sutton, “Learning to Predict by the Methods of
Temporal Differences,” Machine Learning, Vol. 3, 1988,
pp. 9-44.

[4] J. B. Pollack and A. D. Blair, “Why Did TD-Gammon
Work,” In: D. S. Touretzky, M. C. Mozer and M. E. Has-
selmo, Ed., Advances in Neural Information Processing
Systems 8, MIT Press, Cambridge, MA, 1996, pp. 10-16.

[5] D. B. Fogel, “Evolving a Checkers Player without Rely-
ing on Human Experience,” Intelligence, Vol. 11, No. 2,
2000, pp. 20-27.

[6] D. E. Moriarty, “Symbiotic Evolution of Neural Net-
works in Sequential Decision Tasks,” PhD thesis, De-
partment of Computer Sciences, The University of Texas
at Austin, USA, 1997.

[7] G. Tesauro, “Practical Issues in Temporal Difference
Learning,” In: D. S. Lippman, J. E. Moody and D. S.
Touretzky, Ed., Advances in Neural Information Proc-
essing Systems 4, Morgan Kaufmann, San Mateo, CA,
1992, pp. 259-266.

[8] G. J. Tesauro, “Temporal Difference Learning and TD-
Gammon,” Communications of the ACM, Vol. 38, 1995,
pp. 58-68.

[9] S. Thrun, “Learning to Play the Game of Chess,” In: G. Te-
sauro, D. Touretzky and T. Leen, Ed., Advances in Neural
Information Processing Systems 7, Morgan Kaufmann, San
Fransisco, CA, 1995, pp. 1069-1076.

[10] J. Baxter, A. Tridgell and L. Weaver, “Knightcap: A
Chess Program that Learns by Combining TD(λ) with
Minimax Search,” Technical report, Australian National
University, Canberra, 1997.

[11] A. L. Samuel, “Some Studies in Machine Learning Using
the Game of Checkers,” IBM Journal on Research and
Development, Vol. 3, No. 3, 1959, pp. 210-229.

[12] A. L. Samuel, “Some Studies in Machine Learning Using
the Game of Checkers II—Recent Progress,” IBM Jour-
nal on Research and Development, Vol. 11, No. 6, 1967,
pp. 601-617.

[13] J. Schaeffer, M. Hlynka and V. Hussila, “Temporal Dif-
ference Learning Applied to a High-Performance Game,”
In Seventeenth International Joint Conference on Artifi-
cial Intelligence, Seattle, WA, USA, 2001, pp. 529-534.

[14] N. N. Schraudolph, P. Dayan and T. J. Sejnowski, “Tem-
poral Difference Learning of Position Evaluation in the
Game of Go,” In: J. D. Cowan, G. Tesauro and J. Al-
spector, Ed., Advances in Neural Information Processing
Systems, Morgan Kaufmann, San Francisco, CA, 1994,
pp. 817-824.

[15] J. Furnkranz, “Machine Learning in Games: A Survey,”
In: J. Furnkranz and M. Kubat, Ed., Machines that learn
to Play Games, Nova Science Publishers, Huntington,

Copyright © 2010 SciRes. JILSA

Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning

Copyright © 2010 SciRes. JILSA

68

NY, 2001, pp. 11-59.

[16] A. Plaat, “Research Re: search and Re-search,” PhD the-
sis, Erasmus University Rotterdam, Holland, 1996.

[17] J. Schaeffer, “The Games Computers (and People) Play,”
Advances in Computers, Vol. 50, 2000, pp. 189-266.

[18] J. Schaeffer and A. Plaat, “Kasparov versus Deep Blue:
The Re-match,” International Computer Chess Associa-
tion Journal, Vol. 20, No. 2, 1997, pp. 95-102.

[19] R. Coulom, “Efficient Selectivity and Backup Operators
in Monte-Carlo Tree Search,” Proceedings of the fifth In-
ternational Conference on Computers and Games, Turin,
Italy, 2006, pp. 72-83.

[20] R. Bellman, “Dynamic Programming,” Princeton Univer-
sity Press, USA, 1957.

[21] J. N. Tsitsiklis, “Asynchronous Stochastic Approximation
and Q-learning,” Machine Learning, Vol. 16, 1994, pp.
185-202.

[22] A. G. Barto, R. S. Sutton and C. W. Anderson, “Neu-
ronlike Adaptive Elements that Can Solve Difficult
Learning Control Problems,” IEEE Transactions on Sys-
tems, Man and Cybernetics, Vol. 13, 1983, pp. 834-846.

[23] M. A. Wiering and J. H. Schmidhuber, “Fast Online
Q(λ),” Machine Learning, Vol. 33, No. 1, 1998, pp. 105-
116.

[24] C. M. Bishop, “Neural Networks for Pattern Recogni-
tion,” Oxford University, New York, 1995.

[25] D. E. Rumelhart, G. E. Hinton and R. J. Williams,
“Learning Internal Representations by Error Propaga-

tion,” In: D. E. Rumelhart and J. L. Mcclelland, Ed., Par-
allel Distributed Processing, MIT Press, USA, 1986, pp.
318-362.

[26] L.-J. Lin, “Reinforcement Learning for Robots Using
Neural Networks,” PhD thesis, Carnegie Mellon Univer-
sity, Pittsburgh, 1993.

[27] H. Berliner, “Experiences in Evaluation with BKG—A
Program that Plays Backgammon,” In Proceedings of the
International Joint Conference on Artificial Intelligence,
Vol. 1, 1977, pp. 428-433.

[28] J. A. Boyan, “Modular Neural Networks for Learning
Context-Dependent Game Strategies,” Master’s thesis,
University of Chicago, USA, 1992.

[29] R. Caruana and V. R. de Sa, “Promoting Poor Features to
Supervisors: Some Inputs Work Better as Outputs,” In: M.
C. Mozer, M. I. Jordan and T. Petsche, Ed., Advances in
Neural Information Processing Systems 9, Morgan Kauf-
mann, San Mateo, CA, 1997, pp.246-252.

[30] A. Sperduti and A. Starita, “Speed up Learning and Net-
work Optimization with Extended Backpropagation,”
Neural Networks, Vol. 6, 1993, pp. 365-383.

[31] X. Xu, D. Hu and X. Lu, “Kernel-Based Least Squares
Policy Iteration for Reinforcement Learning,” IEEE
Transactions on Neural Networks, Vol. 18, No. 4, 2007,
pp. 973-992.

[32] W. Smart and L. Kaelbling, “Effective Reinforcement
Learning for Mobile Robots,” Proceedings of the IEEE
International Conference on Robotics and Automation,
Washington, DC, USA, 2002, pp. 3404-3410.

J. Intelligent Learning Systems & Applications, 2010, 2: 69-79
doi:10.4236/jilsa.2010.22010 Published Online May 2010 (http://www.SciRP.org/journal/jilsa)

Copyright © 2010 SciRes. JILSA

69

Relational Reinforcement Learning with
Continuous Actions by Combining Behavioural
Cloning and Locally Weighted Regression

Julio H. Zaragoza, Eduardo F. Morales

National Institute of Astrophysics, Optics and Electronics, Computer Science Department, Tonantzintla, México.
Email: {jzaragoza, emorales}@inaoep.mx

Received October 30th, 2009; revised January 10th, 2010; accepted January 30th, 2010.

ABSTRACT

Reinforcement Learning is a commonly used technique for learning tasks in robotics, however, traditional algorithms
are unable to handle large amounts of data coming from the robot’s sensors, require long training times, and use dis-
crete actions. This work introduces TS-RRLCA, a two stage method to tackle these problems. In the first stage, low-level
data coming from the robot’s sensors is transformed into a more natural, relational representation based on rooms,
walls, corners, doors and obstacles, significantly reducing the state space. We use this representation along with Be-
havioural Cloning, i.e., traces provided by the user; to learn, in few iterations, a relational control policy with discrete
actions which can be re-used in different environments. In the second stage, we use Locally Weighted Regression to
transform the initial policy into a continuous actions policy. We tested our approach in simulation and with a real ser-
vice robot on different environments for different navigation and following tasks. Results show how the policies can be
used on different domains and perform smoother, faster and shorter paths than the original discrete actions policies.

Keywords: Relational Reinforcement Learning, Behavioural Cloning, Continuous Actions, Robotics

1. Introduction

Nowadays it is possible to find service robots for many
different tasks like entertainment, assistance, maintenance,
cleanse, transport, guidance, etc. Due to the wide range
of services that they provide, the incorporation of service
robots in places like houses and offices has increased in
recent years. Their complete incorporation and accep-
tance, however, will depend on their capability to learn
new tasks. Unfortunately, programming service robots for
learning new tasks is a complex, specialized and time
consuming process.

An alternative and more attractive approach is to show
the robot how to perform a task, rather than trying to
program it, and let the robot to learn the fine details of
how to perform the task. This is the approach that we
follow on this paper.

Reinforcement Learning (RL) [1] has been widely used
and suggested as a good candidate for learning tasks in
robotics, e.g., [2-9]. This is mainly because it allows an
agent, i.e., the robot, to “autonomously” develop a con-
trol policy for performing a new task while interacting
with its environment. The robot only needs to know the

goal of the task, i.e., the final state, and a set of possible
actions associated with each state.

The use and application of traditional RL techniques
however, has been hampered by four main aspects: 1)
vast amount of data produced by the robot’s sensors, 2)
large search spaces, 3) the use of discrete actions, and 4)
the inability to re-use previously learned policies in new,
although related, tasks.

Robots are normally equipped with laser range sensors,
rings of sonars, cameras, etc., all of which produce a
large number of readings at high sample rates creating
problems to many machine learning algorithms.

Large search spaces, on the other hand, produce very
long training times which is a problem for service robots
where the state space is continuous and a description of a
state may involve several variables. Researchers have
proposed different strategies to deal with continuous state
and action spaces, normally based on a discretization of
the state space with discrete actions or with function ap-
proximation techniques. However, discrete actions pro-
duce unnatural movements and slow paths for a robot
and function approximation techniques tend to be com-

Relational Reinforcement Learning with Continuous Actions by Combining 70
Behavioural Cloning and Locally Weighted Regression

putationally expensive. Also, in many approaches, once a
policy has been learned to solve a particular task, it can-
not be re-used on similar tasks.

In this paper, TS-RRLCA (Two-Stage Relational Rein-
forcement Learning with Continuous Actions), a two-
stage method that tackles these problems, is presented. In
the first stage, low-level information from the robot’s
sensors is transformed into a relational representation to
characterize a set of states describing the robot’s envi-
ronment. With these relational states we applied a variant
of the Q-learning algorithm to develop a relational policy
with discrete actions. It is shown how the policies learned
with this representation framework are transferable to
other similar domains without further learning. We also
use Behavioural Cloning [10], i.e., human traces of the
task, to consider only a subset of the possible actions per
state, accelerating the policy learning process and ob-
taining a relational control policy with discrete actions in
a few iterations. In the second stage, the learned policy is
transformed into a relational policy with continuous ac-
tions through a fast Locally Weighted Regression (LWR)
process.

The learned policies were successfully applied to a
simulated and a real service robot for navigation and fol-
lowing tasks with different scenarios and goals. Results
show that the continuous actions policies are able to
produce smoother, shorter, faster and more similar paths
to those produced by humans than the original relational
discrete actions policies.

This paper is organized as follows. Section 2 describes
related work. Section 3 introduces a process to reduce the
data coming from the robot’s sensors. Section 4 describes
our relational representation to characterize states and
actions. Sections 5 and 6 describe, respectively, the first
and second stages of the proposed method. Section 7
shows experiments and results, Section 8 presents some
discussion about our method and the experimental results,
and Section 9 concludes and suggests future research
directions.

2. Related Work

There is a vast amount of literature describing RL tech-
niques in robotics. In this section we only review the
most closely related work to our proposal.

In [8] a method to build relational macros for transfer
learning in robot’s navigation tasks is introduced. A
macro consists of a finite state machine, i.e., a set of
nodes along with rulesets for transitions and action
choices. In [11], a proposal to learn relational decision
trees as abstract navigation strategies from example paths
in presented. These two approaches use relational repre-
sentations to transfer learned knowledge and use training
examples to speed up learning, however, they only con-
sider discrete actions.

In [9], the authors introduced a method that temporar-
ily drives a robot which follows certain initial policy
while some user commands play the role of training input
to the learning component, which optimizes the autono-
mous control policy for the current task. In [2], a robot is
tele-operated to learn sequences of state-action pairs that
show how to perform a task. These methods reduce the
computational costs and times for developing its control
scheme, but they use discrete actions and are unable to
transfer learned knowledge.

An alternative to represent continuous actions is to ap-
proximate a continuous function over the state space. The
work developed in [12] is a Neural Network coupled
with an interpolation technique that approximates Q-
values to find a continuous function over all the search
space. In [13], the authors use Gaussian Processes for
learning a probabilistic distribution for a robot navigation
problem. The main drawback of these methods is the
computational costs and the long training times as they
try to generate a continuous function over all of the
search space.

Our method learns, through a relational representation,
relational discrete actions policies able to transfer know-
ledge between similar domains. We also speed up and
simplify the learning process by using traces provided by
the user. Finally we use a fast LWR to transform the
original discrete actions policy into a continuous actions
policy. In the following sections we describe in detail the
proposed method.

3. Natural Landmarks Representation

A robot senses and returns large amounts of data read-
ings coming from its sensors while performing a task. In
order to produce a smaller set of meaningful information
TS-RRLCA uses a process based on [14,15] In [14] the
authors described a process able to identify three kinds of
natural landmarks through laser sensor readings: 1) dis-
continuities, defined as an abrupt variation in the meas-
ured distance of two consecutive laser readings (Figure
1(a)), 2) walls, identified using the Hough transform
(Figure 1(c)), and 3) corners, defined as the location
where two walls intersect and form an angle (Figure
1(d)). We also add obstacles identified through sonars
and defined as any detected object within certain range
(Figure 1(e)).

A natural landmark is represented by a tuple of four
attributes: (DL, θL, A, T). DL and θL are, respectively,
the relative distance and orientation from the landmark to
the robot. T is the type of landmark: l for left discontinu-
ity, r for right discontinuity (see Figure 1(b)), c for cor-
ner, w for wall and o for obstacle. A is a distinctive at-
tribute and its value depends on the type of landmark; for
discontinuities A is depth (dep) and for walls A is its

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 71
Behavioural Cloning and Locally Weighted Regression

(a) (b) (c)

(d) (e)

Figure 1. Natural landmarks types and associated attributes,
(a) discontinuity detection; (b) discontinuity Types; (c) wall
detection; (d) corner detection; (e) wall detection

length (len), for all of the other landmarks the A attribute
is not used.

In [15] the data from laser readings is used to feed a
clustering-based process which is able to identify the
robot’s actual location such as room, corridor and/or in-
tersection (the location where rooms and corridors meet).
Figure 2 shows examples of the resulting location classi-
fication process.

Table 1 shows an example of the data after applying
these processes to the laser and sonar readings from Fig-
ure 3. The robot’s actual location in this case is in-room.

The natural landmarks along with the robot’s actual
location are used to characterize the relational states that
describe the environment.

4. Relational Representations for States and
Actions

A relational representation for states and actions has the
advantage that it can produce relational policies that can
be re-used in other, although similar, domains without
any further learning. The idea it to represent states as sets
of properties that can be used to characterize a particular
situation which may be common to other states. For ex-
ample, suppose the robot has some predicates that are
able to recognize a room from its sensors’ readings. If the
robot has learned a policy to exit a room, then it can ap-
ply it to exit any recognizable room regardless of the
current environment.

A relational state (r-state) is a conjunction of first or-
der predicates. Our states are characterized by the fol-
lowing predicates which receive as parameters a set of
values such as those shown in Table 1.

1) place: This predicate returns the robot’s location,
which can be in-room, in-door, in-corridor and in-
intersection.

(a) (b) (c)

Figure 2. Locations detected through a clustering processes,
(a) room; (b) intersection; (c) corridor

Table 1. Identified natural landmarks from the sensor’s
readings from Figure 3

N DL θL A T

1 0.92 -17.60 4.80 r

2 1.62 -7.54 3.00 l

3 1.78 17.60 2.39 l

4 0.87 -35.70 1.51 w

5 4.62 -8.55 1.06 w

6 2.91 -6.54 1.88 w

7 1.73 23.63 0.53 w

8 2.13 53.80 2.38 w

9 5.79 -14.58 0.00 c

10 2.30 31.68 0.00 c

11 1.68 22.33 0.00 c

12 1.87 -170.00 0.00 o

13 1.63 -150.00 0.00 o

14 1.22 170.00 0.00 o

15 1.43 150.00 0.00 o

Figure 3. Robot sensing its environment through laser and
sonar sensors and corresponding natural landmarks

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 72
Behavioural Cloning and Locally Weighted Regression

2) doors-detected: This predicate returns the orienta-
tion and distance to doors. A door is characterized by
identifying a right discontinuity (r) followed by a left
discontinuity (l) from the natural landmarks. The door’s
orientation angle and distance values are calculated by
averaging the values of the right and left discontinuities
angles and distances. The discretized values used for
door orientation are: right (door’s angle between –67.5°
and –112.5°), left (67.5° to 112.5°), front (22.5° to
–22.5°), back (157.5° to –157.5°), right-back (–112.5° to
–157.5°), right-front (–22.5° to –67.5°), left-back (112.5°
to 157.5°) and left-front (22.5° to 67.5°). The discretized
values used for distance are: hit (door’s distance between
0 m and 0.3 m), close (0.3 m to 1.5 m), near (1.5 m to
4.0 m) and far (door’s distance > 4.0 m).

For example, if the following discontinuities are ob-
tained from the robot’s sensors (shown in Table 1: [0.92,
–17.60, 4.80, r], [1.62, –7.54, 3.00, l]), the following
predicate is produced:

doors-detected ([front, close, –12.57, 1.27])
This predicate corresponds to the orientation and dis-

tance descriptions of a detected door (shown in Figure 3),
and for every pair of right and left discontinuities a list
with these orientation and distance descriptions is gener-
ated.

3) walls-detected: This predicate returns the length,
orientation and distance to walls (type w landmarks).
Possible values for wall’s length are: small (length be-
tween 0.15 m and 1.5 m), medium (1.5 m to 4.0 m) and
large (wall’s size or length > 4.0 m). The discrete values
used for orientation and distance are the same as with
doors and the same goes for predicates corners-detected
and obstacles-detected described below.

4) corners-detected: This predicate returns the orienta-
tion and distance to corners (type c landmarks).

5) obstacles-detected: This predicate returns the orien-
tation and distance to obstacles (type o landmarks).

6) goal-position: This predicate returns the relative ori-
entation and distance between the robot and the current
goal. Receives as parameter the robot’s current position
and the goal’s current position, though a trigonometry
process, the orientation and distance values are calcu-
lated and then discretized as same as with doors.

7) goal-reached: This predicate indicates if the robot is
in its goal position. Possible values are true or false.

The previous predicates tell the robot if it is in a room,
a corridor or an intersection, detect walls, corners, doors,
obstacles and corridors and give a rough estimate of the
direction and distance to the goal. Analogous to r-states,
r-actions are conjunctions of the following first order
logic predicates that receive as parameters the odome-
ter’s speed and angle readings.

8) go: This predicate returns the robot’s actual moving

action. Its possible values are front (speed > 0.1 m/s), nil
(–0.1 m/s < speed < 0.1 m/s) and back (speed < –0.1
m/s).

9) turn: This predicate returns the robot’s actual turn-
ing angle. Its possible values are slight-right (–45° < an-
gle < 0°), right (–135° < angle ≤ –45°), far-right (angle
≤ –135°), slight-left (45° > angle > 0°), left (135° > angle
≥ 45°), far-left (angle ≥ 135°) and nil (angle = 0°).

Table 2 shows an r-state-r-action pair generated with
the previous predicates which corresponds to the values
from Table 1. As can be seen, some of the r-state predi-
cates (doors, walls, corners and obstacles detection) be-
sides returning the nominal descriptions; they also return
the numerical values of every detected element. The
r-action predicates also return the odometer’s speed and
the robot’s turning angle. These numerical values are
used in the second stage of the method as described in
Section 6. The discretized or nominal values, i.e., the
r-states and r-actions descriptions, are used to learn a
relational policy through rQ-learning as described below.

5. TS-RRLCA First Stage

TS-RRLCA starts with a set of human traces of the task
that we want the robot to learn. A trace Τk = {fk1, fk2, …,
fkn} is a log of all the odometer, laser and sonar sensor’s
readings of the robot while it is performing a particular
task. A trace-log is divided in frames; every frame is a
register with all the low-level values of the robot’s sen-
sors (fkj = {laser1 = 2.25, laser2 = 2.27, laser3 = 2.29, …,
sonar1 = 3.02, sonar2 = 3.12, sonar3 = 3.46, …, speed =
0.48, angle = 87.5}) at a particular time.

Once a set of traces (Τ1, Τ2, ..., Τm) has been given to
TS-RRLCA, every frame in the traces, is transformed

Table 2. Resulting r-state-r-action pair from the values in
Table 1

r-state r-action

Place (in-room), go (nil, 0.0),

doors-detected ([[front, close, –12.57, 1.27]]), turn (right, 92).

walls-detected ([[right-front, close, medium, –35.7,
0.87], [front, far, small, –8.55, 4.62],
[front, near, medium, –6.54, 2.91],
[left-front, near, small, 23.63, 1.73], [left-front,
near, medium, 53.80, 2.13]]),

corners-detected ([[front, far, –14.58, 5.79],
[front, near, 31.68, 2.30],
[left-front, near, 22.33, 1.68]]),

obstacles-detected ([[back, near, –170.00, 1.87],
[right-back, near, –150.00, 1.63],
[back, close, 170.00, 1.22],
[left-back, close, 150.00, 1.43]]),

goal-position ([right-front, far]),

goal-reached (false).

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 73
Behavioural Cloning and Locally Weighted Regression

into natural landmarks along with the robot’s location.
This transformed frames are given to the first order
predicates to evaluate the set of relations, i.e., generate
the corresponding r-state and r-action (as the one shown
in Table 2). By doing this, every frame from the traces
corresponds to an r-state-r-action pair and every one of
these pairs is stored in a database (DB).

Algorithm 1 gives the pseudo-code for this Behav-
ioural Cloning (BC) approach. At the end of this BC ap-
proach, the DB contains r-state-r-action pairs correspond-
ing to all the frames in the set of traces.

As the traces correspond to different examples of the
same task and as they might have been generated by dif-
ferent users, there can be several r-actions associated to
the same r-state. RL is used to develop a control policy
that selects the best r-action in each r-state.

5.1 Relational Reinforcement Learning

The RL algorithm selects the r-action that produces the
greatest expected accumulated reward among the possi-
ble r-actions in each r-state. Since we only used informa-
tion from traces only a subset of all the possible r-actions,
for every r-state, are considered which significantly re-
duces the search space. In a classical reinforcement
learning framework a set of actions (A) is predefined for
all of the possible states (S). Every time the agent reaches
a new state, it must select one action from all of the pos-
sible actions in S to reach a new state. In our RL ap-
proach when the robot reaches a new r-state, it chooses
one action from a subset of r-actions performed in that
r-state in the traces.

In order to execute actions, each time the robot reaches
an r-state, it retrieves from the DB the associated r-ac-
tions. It chooses one according to its policy and the asso-
ciated nominal value of the selected r-action is trans-
formed into one of the following values:

1) For the predicate go, if the description of the
r-action is front the corresponding value is 0.5 m/s, for
back the corresponding value is –0.5 m/s, and for nil the
value is 0.0 m/s.

2) For the predicate turn the values are: slight-right =
–45°, right = –90°, far-right = –135°, slight-left = 45°,
left = 90°, far-left = 135° and nil = 0°.

Once the r-action has been chosen and executed the
robot gets into a new r-state and the previous process is
repeated until reaching a final r-state.

Algorithm 2 gives the pseudo-code for this rQ-learning
approach. This is very similar to the Q-learning algo-
rithm, except that the states and actions are characterized
by relations.

By using only the r-state-r-action pairs from the traces
(stored in the DB) our policy generation process is very
fast and thanks to our relational representation, policies
can be transferred to different, although similar office or

Algorithm 1. Behavioural cloning algorithm

Require: T1, T2, …Tn: Set of n traces with examples of the task the
robot has to learn.

Ensure: DB: r-state-r-action pairs database.

 for i = 1 to n do

 k ← number of frames in the trace i

 for j = 1 to k do

Transform frameij (frame j from trace i) into their cor-
responding natural landmarks and into the correspond-
ing robot’s location.
Use the natural landmarks and the robot’s location to
get the corresponding r-state (through the first order
predicates).
Use the robot’s speed and angle to get the corre-
sponding r-action.
DB ← DB∪{r-state, r-action}. % Each register in DB
contains an r-state with its corresponding r-action

 End for
End for

Algorithm 2. rQ-learning algorithm

Require: DB, r-state-r-action pairs database.

Ensure: function Q: discrete actions relational control policy.

 Initialize Q (St, At) arbitrarily

 Repeat

st ← robot’s sensors readings values.

Transform st into its corresponding natural landmarks and
into the corresponding robot’s location.
St ← r-state (st)% Use those natural landmarks and the ro-
bot’s location to get the corresponding r-state (through the
first order predicates).

for each step of the episode do

Search the r-state (St) description in DB.

for each register in DB which contains the r-state (St) de-
scription do

Get its corresponding r-actions

End for

Select an r-action At to be executed in St trough an action
selection policy (e.g., ε-greedy).

Execute action At, observe rt+1 and st+1

Transform st+1 into its corresponding natural landmarks
and into the corresponding robot’s location.
St+1 ← r-state (st+1)% Use those natural landmarks and the
robot’s location to get the corresponding r-state (through
the first order predicates).
Q(St, At) ← Q(St, At) + α(rt+ 1 + γmaxAt+1 Q(St+1, At+1) - Q(St,
At))

St ← St+1

End for

until St is terminal

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 74
Behavioural Cloning and Locally Weighted Regression

house-like environments. In the second stage, this dis-
crete actions policy is transformed into a continuous ac-
tions policy.

6. TS-RRLCA Second Stage

This second stage refines the coarse actions from the
previously generated discrete actions policy. This is
achieved using Locally Weighted Regression (LWR).

The idea is to combine discrete actions’ values given
by the policy obtained in the first stage with the action’s
values previously observed in the traces. This way the
robot follows the policy, developed in the first stage, but
the actions are tuned through a LWR process. What we
do is to detect the robot’s actual r-state, then, for this
r-state the previously generated discrete actions policy
determines the action to be executed (Figure 4(a)). Be-
fore performing the action, the robot searches in the DB
for all the registers that share this same r-state description
(Figure 4(b)). Once found, the robot gets all of the nu-
meric orientation and distance values from these registers.
This orientation and distance values are used to perform
a triangulation process. This process allows us to esti-
mate the relative position of the robot from previous
traces with respect to the robot’s actual position. Once
this position has been estimated, a weight is assigned to
the previous traces action’s values. This weight depends
on the distance of the robot from the traces with respect
to the actual robot’s position (Figure 4(c)). These weights
are used to perform the LWR that produces continuous
r-actions (Figure 4(d)).

The triangulation process is performed as follows. The
robot R in the actual r-state (Figure 5(a)), senses and
detects elements E and E’ (which can be a door, a corner,
a wall, etc.). Each element has a relative distance (a and

(a) (b)

(c) (d)

Figure 4. Continuous actions developing process, (a) r-state
and corresponding r-action; (b) a trace segment; (c) dis-
tances and weights; (d) resulting continuous action

(a) (b) (c)

Figure 5. Triangulation process, (a) R robot’s r-state and
identified elements; (b) R’robot from traces; (c) elements to
be calculated

b) and a relative angle with respect to R. The angles are
not directly used in this triangulation process, what we
use is the absolute difference between these angles (α).
The robot reads from the DB all the registers that share
the same r-state description, i.e., that have the same
r-state discretized values. The numerical angle and dis-
tance values associated with these DB registers corre-
spond to the relative distances (a’ and b’) from the robot
R’ in a trace relative to the same elements E and E’, and
the corresponding angle β (Figure 5(b)). In order to
know the distance between R and R’ (d) through this tri-
angulation process, Equations (1)-(4) are applied.

2 2 2 cos()EE a b ab     : Distance between E and E’.

(1)

 arcsin /a EE     : Angle between a’ and EE .

(2)

arcsin(/)a EE  : Angle between a and EE . (3)

2 2 2 cos()d a a aa     : Distance between R and R’.

(4)

These four equations give the relative distance (d) be-
tween R and R’. Once this value is calculated, a kernel is
used to assign a weight (w). This weight is multiplied by
the speed and angle values of the R’ robot’s r-action. The
resulting weighted speed and angle values are then added
to the R robot’s speed and angle values. This process is
applied to every register read from the DB whose r-state
description is the same as R and is repeated every time
the robot reaches a new r-state.

To summarize this process, each time the robot
reaches an r-state and chooses an r-action according to
the learned policy; it retrieves from the DB all the regis-
ters that share the same r-state. It uses the numerical val-
ues of the retrieved r-states to evaluate the relative dis-
tance of the position of the robot in a trace to the position
of the robot in the actual r-state. Once all the distance
values (di) are calculated we apply a Gaussian kernel
(Equation (5)) to obtain a weight wi. We tried different
kernels, e.g., Tricubic kernel, and results were better with

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 75
Behavioural Cloning and Locally Weighted Regression

Gaussian kernel but further tests are needed.
2() exp()i i iw d d  : Gaussian kernel. (5)

Then, every weight wi is multiplied by the corre-
sponding speed and angle values (wi × speedDBi and wi ×
angleDBi) of the r-state-r-action pairs retrieved from the
DB. The resulting values are added to the discrete
r-action (rAt = {disc_speed, disc_angle}) values of the
policy obtained in the first stage in order to transform
this discrete r-action into a continuous action (Equations
(6) and (7)) that is finally executed by the robot. This
process is performed in real-time every time the robot
reaches a new r-state.

continuous_speed = disc_speed + {w1 × speedDB1} + {w2
× speedDB2} + … + {wn × speedDBn}: LWR for develop-
ing the continuous speed. (6)

continuous_angle = disc_angle + {w1 × angleDB1} + {w2
× angleDB2} + … + {wn × angleDBn}: LWR for develop-
ing the continuous angle. (7)

The weights are directly related to the distances be-
tween the robots in the actual r-state to the r-states to the
robot in the human traces stored in the DB. The closer
the human traces registers are to the robot’s actual posi-
tion, the higher the influence they have in transforming
the discrete action into a continuous action.

The main advantage of our approach is the simple and
fast strategy to produce continuous actions policies that,
as will be seen in the following section, are able to pro-
duce smoother and shorter paths in different environ-
ments.

7. Experiments

For testing purposes, two types of experiments were per-
formed:

1) Learning Curves: In these experiments we com-
pared the number of iterations it takes our method
TS-RRLCA to learn a policy against classical Reinforce-
ment Learning (RL) and against the rQ-learning algo-
rithm (shown in Algorithm 2) without using Behavioural
Cloning approach, which we will refer to as Relational
Reinforcement Learning (RRL).

2) Performance: In these experiments we compared the
performance of the policies learned through TS-RRLCA
with discrete actions against the policies learned through
TS-RRLCA with continuous actions. Particularly we tested:
How close the tasks are to the tasks performed by the
user and how close the tasks are from obstacles in the
environment.

3)Execution times.
These experiments were carried out in simulation

(Player/Stage [16]) and with a real robot which is an
ActivMedia GuiaBot (www.activrobots.com).

Both robots (simulated and real) are equipped with a
180° front laser sensor and an array of four back sonars
(located at –170°, –150°, 150° and 170°).

The laser range is 8.0 m and for the sonars is 6.0 m.
The tasks in these experiments are “navigating through
the environment” and “following an object”.

The policy generation process was carried out in the
map shown in Figure 6 (Map 1 with size 15.0 m × 9.0 m).
For each of the two tasks a set of 20 traces was generated
by the user. For the navigation tasks, the robot and the
goal’s global position (for the goal-position predicate)
were calculated using the work developed in [14]. For
the following tasks we used a second robot which orien-
tation and angle were calculated through the laser sensor.
Figure 6 shows an example of navigation and a follow-
ing trace.

To every set of traces, we applied our approach to ab-
stract the r-states and induce the subsets of relevant r-
actions. Then, rQ-learning was applied to learn the poli-
cies. For generating the policies, Q-values were initialized
to –1, ε = 0.1, γ = 0.9 and α = 0.1. Positive reinforcement, r
(+100) was given when reaching a goal (within 0.5 m),
negative reinforcement (–20) was given when the robot
hits an element and no reward value was given otherwise
(0).

(a)

(b)

Figure 6. Traces examples, (a) navigation trace; (b) follow-
ing trace

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 76
Behavioural Cloning and Locally Weighted Regression

7.1 Learning Curves

Our method (TS-RRLCA) was compared in the number of
iterations it takes to develop a control policy, against
classical reinforcement learning (RL) and against the
rQ-learning algorithm described in Algorithm 2, consid-
ering all the possible r-actions (the 8 r-actions, shown in
Section 4) per r-state (RRL).

For developing the “navigating through the environ-
ment” policy with RL we discretized the state and action
space as follows: the training Map 1, depicted in Figure 6,
was divided in states of 25 cm2. Since this map’s size is
15 m × 9 m, the number of states is 2,160. In every state,
one of the next 8 actions can be chosen to get into a new
state which gives a total of 17,280 state-action pairs (This
set of 8 actions correspond to the set of 8 r-actions we
used in our rQ-learning algorithm).

1) front: robot goes forward 25 cm.
2) back: robot goes back 25 cm.
3) slight-right: robot turns –45°.
4) right: robot turns –90°.
5) far-right: robot turns –135°.
6) slight-left: robot turns 45°.
7) left: robot turns 90°.
8) far-left: robot turns 135°.
For developing the navigation policy with RRL we

have 655 r-states with 8 possible r-actions for each r-state,
this gives a total of 5,240 possible r-state-r-action pairs.
The number of r-states corresponds to the total number of
r-states in which the training map can be divided.

For developing the navigation policy with TS-RRLCA
we used 20 navigation traces from which 934 r-state-
r-action pairs were obtained. As can be seen, by using
our Behavioural Cloning approach we significantly re-
duced the number of state-action pairs to consider in the
learning process.

In each trace, every time our program performed a ro-
bot’s sensors reading, which includes laser, sonars and
odometer, we first transformed the laser and sonar read-
ings into natural landmarks (as described in Section 3).
These natural landmarks are sent to the predicates to
generate the corresponding r-state, the corresponding
r-action is generated by using the odometer’s readings (as
described in Section 4). This gives an r-state-r-action pair
such as the one shown in Table 2.

Figure 7(a) shows the learning curves of RL, RRL and
TS-RRLCA for a navigation policy. They show the ac-
cumulated Q-values every 1,000 iterations. As can be
seen from this figure, the number of iterations for devel-
oping an acceptable navigation policy with TS-RRLCA is
very low when compared to RRL and is significantly
lower when compared to RL. It should be noted that the
navigation policy learned with RL only works for going
to a single destination state while the policies learned
with our relational representation can be used to reach

(a)

(b)

Figure 7. Learning curves comparison, (a) learning curves
for the navigation policies; (b) learning curves for the fol-
lowing policies

several destination places in different environments.

For developing the “following an object” policy, the
number of r-state-r-action pairs using our relational rep-
resentation (RRL) is 3,149, while the number of r-state-
r-action pairs using the same representation but with be-
havioural cloning (TS-RRLCA) is 1,406, obtained from
20 traces. For the following policy we only compared our
approach against RRL.

Figure 7(b) shows the learning curves of these two
methods. As can be seen the number of iterations that our
method needs to generate an acceptable following policy
is much lower than RRL.

To generate the continuous actions policies, LWR was
applied using the Gaussian kernel for estimating weights.
In the next section we compare the traces performed with
the discrete actions policy with those using continuous
actions.

7.2 Performance Tests

Once the policies were learned, experiments were exe-
cuted in the training map with different goal positions and
in two new and unknown environments for the robot (Map
2 shown in Figure 8 with size 20.0 m × 15.0 m and Map 3,
shown Figure 9, which corresponds to the real robot’s
environment whose size is 8.0 m × 8.0 m). A total of 120

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 77
Behavioural Cloning and Locally Weighted Regression

(a) (b)

(c) (d)

Figure 8. Navigation and following tasks performed with
the policies learned with TS-RRLCA, (a) navigation task
with discrete actions, Map 1; (b) navigation task with con-
tinuous actions, Map 1; (c) following task with discrete ac-
tions, Map 2; (d) following task with continuous actions,
Map 2

(a) (b) (c)

(d) (e) (f)

Figure 9. Navigation and following tasks examples from
Map 3, (a) navigation task with discrete actions; (b) naviga-
tion task with continuous actions; (c) navigation task per-
formed by user; (d) following task with discrete actions; (e)
Following task with continuous actions; (f) following task
performed by user

experiments were performed: 10 different navigation and
10 following tasks in each map, each of these tasks were
executed first with the discrete actions policy from the
first stage and then with the continuous actions policy
from the second stage. Each task has a different distance
to cover and required the robot to traverse through dif-
ferent places. The minimum distance was 2 m. (Manhat-
tan distance), and it was gradually increased up to 18 m.

Figure 8 shows navigation (on the top) and a following
task (on the bottom) performed with discrete and con-

tinuous actions policies respectively.
Figure 9 shows navigation and a following task per-

formed with the real robot, with the discrete and with the
continuous actions policy.

As we only use the r-state-r-action pairs from the traces
developed by the user in Map 1 (as the ones shown in
Figure 6), when moving the robot to the new environ-
ments (Map 2 and Map 3), sometimes, it was not able to
match the new map’s r-state with one of the previously
visited states by the user in the traces examples. So when
the robot reached an unseen r-state, it asked the user for
guidance. Through a joystick, the user indicates the robot
which r-action to execute in the unseen r-state and the
robot saves this new r-state-r-action pair in the DB. Once
the robot reaches a known r-state, it continues its task. As
the number of experiments increased in these new maps,
the number of unseen r-states was reduced. Table 3 shows
the number of times the robot asked for guidance in each
map and with each policy.

Figure 10(a) shows results in terms of the quality of the
performed tasks with the real robot. This comparison is
made against tasks performed by humans (For Figures
10(a), 10(b) and 11, the following acronyms are used,
NPDA: Navigation Policy with Discrete Actions, NPCA:
Navigation Policy with Continuous Actions, FPDA: Fol-
lowing Policy with Discrete Actions and FPCA: Follow-
ing Policy with Continuous Actions).

All of the tasks performed in the experiments with the
real robot, were also performed by a human using a joy-
stick (Figures 9(c) and 9(f)), and logs of the paths were
saved. The graphic shows the normalized quadratic error
between these logs and the trajectories followed by the
robot with the learned policy.

Figure 10(b) shows results in terms of how closer the
robot gets to obstacles. This comparison is made using the
work developed in [17]. In that work, values were given to
the robot accordingly to its proximity to objects or walls.
The closer the robot is to an object or wall the higher cost
it is given. Values were given as follows: if the robot is
very close to an object (between 0 m and 0.3 m) a value of
–100 is given, if the robot is close to an object (between
0.3 m and 1.0 m) a value of –3 is given, if the robot is near
an object (between 1.0 m and 2.0 m) a value of –1 is given,
otherwise a value of 0 is given. As can be seen in the
figure, quadratic error and penalty values for continuous
actions policies are lower than those with discrete actions.

Policies developed with this method allow a close-to-
human execution of the tasks and tend to use the available
free space in the environment.

7.3 Execution Times

Execution times with the real robot were also registered.
We compared the time that takes to the robot to perform a
tasks with discrete actions against tasks performed with

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 78
Behavioural Cloning and Locally Weighted Regression

Table 3. Number of times the robot asked for guidance in
the experiments

Policy type Map 1 Map 2 Map 3 Total

Navigation 2 6 14 22

Following 7 15 27 49

(a)

(b)

Figure 10. Navigation and following results of the tasks
performed by the real robot, (a) quadratic error values; (b)
penalty values

continuous actions. Every navigating or following ex-
periment, that we carried out, was performed first with
discrete actions and then with continuous actions.

As can be seen in Figure 11, continuous actions poli-
cies execute faster paths than the discrete actions policy
despite our triangulation and LWR processes.

8. Discussion

In this work, we introduced a method for teaching a robot
how to perform a new task from human examples. Ex-
perimentally we showed that tasks learned with this
method and performed by the robot are very similar to

Figure 11. Execution times results

those tasks when performed by humans. Our two-stage
method learns, in the first stage, a rough control policy
which, in the second stage, is refined, by means of Locally
Weighted Regression (LWR), to perform continuous ac-
tions. Given the nature of our method we can not guar-
anteed to generate optimal policies. There are two reasons
why this can happen: 1) the actions performed by the user
in the traces may not part of the optimal policy. In this
case, the algorithm will follow the best policy given the
known actions but will not be able to generate an optimal
policy. 2) The LWR approach can take the robot to states
that are not part of the optimal policy, even if they are
smoother and closer to the user’s paths. This has not rep-
resented a problem in the experiments that we performed.

With the Behavioural Cloning approach we observed
around a 75% reduction in the state-action space. This
reduction depends on the traces given by the user and on
the training environment. In a hypothetical optimal case,
where a user always performs the same action in the same
state, the system only requires to store one action per state.
This, however, is very unlikely to happen due to the con-
tinuous state and action space and the uncertainty in the
outcomes of the actions perform with a robot.

9. Conclusions and Future Work

In this paper we described an approach that automatically
transformed in real-time low-level sensor information into
a relational representation. We used traces provided by a
user to constraint the number of possible actions per state
and use a reinforcement learning algorithm over this re-
lational representation and restricted state-action space to
learn in a few iterations a policy. Once a policy is learned
we used LWR to produce a continuous actions policy in
real time. It is shown that the learned policies with con-
tinuous actions are more similar to those performed by
users (smoother), and are safer and faster than the policies
obtained with discrete actions. Our relational policies are
expressed in terms of more natural descriptions, such as

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining
Behavioural Cloning and Locally Weighted Regression

Copyright © 2010 SciRes. JILSA

79

rooms, corridors, doors, walls, etc., and can be re-used for
different tasks and on different house or office-like envi-
ronments. The policies were learned on a simulated en-
vironment and later tested on a different simulated envi-
ronment and on an environment with a real robot with
very promising results.

There are several future research directions that we are
considering. In particular, we would like to include an
exploration strategy to identify non-visited states to com-
plete the traces provided by the user. We are also explor-
ing the use of voice commands to indicate the robot which
action to take when it reaches an unseen state.

10. Acknowledgements

We thank our anonymous referees for their thoughtful and
constructive suggestions. The authors acknowledge to
CONACyT the support provided through the grant for
MSc. studies number 212418 and in part by CONACyT
project 84162.

REFERENCES
[1] C. Watkins, “Learning from Delayed Rewards,” PhD

Thesis, University of Cambridge, England, 1989.

[2] K. Conn and R. A. Peters, “Reinforcement Learning with
a Supervisor for a Mobile Robot in a Real-World Envi-
ronment,” International Symposium on Computational
Intelligence in Robotics and Automation, Jacksonville, FI,
USA, June 20-23, 2007, pp. 73-78.

[3] E. F. Morales and C. Sammut, “Learning to Fly by Com-
bining Reinforcement Learning with Behavioural Clon-
ing,” Proceedings of the Twenty-First International Con-
ference on Machine Learning, Vol. 69, 2004, pp. 598-
605.

[4] J. Peters, S. Vijayakumar and S. Schaal, “Reinforcement
Learning for Humanoid Robotics,” Proceedings of the
Third IEEE-RAS International Conference on Humanoid
Robots, Karlsruhe, Germany, September 2003, pp. 29-30.

[5] W. D. Smart, “Making Reinforcement Learning Work on
Real Robots,” Department of Computer Science at Brown
University Providence, Rhode Island, USA, 2002.

[6] W. D. Smart and L. P. Kaelbling, “Effective Reinforce-
ment Learning for Mobile Robots,” Proceedings of the
2002 IEEE International Conference on Robotics and
Automation, Washington, DC, USA, 2002, pp. 3404-3410.

[7] R. S. Sutton and A. G. Barto, “Reinforcement Learning:
An introduction,” MIT Press, Cambridge, MA, 1998.

[8] L. Torrey, J. Shavlik, T. Walker and R. Maclin, “Rela-
tional Macros for Transfer in Reinforcement Learning,”
Lecture Notes in Computer Science, Vol. 4894, 2008, pp.
254-268.

[9] Y. Wang, M. Huber, V. N. Papudesi and D. J. Cook,
“User-guided Reinforcement Learning of Robot Assistive
Tasks for an Intelligent Environment,” Proceedings of the
2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Las Vegas, NV, 2003, pp. 27-31.

[10] I. Bratko, T. Urbancic and C. Sammut, “Behavioural
Cloning of Control Skill,” In: R. S. Michalski, I. Bratko
and M. Kubat, Ed., Machine Learning and Data Mining,
John Wiley & Sons Ltd., Chichester, 1998, pp. 335-351.

[11] A. Cocora, K. Kersting, C. Plagemann, W. Burgard and L.
De Raedt, “Learning Relational Navigation Policies,”
IEEE/RSJ International Conference on Intelligent Robots
and Systems, Beijing, China, October 9-15, 2006, pp.
2792-2797.

[12] C. Gaskett, D. Wettergreen and A. Zelinsky, “Q-learning
in Continuous State and Action Spaces,” In Australian
Joint Conference on Artificial Intelligence, Australia,
1999, pp. 417-428.

[13] F. Aznar, F. A. Pujol, M. Pujol and R. Rizo, “Using
Gaussian Processes in Bayesian Robot Programming,”
Lecture notes in Computer Science, Vol. 5518, 2009, pp.
547-553.

[14] S. F. Hernández and E. F. Morales, “Global Localization
of Mobile Robots for Indoor Environments Using Natural
Landmarks,” IEEE Conference on Robotics, Automation
and Mechatronics, Bangkok, September 2006, pp. 29-30.

[15] J. Herrera-Vega, “Mobile Robot Localization in Topo-
logical Maps Using Visual Information,” Masther’s thesis
(to be publised), 2010.

[16] R. T. Vaughan, B. P. Gerkey and A. Howard, “On Device
Abstractions for Portable, Reusable Robot Code,” Pro-
ceedings of the 2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Vol. 3, 2003, pp. 2421-
2427.

[17] L. Romero, E. F. Morales and L. E. Sucar, “An Explora-
tion and Navigation Approach for Indoor Mobile Robots
Considering Sensor’s Perceptual Limitations,” Proceed-
ings of the IEEE International Conference on Robotics
and Automation, Seoul, Korea, May 21-26, 2001, pp.
3092-3097.

J. Intelligent Learning Systems & Applications, 2010, 2: 80-85
doi:10.4236/jilsa.2010.22011 Published Online May 2010 (http://www.SciRP.org/journal/jilsa)

Copyright © 2010 SciRes. JILSA

An Experience Based Learning Controller

Debadutt Goswami, Ping Jiang*

Department of Computing, University of Bradford, Bradford, UK.
Email: p.jiang@bradford.ac.uk

Received November 10th, 2009; revised April 10th, 2010; accepted April 20th, 2010.

ABSTRACT

The autonomous mobile robots must be flexible to learn the new complex control behaviours in order to adapt effec-
tively to a dynamic and varying environment. The proposed approach of this paper is to create a controller that learns
the complex behaviours incorporating the learning from demonstration to reduce the search space and to improve the
demonstrated task geometry by trial and corrections. The task faced by the robot has uncertainty that must be learned.
Simulation results indicate that after the handful of trials, robot has learned the right policies and avoided the obstacles
and reached the goal.

Keywords: Mobile Robots, Learning from Demonstration, Neural Network Control, Reinforcement Learning

1. Introduction

Most of the autonomous mobile robots or the human
controlled mobile robots working in the industrial, do-
mestic and entertainment environment lack the flexibility
to learn and perform the new complex tasks. In this paper
we consider the problem of motion control of an auto-
nomous mobile robot using the control field generated by
a neural controller. The proposed system enables the
autonomous mobile robot to learn, modify and adapt its
skills efficiently in order to react adequately in complex
and unstructured environment. To incorporate the preci-
sion and flexibility in robots, we incorporated three very
common natural approaches that, human uses to learn and
execute any task, 1) Learning from demonstration 2)
Generalization of the learned task 3) Reinforcement of
the task by trial and error [1,2]. The designing of a mo-
tion controller depends on the kinematics constraint of a
mobile robot and the complexity and structure of a task,
and is very difficult to design whereas the proposed con-
troller can easily and quickly learn the complex controls
with some simple demonstrations and few trials. The
major advantage of our technique is that any mobile robot
can be taught to move in an unknown environment using
the generated control field as the general control law. The
control law is independent of both physical and virtual
sensors. The use of domain knowledge has a great sig-
nificance in reducing the learning time and the use of trial
and error learning method improves the learning con-
tinuously [3]. The learning from demonstration has re-
duced the robot programming and made it very simple to
use [4,5]. The reinforcement learning has already been

used in many navigational and reactive problems [6,7,8].
The ability of reinforcement learning to interact with the
environment and the domain knowledge from demonstra-
tions has made it easier to tackle uncertainty. Due to the
simplicity to operate and flexibility to learn uncertainty,
the proposed controller can be operated by the non-pro-
fessionals who are not skilled enough to control and pro-
gram the sophisticated mobile robots in the complex in-
dustrial environment [3,9].

The paper is presented in following manner. Section II
presents the previous works related to the field. Section
III presents the controller architecture and the proposed
algorithm. Section IV presents the simulation results.
Section V presents conclusions and discusses the work
further.

2. Related Works

We have incorporated two different research areas:
Learning from demonstration and Reinforcement Learn-
ing, which bears some relation to a number of previous
works. The importance of human robot interaction and
the need of modern artificial intelligence are described in
[10] that focus on creating new possibilities for the flexi-
ble and interacting robot from the engineering point of
view and from the humanistic point of view. The paper
incorporates these ideas and focuses on flexible learning
controller of a robot which can learn and adapt the
changes in the environment very easily. The proposed
methodology differs from [3,11,12] and [5] in two fun-
damental aspects. Firstly our approach learns from dem-
onstration, which acts as initial policy to perform the de-

An Experience Based Learning Controller 81

sired task and builds a model of partially observable en-
vironment. Secondly, the methodology is offline and
online computations are done on the basis of generated
control field and the previous experience. The proposed
controller initializes the weights of the controller from
the demonstrated points of the task whereas in [11] the
learner is initially empty. The proposed controller utilizes
Q-values to avoid uncertainty where as [3] and [11] used
fuzzy behaviour as a reflex to act into a new situation.
The aim is to generate an abstract description of the task
reflecting user’s intention and modelling the problem
solution offline. In this context we also discuss the issues
of evaluation, tuning, suitable generalization and execu-
tion of the elementary skills [9,13-15]. Instead of using
radial basis as a function approximation [3,12], we used
inverse distance interpolation. It works like local ap-
proximators. We also used learning through feedback,
which improves the learning and generalization continu-
ously.

3. Controller Architecture

The proposed learning controller can be represented as
recurrent neural network architecture. The controller has
basically 3 layers, input layer, hidden layer and output
layer and a reinforcement controller which is connected

to the output layer and the hidden layer. NS R and
NA R are the sensor input and output. The weight is

updated when the sensor and the controller try to learn an
unknown model from sensors to actuators, i.e.

()A f S (1)

Input Layer—Input layer consists of several neural in-
put nodes that represent some state in the state space i.e.
S. The sensor input is propagated through the hidden
layer from the input layer to the output layer. Each neural
node in the input layer is connected to all the neural
nodes in the hidden layer.

Hidden Layer—Hidden layer is composed of several
computational neurons. The output of the hidden neurons
is the distance between the input layer neuron and the
weight similar to a prototype fuzzy law. The weight

in the hidden layer neuron represents the centre i.e. the
demonstrated data points. Each neural node of the input
layer is connected to all the neural nodes of the hidden
layer. The output of the hidden layer codes the distance
of the input neurons from the hidden layer neurons.

iW

Output layer—The output layer neuron computes the
inverse weighted sum of the output of the hidden
layer neurons i.e.

iv

1

N

oi i
i

A W v


  (2)

The output layer neuron uses inverse distance interpo-
lation to update the weights of the output layer.

oiW

Figure 1. Neural network control architecture

The advantage of using this technique is that, the esti-
mated data point has the influence of all the neighbouring
data points depending on the distance from each proto-
type rule. This is the simplest generalized technique and
mathematically expressed as

(') (')

1 1

1
'

N v N v

i

1
p p

i i

v v
d d 

  
   
  
  




 (3)

where, is the estimated control action in term of a

sensor state ; is a prototyped action of the hidden

layer neuron at state ;

'v
'S iv

S pd is the distance between S
and S’; p is the power; N(v’) is the number of data points
in the effective window of v’. Generally the distance can
be calculated by simple Euclidean distance formula. The
above generalization technique only acts as a function
approximation that reproduces the generalized control
field based on the distance from the existing prototype
rule. But to tackle uncertainty and to produce an im-
proved control field, the robot needs to incorporate a
weight that represents the significance of the previous
learning history and incorporates continuous learning
experiences. The idea is to improve the learning by trial
and error. So Q-learning [16] is incorporated, which pro-
duces Q-matrix based on the scalar reward R. The
Q-value determines the new policy to achieve the goal.
Therefore in the neural network architecture, the output
layer is connected to the reinforcement controller which
in turn is connected to the hidden layer. Depending on the
achievement of the desired goal, the reinforcement re-
ward R is given to the robot by the reinforcement con-
troller. The reward R updates the Q-matrix and the new
Q-value is used to generate a new control field. The rein-

Copyright © 2010 SciRes. JILSA

An Experience Based Learning Controller 82

forcement controller follows the online exploration and
offline learning policy [17]. So the Q-value is updated in
following two cases:

Case 1: Online exploration—During online exploration
the robot uses Q-matrix to avoid uncertainty like un-
known obstacles. Therefore, whenever the robot finds
uncertainty in its next course of action, the control
switches from the generalized control field to Q-matrix
and selects an action with other maximum Q-value from
its effective window that corresponds to a policy with
next higher probability to reach the goal and avoids the
uncertainty. This earns an online reward R and updates
the Q-value online in that time step. The change in the
action in that time step is used as a prototype rule i.e.
center in the hidden layer.

Case 2: Offline learning policy—In the end of the trial
during offline learning policy, the reinforcement reward
R is given offline to the robot. The reward R updates the
corresponding Q-values of the trajectory based on the
final payoff. After updating Q-value, the change is ap-
plied to the neurons in the hidden layer of the network
architecture. So another factor that influences the output
of the hidden layer is the Q-value.

The Q-value is then used as a measure to calculate the
relevance of the data points in terms of usefulness of that
particular task geometry in achieving the goal. The change
in the Q-matrix influences all the neighbouring data
points in the control field. This is called the generaliza-
tion. After that the control field is transferred back to the
robot. In every trial Q-matrix is updated and reflects the
continuous learning. The steps are repeated until we get
the desired control field. This technique of learning is
known as online exploration and offline policy learning.
The reward scheme for online exploration and offline
policy learning is as follows:

1 If the goal is achieved or obstacle is aovided

0 If no obstacle or no goal

1 If failed to achieve goal or unable to aovid obstacle

R


 


 (4)

The reward function can represented as:

uncertainty goalR R R  (5)

In online exploration goalR is set to zero and

is awarded online to avoid obstacles on its path whereas
in offline learning policy

uncertaintyR

goalR is awarded offline and

 is set to zero. uncertaintyR

The Q update rule can be described in two steps.
Step 1: Give Reward R using (4) and (5) and update

the weight using the weight update Equation. wQ

 
       ' '

,

, , ,

w

w w

Q s a

Q s a R s a Q s a Q s a       

Here  ,wQ s a is the weight matrix to be updated; (s,

a) is the current state and action; is the reward

matrix;

 ,R s a

 ' ',wQ s a is the future state with the highest

value;
wQ

 is the learning rate;  is the discount factor in
the range [0, 1]. The weight update Equation (6) is inher-
ited from the traditional Q-learning algorithm [16].

Step 2: Estimate the data points based on the

calculated in step 1. The new estimate updates the previ-
ously generated control field and generates a new gener-
alized control field. To implement our idea we modify (3)
by introducing .

'v wQ

wQ

(') (')

1 1

'
N v N v

w
ip

i i

Q
v v

d d 

  
   
  
  w

p

Q 



 (7)

Here w
p

Q

d
 is the weight. A small value repre-

sents the small contribution of the point in accomplishing
the goal where as a large value signifies large con-

tribution of the point in accomplishing the goal. is

inversely related to the distance, which signifies that the
 will have higher value when the estimated data point

is closer to the good trajectories. The trajectories with
lower value have less contribution in the overall

generalization.

wQ

wQ

wQ

wQ

wQ

,w


 (6)

In the proposed context behaviour is improved based
on scalar rewards from a critic. It does not require a per-
son to program the desired actions in different situations.
However several difficulties stand in the way. Firstly a
robot using the basic reinforcement-learning framework
might require an extremely long time to converge to the
right track and to acquire the right action. In our frame-
work learning from demonstration is used that reduces
the search space to achieve an adequate control and it
does not need any programming of the desired behaviour.
The demonstration provides the domain knowledge, that
gives hint to perform the desired task and reduces
knowledge base significantly. Through trial and error the
knowledge base can be improved further [18,19]. Sec-
ondly reinforcement learning is basically applied on the
task where the state of the environment is completely
observable, but in the real world tasks most of the
knowledge is incomplete and inaccurate. The online ex-
ploration and offline learning policy explores the un-
known environment with the help of generalized control
field and tackles the uncertainty by selecting the appro-
priate control action which signifies maximum experi-
ence i.e. maximum Q-value in the effective window in
achieving the desired goal. The trajectory generated by it
changes the control field and tackles the uncertainty in
the environment.

Copyright © 2010 SciRes. JILSA

An Experience Based Learning Controller 83

Ideally for a real robot any learning algorithm should
be feasible and efficient to perform the complex compu-
tations, keeping in mind the robots internal configuration
under consideration. A robot has limited memory and
limited computational ability. Almost all the cases of
practical interest consist of far more state observation
pairs than could possibly entered into the memory. The
robot is even typically unable to perform enough compu-
tation per time step to fully use it. Especially in the real
world experiences, which consist of large number of ac-
tion and observation pairs and at each step the robot
needs to memorize and learn the action-observation pairs.
Thus a good approach is to compute and store a limited
number of data online which are relevant and learning the
policy offline. In the proposed algorithm the old data can
be used and new experiences can be collected, which are
somewhat characteristic for the task. The best thing is the
experience replay and the assessment of the performance
of the previous experiences. Another important step is the
generalization of the learned policy. The policy learned in
this way keeps the learning continuous. This kind of
learning is generally called as learning from experience.
For a robot controller, it is also important to reduce the
real time computation. The robot takes action on the gen-
erated control field only. Hence learning is made con-
tinuous and the computational overhead is also reduced.
On the other hand the exploration is done online. The
robot decides between exploration and exploitation based
on the number of times an action has been chosen. The
robot generally chooses action with the highest state ac-
tion value with high probability, which is known as ex-
ploitation. If the robot oscillates in a particular region
then exploitation is stopped and control switches to ex-
ploration to avoid oscillation and finds a new path. Dur-
ing exploration the selection of next state is made random.
This approach has a major advantage of not being influ-
enced by the limited knowledge only i.e. to avoid local
optima. During exploration the robot can take the control
actions which were never taken before and hence explor-
ing more of the unobserved environment. The balance
between exploration and exploitation is necessary, be-
cause exploitation is helping the robot to avoid uncer-
tainty and to reach the goal where as exploration is
avoiding all the oscillation and unnecessary iterations. So
this methodology has a very positive approach to learn
any new skill quickly. The robot can be restrained easily
to adapt to environment changes and trained and learned
improving the performance all the time.

The proposed algorithm can be summarized as below:
1) Build the control field by demonstrating the task, i.e.

initializing the weights in the hidden layer with the dem-
onstrated data points and imitating the relevant knowl-
edge required to achieve the task.

2) Based on the demonstrated control field, using in-
verse distance weight interpolation, generalize the field

using (7).
3) Transfer the generalized control field to the robot

and do some trials to achieve the goal. Do some explora-
tion also. If all the trials are successful in achieving the
goal then the demonstrated control field is perfect and
does not need any changes. If in trials, at some point the
robot hits or senses any obstacle then give reward

 to the point using (4) and (5) and move to-

wards the point that has next highest Q-value, without
any obstacle. The next higher Q-value represents the next
most experienced and favorable point heading towards
the goal. Then update the Q-values using (6). This will
generate a new path to reach the goal. After the goal has
been reached, generalize the control field offline using
(7). The control field will have influence from the points
updated. This will reproduce an updated control field.

uncertaintyR

4) After reaching the goal, assign final reward goalR

to the robot using (4) and (5). This reward represents the
successful completion of the desired task avoiding all the
obstacles and is made offline. Update all the Q-values of
the updated control trajectory generated in step 3 using
(6).

5) Generalize the control field with the new updates
using (7). The updated field represents the new control
field. Repeat from Step 3 to 5 until the robot learns the
desired task.

4. Simulation Results

In simulation we build a discrete workspace with a di-
mension of 20 × 20. The workspace contains a goal and
obstacles, represented by the ‘G’ and the rectangles. Ro-
bot has a sensor of 3 × 3 neighbourhoods which means it
can sense obstacles around its 8 neighbouring cells. The
arrows represent the direction of each point in the field.
The simulation is done based on the proposed algorithm
in section 3. The robot was initially demonstrated to reach
the goal. Based on the demonstration initial control field
was built (Figure 2). The simulation considered two dif-
ferent tasks with different uncertain complexities with
same initial control field.

Task 1: The robot had to avoid an obstacle and reach
the goal.

Task 2: The robot had to avoid obstacles and pass
through the door and reach the goal.

In both the cases robot completed the tasks in few tri-
als avoiding all the uncertainties. The final control fields
for task 1 and task 2 are shown in Figures 3 and 4.

The learning history of the controller for both the cases
is described in Figures 5-7. The broken line curve and
the solid line curve represents first and second task.

In Figure 6 it can be observed that number of hidden
neurons increases with the number of trials. Increase in
hidden layer neurons indicates the increase in number

Copyright © 2010 SciRes. JILSA

An Experience Based Learning Controller 84

Figure 2. Demonstrated control field

G

Figure 3. Final control field of task 1

G

Figure 4. Final control field of task 2

centers or prototype rules in the network. It clearly indi-
cates the learning in each trial. Figure 7 displays the plot-
ting of the total number reinforcements used in each trial.
The total reinforcement can be defined as the sum of im-
mediate reinforcement the learner receives till the robot
reaches the goal and the offline reinforcement the learner
receives after reaching the goal. It is clear in Figure 7 that
after trial 3 the controller did not use any reinforcements
to complete the tasks. The controller needed only three
trials 1-3 to learn a new control law to avoid uncertainty
in both tasks. To see the reliability of the control field we
chose different starting points. The robot was successful
in completing the tasks from all the points.

Another observation is that the number of reinforce-
ment received (Figure 7) and the number of steps taken

Figure 5. Number of steps taken to reach goal in each trial

Figure 6. Number of hidden layer neurons used in each trial

Figure 7. Number of reinforcements given in each trial

Copyright © 2010 SciRes. JILSA

An Experience Based Learning Controller

Copyright © 2010 SciRes. JILSA

85

(Figure 5) in trial 1 in task 2 (solid line curve) is very
high. It indicates that, in task 2 the maximum exploration
was done in trial 1 where as in task 1 exploration was
increasing with trials. Therefore with increase in explora-
tion reinforcement is also increasing. Furthermore, it was
during first three trials the robot attained reinforcements
(Figure 7) and a sharp growth in network (Figure 6).

5. Conclusions

This paper presented a learning strategy to generate a
control field for a mobile robot in an unknown and un-
certain environment, which integrates learning, generali-
zation, exploration and offline computation into a unified
architecture. After the learning, a robot can approach the
goal by following the control field. The important lessons
learned from the implementation included 1) imitation of
very accurate and exact action sequence is not necessary
[15]; 2) a prior knowledge is required to plan a model of
the task to support rapid learning; 3) generalization is
improved by improving the learning policies; 4) simple
method like inverse distance is adequate to generalize the
task; 5) offline learning is an important method for real
time applications to avoid the large online computations;
6) online exploration is required to explore other possi-
bilities to perform a task and to improve the quality of
learning; 7) balance between exploration and exploitation
improves the learning policies, which reduces the learn-
ing time significantly; 8) the robot can learn from few
demonstrations but it effects the learning speed. The ma-
jor disadvantage of this method is the use of position in-
formation which is not always accurate in real robots due
to inaccurate sensor information due to rotational or
translational error caused by the slippage between robot’s
wheel and the floor.

REFERENCES
[1] M. N. Nicolescus and M. J. Mataric, “Natural Methods

for Robot Task Learning: Instructive Demonstrations,
Generalization and Practice,” In Proceedings of the Sec-
ond International Joint Conference on Autonomous Agents
and Multi-Agent Systems, Melbourne, Australia, July
14-18, 2003, pp. 241-248.

[2] M. N. Nicolescus and M. J. Mataric, “Learning and Inter-
acting in Human—Robot Domains,” IEEE Transactions
on systems, Man and cybernetics—Part A: Systems and
Humans, Vol. 31, No. 5, 2001, pp. 419-430.

[3] G. Hailu,“Symbolic Structures in Numeric Reinforcement
for Learning Optimum Robot Trajectory,” Robotics and
Automation Systems, Vol. 37, No. 1, 2001, pp. 53-68.

[4] D. C. Bentivegna, C. G. Atkeson and G. Cheng, “Learn-
ing Tasks from Observation and Practice,” Robotics and
Automation Systems, Vol. 47, No. 2-3, 2004, pp. 163-169.

[5] G. Hailu and G. Sommer, “Learning by Biasing,” IEEE

International Conference on Robotics and Automation,
Leuvem, Belgium, 1998, pp. 16-21.

[6] J. R. Millan, “Reinforcement Learning of Goal Directed
Obstacle Avoiding Reaction Strategies in an Autonomous
Mobile Robot,” Robotics and Autonomous Systems, Vol.
15, No. 4, 1995, pp. 275-299.

[7] A. Johannet and I. Sarda, “Goal-Directed Behaviours by
Reinforcement Learning,” Neurocomputing, Vol. 28, No.
1-3, 1990, pp. 107-125.

[8] P. M. Bartier and C. P. Keller, “Multivariate Interpolation
to Incorporate Thematic Surface Data Using Inverse Dis-
tance Weighting (IDW),” Computers & Geosciences, Vol.
22, No. 7, 1996, pp. 795-799.

[9] H. Friedrich, M. Kaiser and R. Dillmann, “What Can
Robots Learn from Humans,” Annual Reviews in Control,
Vol. 20, 1996, pp. 167-172.

[10] S. Thrun, “An Approach to Learning Mobile Robot Navi-
gation,” Robotics and Automation Systems, Vol. 15, 1995,
pp. 301-319.

[11] M. Kasper, G. Fricke, K. Steuernagel and E. von
Puttkamer, “A Behaviour Based Learning Mobile Robot
Architecture for Learning from Demonstration,” Robotics
and Automation Systems, Vol. 34, No. 2-3, 2001, pp.
153-164.

[12] W. Ilg and K. Berns, “A Learning Architecture Based on
Reinforcement Learning for Adaptive Control of the
Walking Machine LAURON,” Robotics and Automation
Systems, Vol. 15, No. 4, 1995, pp. 321-334.

[13] H. Friedrich, M. Kaiser and R. Dillmann, “PBD-The Key
to Service Robot Programming,” AAAI Technical Report
SS-96-02, American Association for Artificial Intelli-
gence, America, 1996.

[14] H. Friedrich, M. Kaiser and R. Dillmann, “Obtaining
Good Performance from a Bad Teacher,” In Programming
by Demonstration vs. Learning from Examples Workshop
at ML’95, Tahoe, 1995.

[15] R. Dillmann, M. Kaiser and A. Ude, “Acquisition of Ele-
mentary Robot Skills from Human Demonstration,” In
International Symposium on Intelligent Robotics Systems,
Pisa, Italy, 1995, pp. 185-192.

[16] R. S. Sutton and A. G. Barto, “Reinforcement Learning:
An Introduction,” The MIT Press Cambridge, Massachu-
setts, 1998.

[17] B. Bakker, V. Zhumatiy, G. Gruener and J. Schmidhuber,
“A Robot that Reinforcement-Learns to Identify and
Memorize Important Previous Observations,” Proceed-
ings IEEE/RSJ International Conference on Intelligent
Robots and Systems, Las Vegas, USA, October 27-31,
2003, pp. 430-435.

[18] A. Billard, Y. Epars, S. Calinon, S. Schaal and G. Cheng,
“Discovering Optimal Imitation Strategies,” Robotics and
Automation Systems, Vol. 47, No. 2-3, 2004, pp. 69-77.

[19] S. Russell and P. Norvig, “Artificial Intelligence: A Mod-
ern Approach,” Second Edition, Prentice Hall, New Jersey,
USA, 2002.

J. Intelligent Learning Systems & Applications, 2010, 2: 86-96
doi:10.4236/jilsa.2010.22012 Published Online May 2010 (http://www.SciRP.org/journal/jilsa)

Copyright © 2010 SciRes. JILSA

Machine Learning Algorithms and Their
Application to Ore Reserve Estimation of Sparse
and Imprecise Data

Sridhar Dutta1, Sukumar Bandopadhyay2, Rajive Ganguli3, Debasmita Misra4

1Mining Engineer and MineSight Specialist, Mintec, Inc. & MineSight® Applications, Tucson, USA; 2Mining Engineering, Fair-
banks, USA; 3Mining Engineering, University of Alaska Fairbanks, Fairbanks, USA; 4Geological Engineering, University of Alaska
Fairbanks, Fairbanks, USA.
Email: sridhar.dutta@mintec.com, {sbandopadhyay, rganguli}@alaska.edu, ffdm1@uaf.edu

Received November 2nd, 2009; revised January 6th, 2010; accepted January 15th, 2010.

ABSTRACT

Traditional geostatistical estimation techniques have been used predominantly by the mining industry for ore reserve
estimation. Determination of mineral reserve has posed considerable challenge to mining engineers due to the geo-
logical complexities of ore body formation. Extensive research over the years has resulted in the development of several
state-of-the-art methods for predictive spatial mapping, which could be used for ore reserve estimation; and recent ad-
vances in the use of machine learning algorithms (MLA) have provided a new approach for solving the problem of ore
reserve estimation. The focus of the present study was on the use of two MLA for estimating ore reserve: namely, neural
networks (NN) and support vector machines (SVM). Application of MLA and the various issues involved with using
them for reserve estimation have been elaborated with the help of a complex drill-hole dataset that exhibits the typical
properties of sparseness and impreciseness that might be associated with a mining dataset. To investigate the accuracy
and applicability of MLA for ore reserve estimation, the generalization ability of NN and SVM was compared with the
geostatistical ordinary kriging (OK) method.

Keywords: Machine Learning Algorithms, Neural Networks, Support Vector Machine, Genetic Algorithms, Supervised

1. Introduction

Estimation of ore reserve is essentially one of the most
important platforms upon which a successful mining op-
eration is planned and designed. Reserve estimation is a
statistical problem and involves determination of the
value (or quantity) of the ore in unsampled areas from a
set of sample data (usually drill-hole samples) X1, X2,
X3, …. Xn collected at specific locations within a deposit.
During this process, it is assumed that the samples used
to infer the unknown population or underlying function
responsible for the data are random and independent of
each other. Since the accuracy of grade estimation is one
of the key factors for effective mine planning, design,
and grade control, estimation methodologies have un-
dergone a great deal of improvement, keeping pace with
the advancement of technology. There are a number of
methodologies [1-6] that can be used for ore reserve estima-
tion. The merits and demerits associated with these
methodologies determine their application for a particu-

lar scenario. The most common and widely used methods
are the traditional geostatistical estimation techniques of
kriging. Typically, the previously mentioned criteria of
randomness and independence among the samples are
rarely observed. The samples are correlated spatially, and
this spatial relationship is incorporated in the traditional
geostatistical estimation procedure. The resulting infor-
mation is contained in a tool known as the “variogram
function,” which describes both graphically and numeri-
cally the continuity of mineralization within a deposit.
The information can also be used to study the anisot-
ropies, zones of influence, and variability of ore grade
values in the deposit. Although kriging estimators find a
wide range of application in several fields, their estima-
tion ability depends largely on the quality of usable data.
Usable data applies to the presence of good and sufficient
data to map the spatial correlation structure. Their per-
formance is also appreciably better when a linear rela-
tionship exists between the input and output patterns. In
real life, however, this is extremely unlikely. Even though

Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data 87

there are a number of kriging versions, such as log-nor-
mal kriging and indicator kriging that apply certain spe-
cific transformations to capture nonlinear relationships,
they may not be efficient enough to capture the broad
nature of spatial nonlinearity.

Modernization and recent developments in computing
technologies have produced several machine learning
algorithms (MLA), for example, neural networks (NN)
and support vector machines (SVM), that operate non-
linearly. These artificial MLA learn the underlying func-
tional relationship inherently present in the data from the
samples that are made available to them. The attractive-
ness of these nonlinear estimators lies in their ability to
work in a black-box manner. Given sufficient data and
appropriate training, they can learn the relationship be-
tween input patterns (such as coordinates) and output
patterns (such as ore grades) in order to generalize and
interpolate ore grades for areas between drill holes. With
this approach, no assumptions must be made about fac-
tors or relationships of ore grade spatial variations, such
as linearity, between boreholes.

This study investigated ore-reserve estimation capa-
bilities of NN and SVM in the Nome gold deposit under
data-sparse conditions. The performance of these MLA is
validated by comparing results with the traditional ordi-
nary kriging (OK) technique. Several issues pertaining
to model development are also addressed. Various es-
timation errors, namely, root mean square error (RMSE),
mean absolute error (MAE), bias or mean error (ME),
and Pearson’s correlation coefficient, were used as
mea-sures to assess the relative performance of all the
models.

2. Nome Gold Deposit and Data Sparseness

The Nome district is located on the south shore of the
Seward Peninsula roughly at latitude 64°30’N and lon-
gitude 165°30’W. It is 840 km west of Fairbanks and
860 km northwest of Anchorage (Figure 1). Placer gold
at Nome was discovered in 1898. Gold and antimony
have been produced from lode deposits in this district,
and tungsten concentrates have been produced from re-
sidual material above the scheelite-bearing lodes near
Nome. Other valuable metals, including iron, copper,
bismuth, molybdenum, lead, and zinc, are also reported
in the Nome district.

[7] and [8] studied the Nome ore deposit and presented
an excellent summary regarding its origins by chroni-
cling their exploration and speculating on the chronology
of events in the complex regional glacial history that al-
lowed the formation and preservation of the deposit.
Apart from the research just mentioned, several inde-
pendent agencies have carried out exploration work in
this area over the last few decades. Figure 2 shows the

composition of the offshore placer gold deposit. Alto-
gether, around 3500 exploration drill holes have been
made available by the various sampling explorations in
the 22,000-acre Nome district. The lease boundary is
arbitrarily divided into nine blocks named Coho, Halibut,
Herring, Humpy, King, Pink, Red, Silver, and Tomcod.
These blocks represent a significant gold resource in the
Nome area that could be mined economically.

The present study was conducted in the Red block of
the Nome deposit. Four hundred ninety-seven drill-hole
samples form the data used for the investigation. Al-
though the length of each segment of core sample col-
lected from bottom sediment of the sea floor varied con-
siderably, the cores were sampled at roughly 1 m inter-
vals. On average, each hole was drilled to a depth of 30 m
underneath the sea floor. Even though a database com-
piled from the core samples of each drill hole was made
available, an earlier study by [9] revealed that most of the
gold is concentrated within the top 5 m of bottom sedi-
ment of the sea floor. As a result, raw drill-hole samples
were composited of the first 5 m of sea floor bottom
sediment. These drill-hole composites were eventually
used for ore grade modeling using NN, SVM, and Geo-
statistics.

Preliminary statistical analysis conducted on drill-hole
composites from the Red block displayed a significantly
large grade variation, with a mean and standard deviation
of 440.17 mg/m3 and 650.58 mg/m3, respectively. The
coefficient of variation is greater than one, which indi-
cates the presence of extreme values in the dataset. Spa-
tial variability of the dataset was studied and character-
ized through a variography study. Figure 3 presents a
spatial plot showing an omni-directional variogram for
gold concentration in the data set. From the variogram
plot, it can be observed that there is a small amount of
the regional component. Large proportions of spatial
variability occur from the nugget effect, indicating the
presence of a poor spatial correlation structure in the de-
posit over the study area. Poor spatial correlation, in
general, tends to suggest that prediction accuracy for this
deposit might not be reliable. Hence, borehole data are
sparse for reserve estimation, considering the high spatial
variation of ore grade that is commonly associated with
placer gold deposit. A histogram plot of the gold data is
presented in Figure 4. The histogram plot illustrates that
the gold values are positively skewed. A log-normal dis-
tribution may be a suitable fit to the data. Visual por-
trayal of the histogram plot also reveals that the gold
datasets are composed of a large proportion of low values
and a small proportion of extremely high values. Closer
inspection of the spatial distribution of high and low
gold-grade values portrays a distinct spatial characteristic
of the deposit. For example, the high values do not ex-

ibit any regular trend. Instead, one or two extremely h

Copyright © 2010 SciRes. JILSA

Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data 88

Figure 1. Location plot of the studied area

high values occasionally occur in a mix of low values.
This may pose a particular difficulty in ore grade model-
ing, since the pattern of occurrence of extremely high
values is somewhat unpredictable.

As it is discernable that the available gold data are
sparse and exhibit a low level of spatial correlation, spa-
tial modeling of these datasets is complex. Prediction

accuracy may be further reduced if the problem of sparse
data is not addressed. Prediction accuracy not only de-
pends on the type of estimation method chosen but also,
largely, on the model data subsets on which the model is
built. Since learning models are built by exploring and
capturing similar properties of the various data subsets,
these data subsets should be statistically similar to each

Copyright © 2010 SciRes. JILSA

Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data 89

Figure 2. Offshore placer gold deposit

Figure 3. Omni-directional variogram plot

other and should reflect the statistical properties of the
entire dataset. Statistical similarity ensures that the com-
parisons made for the model built on the training dataset
and tested on the prediction dataset are logical [10,11].
Traditionally used practices of random division of data
might fail to achieve the desired statistical properties
when data are sparse and heterogeneous. Due to sparse-
ness, limited data points categorized into data subsets by
random division might result in dissimilarity of the data

Figure 4. Histogram plot Red block

subsets [12].Consequently, overall model performance
will be decreased. In order to demonstrate the severity of
data sparseness in random data division, a simulation
study was conducted using the Nome datasets. One hun-
dred random data divisions were generated, in which
sample members for training, calibration, and validation
subsets were chosen randomly. The reason for the choice
of three data subsets is presented in Section 3.0.1. Statis-

Copyright © 2010 SciRes. JILSA

Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data 90

tical similarity tests of the three data subsets, using
analysis of variance (ANOVA) and Wald tests were
conducted. Data division was based on a consideration of
all the attributes associated with the deposit, namely, the
x-coordinate, y-coordinate, water-table depth, and gold
concentration. The results of the simulation study made
obvious the fact that almost one-quarter of the data divi-
sions are bad during random division of data due to the
existing sparseness. This figure can be regarded as quite
significant. The unreliability of random data division is
further explored through inspection of a bad data division.
A statistical summary for one of the arbitrarily selected
random data divisions for the dataset is presented in Ta-
ble 1. From the table, it is seen that both the mean and
standard deviation values are significantly different.
Therefore, careful subdivision of data during model de-
velopment is essential. Various methodologies were in-
vestigated in this regard for proper data subdivision un-
der such a modeling framework, including the applica-
tion of genetic algorithms (GA) [3,5,13,14] and Koho-
nen networks [11,14]. A detailed description of the the-
ory and working principle of these methodologies can be
found in any NN literature [15,16].

3. Nome Gold Reserve Estimation

When estimating ore grade, northing, easting, and wa-
ter-table depth were considered as input variables, and
gold grade associated with drill-hole composites up to a
depth of 5 m of sea floor was considered an output vari-
able. The next few sections describe the application of
NN and SVM to ore reserve estimation, along with vari-
ous issues that arose while using NN and SVM for ore
reserve modeling.

3.1 NN for Grade Estimation

Neural networks form a computational structure inspired
by the study of biological neural processing. This struc-
ture exhibits certain brain-like capabilities, including per-
ception, pattern recognition, and pattern prediction in a
variety of situations. As with the brain, information pro-
cessing is done in parallel using a network of “neurons.”
As a result, NN have capabilities that go beyond algo-
rithmic programming and work exceptionally well for
nonlinear input-output mapping. It is this property of
nonlinear mapping that makes NN appealing for ore
grade estimation.

There is a fundamental difference in the principles of
OK and NN. While OK utilizes information from local
samples only, NN utilize information from all of the
samples. Ordinary Kriging is regarded as a local estima-
tion technique, whereas NN are global estimation tech-
niques. If any nonlinear spatial trend is present in a de-
posit, it is expected that the NN will capture it reasonably

well. The basic mechanisms of NN have been discussed
at length in the literature [15,17]. A brief discussion of
NN theory is presented below to provide an overview of
the topic.

In NN, information is processed through several in-
terconnected layers, where each layer is simply repre-
sented by a group of elements designated as neurons.
Basic NN architecture is made of an input layer consist-
ing of inputs, one or more hidden layers consisting of a
number of neurons, and the output layer consisting of
outputs. Typical network architecture, having three lay-
ers, is presented in Figure 5. Note that while the input
layer and the output layer have a fixed number of ele-
ments for a given problem, the number of elements in the
hidden layer is arbitrary. The basic functioning of NN
involves a manipulation of the elements in the input layer
and the hidden layer by a weighing function to generate
network output. The goodness of the resulting output
(how realistic it is) depends upon how each element in
the layers is weighted to capture the underlying phe-
nomenon. As it is apparent that the weights associated
with the interconnections largely decide output accuracy,
they must be determined in such a way as to result in
minimal error. The process of determination of weights is
called learning or training during which, depending upon
the output, NN adjust weights iteratively based on their
contribution to the error. This process of propagating the
effect of the error onto all the weights is called back-
propagation. It is during the process of learning that NN
map the patterns pre-existing in the data by reflecting the
changes in data fluctuations in a spatial coordinate. The
sample dataset for a given deposit is used for this pur-
pose. Therefore, given the spatial coordinates and other
relevant attributes as input and the grade attribute as
output, NN will be able to generate a mapping function
through a set of connection weights between the input
and output. Hence, output, O, of a neural network can be
regarded as a function of inputs, X, and connection
weights, W: O =  (X), where  is a mapping function.
Training of NN involves finding a good mapping func-
tion that maps the input-output patterns correctly. This is
done, as previously described, by adjusting connection
weights between the neurons of a network, using a suit-
able learning algorithm while simultaneously fixing the
network architecture and activation function.

An additional criterion for optimization of the NN ar-
chitecture is to choose the network with minimal gener-
alization error. The main goal of NN modeling is not to
generate an exact fit to the training data, but to generalize
a model that will represent the underlying characteristics
of a process. A simple model may result in poor gener-
alization, since it can not take into account all the intrica-
ies present in the data. On the other hand, a too-complex c

Copyright © 2010 SciRes. JILSA

Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data 91

Table 1. Statistical summary of one of the random divisions for the Red dataset

Mean Standard Deviation
Attribute

Overall Training Calibration Validation Overall Training Calibration Validation

X 3941.8 3947.7 3838.2 4032.6 456.54 436.89 505.50 425.5

Y 10198 10174 10350 10097 469.75 483.19 487.22 384.06

Gold 440.17 297.75 781.77 385.00 650.58 353.31 10340 475.12

WTD 8.4845 8.94 6.6242 9.414 5.2063 5.1679 5.3559 4.69

Figure 5. A typical neural network architecture

model is flexible enough to fit data with anomalies or
noise. Therefore, complexity of a model should be well
matched to improve generalization properties of the data.
Past research has been devoted to improving the gener-
alization of NN models, including techniques such as
regularization, quick-stop training, and smoothing, and
combining several learning models using various ensem-
ble techniques like bragging and boosting [1,18]. In the
present study, a quick-stop training method is employed
to improve the NN model generalization. Quick-stop
training is based on the notion that generalization per-
formance varies over time as the network adapts during
training [15]. Using this method, the dataset is split into
three subsets: training, calibration, and validation. The
network actually undergoes training on the training set.
However, the decision to stop the training is made on the
network’s performance in the calibration set. The error
for the training set decreases monotonically with an in-
creasing number of iterations; however, the error for the
calibration set decreases monotonically to a minimum,
and then starts to increase as the training continues. A
typical profile of the training error and the calibration
error of a NN model is presented in Figure 6. This ob-
served behavior occurs because, unlike the training data,
the calibration data are not used to train the network. The
calibration data are simply used as an independent meas-
ure of model performance. Thus, it is possible to stop
over-training or under-training by monitoring the per-

formance of the network on the calibration subset, and
then stop the training when the calibration error starts
increasing. In order to make a valid model-performance
measurement, the training, calibration, and validation sub-
sets should have similar statistical properties. Thus, the
members of the data in the training, calibration, and vali-
dation subsets should be selected in such a way that the
three data subsets acquire similar statistical properties.
Once the data subsets are obtained, a NN model is de-
veloped based on the NN architecture and learning rule
to generate model outputs.

3.2 NN Grade Estimation Results

The Levenberg-Marquardt backpropagation (LMBP)
learning algorithm was used in conjunction with slab
architecture, as shown in Figure 7, for NN modeling.
The hidden layer consisted of 12 neurons. The number of
hidden neurons chosen was based on the minimum gen-
eralization errors of NN models while experimenting
with a different number of hidden nodes in the hidden
slabs. A MATLAB code was developed for conducting
all the studies associated with NN modeling. The model
datasets were obtained by following an integrated ap-
proach using data segmentation and GA. Data segmenta-
tion involved the division of data into three prime seg-
ments of high-, medium-, and low-grade gold concentra-
tions. This division was based on a visual inspection of
the histogram plot. Figure 8 presents a schematic dia-
gram of data segmentation and the GA approach. After
data segmentation, GA was applied in each of the seg-
ments: segment 1, segment 2, and segment 3. The mem-
bers of the training, calibration, and the validation data-
sets were selected using GA from each of the segments.
Once the members for the training, calibration, and vali-
dation data were chosen, the selected members from the
segments were appended together to form respective
subsets. Table 2 presents the summary statistics of the
mean and standard deviation values for all variables of
the three data subsets and the entire dataset. Observe that
the mean and standard deviation values are similar for all
the data subsets. The histogram plots of the three subsets

Copyright © 2010 SciRes. JILSA

Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data 92

Figure 6. A typical profile of training and calibration error
of a NN model [16]

Figure 7. Slab architecture for NN modeling

Figure 8. Data segmentation and genetic algorithms for
data divisions

and the entirety of the nine datasets are presented in
Figure 9. From the figure, it can be seen that all the data
subsets assume an almost identical shape to that of the
overall dataset, and that the skewness of the data in the
three subsets is preserved. Table 3 presents summary
statistics of the generalization performance of the NN
model for the Red dataset, while Figure 10 presents a
scatterplot of the actual values versus predicted values of
the validation data subset for the Red block.

3.3 SVM for Ore Grade Estimation

The SVM method is based on statistical learning theory
(SLT) and performing structural risk minimization (SRM).
Popularly known as support vector regression (SVR) for
its regression abilities, the SVR not only has a solid
mathematical background but also is robust to noise in
measurements [19-21]. Support vector regression ac-
quires knowledge from the training data by building a
model, during which the expected risk, R, is approxi-
mated and minimized by the empirical risk, Remp. This
process always involves a generalization error bound and
is given by

R(h) ≤ Remp (h) + Ω (h) (1)

where R is the bound on the testing error, Remp is the em-
pirical risk on the training data, and Ω is the confidence
term that depends on the complexity of the modeling
function. Though a brief explanation of how the SVR
approach works is described below, interested readers are
referred to [20-22]. Given the training dataset {(xi, yi), i =
1, 2,….L}, where xi is the input variable and yi is the
output variable, the idea of SVR is to develop a linear
regression hyperplane expressed in Equation (2), which
allows, at most, ε deviation for the true values, yi, in the
training data (see Figure 11) and at the same time
searches for a solution that is as flat as possible [21].

() ()T
Of x W x b  (2)

where Wo is the optimum weight vector, b is the bias, and
φ(x) is a mapping function used to transform the input
variable in the input space to a higher dimensional fea-
ture space. This transformation allows the handling of
any nonlinearity that might exist in the data. The desired
flatness is obtained by seeking a small w [21]. In reality,
however, a function that approximates all the (xi, yi) pairs
with ε precision may not be feasible. Slack variables εi,
εi

* [23] are introduced in such cases that allow the incor-
poration of some amount of error (see Figure 11). The
problem of obtaining a small w and at the same time re-
stricting the errors to, at most, ε deviation after introduc-
ing the slack variables can be obtained by solving the
following convex quadratic optimization problem:

minimize 2 *

1

1
()

2

l

i i
i

w C  


 

subject to *

*

(())

(())

, 0

t
i i

t
i

i i

y w x b

w x b y i

  

  

 

   

   



 (3)

In Equation (3), both the empirical risk, realized by the
training error Σ (εi + εi

*), as well as the confidence term,

Copyright © 2010 SciRes. JILSA

Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data

Copyright © 2010 SciRes. JILSA

93

Table 2. Statistical summary of data division using GA (Red)

Mean Standard Deviation
Attribute

Overall Training Calibration Validation Overall Training Calibration Validation

X 3941.8 3950 3935.6 3931.6 456.54 456.6 457.6 458.6

Y 10198 10194 10218 10186 469.75 471.2 467.2 472.4

Gold 440.17 461.99 418.46 418.59 650.58 673.97 627.89 628.8

WTD 8.4845 8.38 8.63 8.54 5.2063 5.23 5.19 5.19

Figure 11. The soft margin loss settings for linear SVM [21]

realized by the ||w||2 term (expressed by Equation (1)) are
minimized. An optimum hyperplane is obtained by solv-
ing the above minimization problem employing the Kha-
rush-Kuhn-Tucker (KKT) conditions [24] which results
in minimum generalization error. The final formulation
to obtain the SVR model predictions is given by

Figure 9. Histogram plot of Red dataset
*

1

*

1

() () () ()

() (,)

i

i

l

i i
i

l

i i
i

f x x x b

K x x b

   

 





  

  




 (4)

Table 3. Generalization performance of the models for the
Red block

Statistics SVM NN OK

Mean Error -8.1 -1.30 33.54

Mean Absolute
Error

341.2 351.50 353.02

Root Mean
Squared Error 563.13 564.34 565.23

R2 0.234 0.191 0.193

where i, i
* are the weights corresponding to individual

input patterns, K(xi, x) is a user-defined kernel function,
and b is the bias parameter. Figure 12 presents a list of
commonly used kernels. The most commonly used ker-
nel function is an isotropic Gaussian RBF defined by

2

22(,)
ix x

iK x x e 

 

 (5)

 where σ is the kernel bandwidth. The solution of this
optimization problem might result in zero weight for
some input patterns and non-zero weight for the rest. The
patterns with zero weight are redundant and are insig-
nificant to the model structure. On the other hand, input
patterns with non-zero weights are termed support vec-
tors (SV), and they are vital to obtaining model predic-
tions. As the number of support vectors increases, so
does model complexity. The main parameters that influ-
ence SVR model performance are the C, σ, and ε. Pa-
rameter C is a trade-off between empirical risk and the
weight vector norm ||w||. It decreases empirical risk but,
at the same time, increases model complexity, which

Figure 10. Actual vs. predicted for the validation data of
Red block

Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data 94

Figure 12. Commonly used kemels in SVM

deteriorates model generalization. Parameter ε defines
the width of the insensitivity zone, and controls the
number of SV. The effect of increase in ε is a decrease in
the number of SV, which results in smoothing of the final
solution during modeling of noisy data. Similarly, note
from Equation (5) that a higher value of kernel width, σ,
has a smoothing effect on the solution. Optimal values of
these parameters can be obtained by a grid-search pro-
cedure.

3.4 SVM Grade Estimation Results

Out of the numerous options available for the choice of
kernel function, a RBF kernel was selected, and the
recommendations of [20] and [25] were considered care-
fully in the development of the SVM-based model. As
per recommendations, the input data were first scaled
assuming a uniform distribution. In other words, the
scaled value of an attribute was calculated using the
maximum and minimum values of the attribute. The drill
holes were used to estimate SVM parameters, the cost
function (C), the radial basis kernel parameter (σ), and
the error margin (ε). Optimal SVM parameters were de-
termined based on a K-fold cross-validation technique
applied to the training dataset. The K-fold cross-valida-
tion approach splits the available data into more or less K
equal parts. Of the K parts of the data, only K-1 parts of
the data were used to find the SVM estimate and calcu-
late the error of the fitted model, and for predicting the
kth part of the data as part of the validation process. The
procedure was then repeated for k = 1, 2, . . ., K, and the
selection of parameters was based on the minimum pre-
diction error estimates over all K parts. The value of K is
based on the shape of a “learning curve” [26], which is a
plot of the training error versus the training size. For
given SVM parameters, the training errors are calculated
by progressively estimating the SVM model for in-
creased training data size, thereby constituting the learn-
ing curve. From the learning curve, an optimum training
size (or in other words, the number of folds, K) can be
obtained where the error is minimal. In this study, the

optimum value of K was found to be 10. Once the value
of K is obtained, the SVM model is trained using K-fold
cross validation. Training and testing involves a thorough
grid search for optimal C and σ values. Thus, unlike NN,
where training involves passing a dataset through hidden
layers to optimize the weights, optimal training of SVM
involves estimation of parameters C and σ through a grid
search such that the error is minimized. The optimum
values for C and σ for the Red block was found to be
0.53 and 9.5. These values are depicted by the troughs
and flat regions of the error surface in Figure 13. Once
the optimal values for the SVM model parameters were
determined, the model was tested for its generalization
ability on validation datasets for the Red block. Figure
14 shows the performance of the SVM model in predict-
ing gold grade for the Red block, while performance sta-
tistics are presented in Table 3.

4. Summary and Conclusions

Nome gold reserve estimation is challenging because of
the geologic complexity associated with placer gold de-
posits and because of sparse drill holes. Each drill hole
contains information on northing (Y-coordinate), easting
(X-coordinate), water-table depth, and gold grade in
mg/m3, as well as other relevant information. For grade
estimation, northing, easting, and water-table depth were
considered input variables, and gold grade was consid-
ered an output variable. Gold grade up to a 5 m sea floor
depth, were considered. The gold grade associated with
the Nome deposit Red block was estimated using two
MLA—the NN method and the SVM method—and their
performance were compared using the traditional geosta-
tistical OK technique. Various issues involved in the use
of these techniques for grade estimation were discussed.
Based on the results from this study, the SVM-based
model produced better estimates as compared with the
other two methods. However, the improvement was only
marginal, which may be due to the presence of extreme
data values. The various criteria used to compare model
performance were the mean error (ME), the mean abso-
lute error (MAE), the root mean squared error (RMSE),
and the coefficient of determination (R2). Generally, a
model with less error and high R2 is considered a better
fit. Since the improvements were only marginal, a sum-
mary statistic was developed to compare the three mod-
els. This summary statistic, termed the skill value, is an
entirely subjective measurement, expressed by Equation
(6) [14,27-29]. Numerous skill measures can be devised;
however, the one proposed in this study considers the
ME, MAE, and RMSE equally, and applies scaling to the
R2 so that it is of the same order of magnitude as the oth-
ers. Note that the lower the skill value, the better the
method is. In this way, various methods can be ranked

Copyright © 2010 SciRes. JILSA

Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data 95

Figure 13. Effect of cost and kernel width variation on error (Red)

Figure 14. Scatterplot for actual vs. predicted grade (Red)

Table 4. Model performances based on skill values

Statistics SVM NN OK

Skill Value 989.03 998.03 1032.49

Rank 01 02 03

based on their skill values, that is, their overall perform-
ance on the prediction dataset.

‘skill value’ = abs (ME) + MAE + RMSE + 100 × (1 – R2)
(6)

Table 4 presents skill values and ranks for the various
methods that were used on the prediction dataset. It can
be seen from the table that the MLA performed signifi-
cantly better than the traditional kriging method. The
difference in the skill values is mainly due to the high
variation in the R2 (Table 3).

REFERENCES
[1] S. Dutta, D. Mishra, R. Ganguli and B. Samanta, “Inves-

tigation of two Neural Network Ensemble Methods for
the Prediction of Bauxite Ore Deposit,” Proceedings of
the 6th International Conference on Information Tech-

nology, Bhubaneswar, December 22-25, 2003.

[2] S. Dutta, R. Ganguli and B. Samanta, “Comparative
Evaluation of Radial Basis Functions and Kriging for Ore
Grade Estimation,” 32nd International Symposium of the
application of Computers and Operation research in
Mineral Industry, Arizona, USA, 2005, pp. 203-211.

[3] S. Dutta, D. Misra, R. Ganguli, B. Samanta and S. Ban-
dopadhyay, “A Hybrid Ensemble Model of Kriging and
Neural Network for Ore Grade Estimation,” International
Journal of Surface Mining, Reclamation and Environment,
Vol. 20, No. 1, 2006a, pp. 33-46.

[4] S. Dutta, S. Bandopadhyay and B. Samanta, “Support
Vector Machines—An Emerging Technique for Ore Re-
serve Estimation,” Proceedings of the Sixth International
Symposium on Information Technology Applied to Mining
(CD), Peruvian Institute of Mining Engineers, 2006b.

[5] B. Samanta, S. Bandopadhyay, R. Ganguli and S. Dutta,
“A Comparative Study of the Performance of Single Neu-
ral Network vs. Adaboost Algorithm Based Combination
of Multiple Neural Networks for Mineral Resource Esti-
mation,” Journal of South African Institute of Mining and
Metallurgy, Vol. 105, No. 4, 2005a, pp. 237-246.

[6] B. Samanta, R. Ganguli and S. Bandopadhyay, “Compar-
ing the Predictive Performance of Neural Networks with
Ordinary Kriging in a Bauxite Deposit,” Transactions of
Institute of Mining and Metallurgy, Section A, Mining
Technology, Vol. 114, No. 3, 2005b, pp. 129-139.

[7] D. M. Hopkins and L. MacNeil, “Dredged Area: Alaska
Division of Mines and Minerals,” 1960.

[8] P. C. Rusanowski, “Nome Offshore Gold Placer Project:
Nova,” Natural Resources Corp., Alaska, 1994.

[9] J. Ke, “Neural Network Modeling for Placer Ore Grade
Spatial Variability,” Ph.D. dissertation, University of
Alaska Fairbanks, Fairbanks, 2002.

[10] G. J. Bowden, H. R. Maier and G. C. Dandy, “Optimal
Division of Data for Neural Network Models in Water
Resources Application,” Water Resources Research, Vol.
38, No. 2, 2002, pp. 1-11.

[11] S. Yu, R. Ganguli, D. E. Walsh, S. Bandopadhyay and S.
L. Patil, “Calibration of On-line Analyzers Using Neural
Networks,” Mining Engineering, Vol. 56, No. 9, 2003, pp.
99-102.

[12] R. Ganguli and S. Bandopadhyay, “Dealing with Sparse
Data Issues in a Mineral Industry Neural Network Appli-
cation,” Proceedings Computer Applications in the Min-
eral Industry (CAMI), Calgary, Alberta, Canada, 2003, pp.
1-5.

[13] B. Samanta, S. Bandopadhyay and R. Ganguli, “Data
Segmentation and Genetic Algorithms for Sparse Data
Division in Nome Placer Gold Grade Estimation Using
Neural Network and Geostatistics,” Exploration and
Mining Geology, Vol. 11, 2004, pp. 69-76.

[14] S. Dutta, “Predictive Performance of Machine Learning
Algorithms for Ore Reserve Estimation in Sparse and
Imprecise Data,” Ph.D. dissertation, University of Alaska

Copyright © 2010 SciRes. JILSA

Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data

Copyright © 2010 SciRes. JILSA

96

Fairbanks, Fairbanks, 2006.

[15] M. T. Hagan, H. B. Demuth and M. Beale, “Neural Net-
work Design,” PWS Publishing Company, Boston, MA,
1995.

[16] S. Haykins, “Neural Networks: A Comprehensive Foun-
dation,” 2nd Edition, Prentice Hall, New Jersey, 1999.

[17] C. M. Bishop, “Neural Networks for Pattern Recogni-
tion,” Clarendon Press, Oxford, 1995.

[18] S. Dutta and R. Ganguli, “Application of Boosting Algo-
rithm in Neural Network Based Ash Measurement Using
Online Ash Analyzers,” 32nd International Symposium of
the Application of Computers and Operation Research in
Mineral Industry, Arizona, USA, 2005b.

[19] V. Kecman, “Learning and Soft Computing: Support
Vector Machines, Neural Network and Fuzzy Logic
Models,” MIT Publishers, USA, 2000.

[20] V. Kecman, “Support Vector Machines Basics—An In-
troduction Only,” University of Auckland, School of En-
gineering Report, New Zealand, 2004.

[21] A. J. Smola and B. Scholkopf, “A Tutorial on Support
Vector Regression,” Statistics and Computing, Vol. 14,
No. 3, 2004, pp. 199-222.

[22] V. Vapnik, “Statistical Learning Theory,” John Wiley and
Sons, New York, 1998.

[23] C. Cortes, and V. Vapnik, “Support Vector Networks,”

Machine Learning, Vol. 20, No. 3, 1995, pp. 273-297.

[24] R. E. Miller, “Optimization-Foundations and Applica-
tions,” John Wiley and Sons, New York, 2000.

[25] C. C. Chang and C. Lin, “LIBSVM: A Library for Sup-
port Vector Machines,” 2001. Internet Available: http://
www.csie.ntu.edu.tw/~cjlin/libsvm

[26] T. Hastie, R. Tibshirani and J. Friedman, “The Elements
of Statistical Learning Theory—Data Mining, Inference
and Prediction,” Springer, New York, 2001.

[27] G. Dubois, “European Report on Automatic Mapping
Algorithms for Routine and Emergency Monitoring Data,”
Office for Official Publications of the European Commu-
nities, Luxembourg, 2005.

[28] S. Dutta, R. Ganguli and B. Samanta, “Investigation of
two Neural Network Methods in an Automatic Mapping
Exercise,” Journal of Applied GIS, Vol. 1, No. 2, 2005a,
pp. 1-19.

[29] S. Dutta, R. Ganguli and B. Samanta, “Investigation of
two Neural Network Methods in an Automatic Aapping
Exercise,” In: G. Dubois, Ed., European Report on
Automatic Mapping Algorithms for Routine and Emer-
gency Monitoring Data. Report on the Spatial Interpola-
tion Comparison (SIC 2004) Exercise, Office for Official
Publications of the European Communities, Luxembourg,
2005c.

J. Intelligent Learning Systems & Applications, 2010, 2: 97-109
doi:10.4236/jilsa.2010.22013 Published Online May 2010 (http://www.SciRP.org/journal/jilsa)

Copyright © 2010 SciRes. JILSA

97

Design of Hybrid Fuzzy Neural Network for
Function Approximation

Amit Mishra1*, Zaheeruddin1

1Jamia Millia Islamia (A Central University), Department of Electrical Engineering, New Delhi, India; *Jaypee Institute of Engi-
neering and Technology, Madhya Pradesh, India.
Email: amitutk@ gmail.com

Received November 21st, 2009; revised April 25th, 2010; accepted April 30th, 2010.

ABSTRACT

In this paper, a hybrid Fuzzy Neural Network (FNN) system for function approximation is presented. The proposed
FNN can handle numeric and fuzzy inputs simultaneously. The numeric inputs are fuzzified by input nodes upon pres-
entation to the network while the Fuzzy rule based knowledge is translated directly into network architecture. The con-
nections between input to hidden nodes represent rule antecedents and hidden to output nodes represent rule conse-
quents. All the connections are represented by Gaussian fuzzy sets. The method of activation spread in the network is
based on a fuzzy mutual subsethood measure. Rule (hidden) node activations are computed as a fuzzy inner product.
For a given numeric o fuzzy input, numeric outputs are computed using volume based defuzzification. A supervised
learning procedure based on gradient descent is employed to train the network. The model has been tested on two dif-
ferent approximation problems: sine-cosine function approximation and Narazaki-Ralescu function and shows its
natural capability of inference, function approximation, and classification.

Keywords: Cardinality, Classifier, Function Approximation, Fuzzy Neural System, Mutual Subsethood

1. Introduction

The conventional approaches to system modeling that are
based on mathematical tools (i.e. differential equations)
perform poorly in dealing with complex and uncertain
systems. The basic reason is that, most of the time; it is
very difficult to find a global function or analytical
structure for a nonlinear system. In contrast, fuzzy logic
provides an inference morphology that enables approxi-
mate human reasoning capability to be applied in a fuzzy
inference system. Therefore, a fuzzy inference system
employing fuzzy logical rules can model the quantitative
aspects of human knowledge and reasoning processes
without employing precise quantitative analysis.

In recent past, artificial neural network has also played
an important role in solving many engineering problems.
Neural network has advantages such as learning, adap-
tion, fault tolerance, parallelism, and generalization. Fuzzy
systems utilizing the learning capability of neural net-
works can successfully construct the input output map-
ping for many applications. The benefits of combining
fuzzy logic and neural network have been explored ex-
tensively in the literature [1-3].

The term neuro-fuzzy system (also neuro-fuzzy meth-
ods or models) refers to combinations of techniques from

neural networks and fuzzy system [4-8]. This never
means that a neural network and a fuzzy system are used
in some kind of combination, but a fuzzy system is cre-
ated from data by some kind of (heuristic) learning
method, motivated by learning procedures used in neural
networks. The neuro-fuzzy methods are usually applied,
if a fuzzy system is required to solve a problem of func-
tion approximations or special case of it, like, classifica-
tion or control [9-12] and the otherwise manual design
process should be supported and replaced by an auto-
matic learning process.

Here, the attention has been focused on the function
approximation and classification capabilities of the sub-
sethood based fuzzy neural model (subsethood based
FNN). This model can handle simultaneous admission of
fuzzy or numeric inputs along with the integration of a
fuzzy mutual subsethood measure for activity propa-
gation. A product aggregation operator computes the
strength of firing of a rule as a fuzzy inner product and
works in conjunction with volume defuzzification to
generate numeric outputs. A gradient descent framework
allows the model to fine tune rules with the help of nu-
meric data.

The organization of the paper is as follows: Section 2
presents the architectural and operational detail of the

Design of Hybrid Fuzzy Neural Network for Function Approximation 98

model. Sections 3 and 4 demonstrate the gradient descent
learning procedure and the applications of the model to
the task of function approximation respectively. Finally,
the Section 5 concludes the paper.

2. Architectural and Operational Detail

To develop a fuzzy neural model, following issues are
important to be discussed:

1) Signal transmission at input node.
2) Signal transmission method (similarity measures)

from input nodes to rule nodes.
3) Method for activity aggregation at rule nodes.
4) Signal computation at output layer.
5) Learning technique and its mathematical formula-

tion used in model.
The proposed architecture of subsethood based Fuzzy

neural network is shown in Figure 1. Here x1 to xm and
xm + 1 to xn are numeric and linguistic inputs respectively.
Each hidden node represents a rule, and input-hidden
node connection represents fuzzy rule antecedents. Each
hidden-output node connection represents a fuzzy rule
consequent. Fuzzy set corresponding to linguistic levels
of fuzzy if-then rules are defined on input and output
UODs and are represented by symmetric Gaussian mem-
bership functions specified by a center and spread. The
center and spread of fuzzy weights wij from input nodes i
to rule nodes j are shown as cij and σij of a Gaussian
fuzzy set and denoted by wij = (cij, σij). As this model can
handle simultaneous admission of numeric as well as
fuzzy inputs, Numeric inputs are first fuzzified so that all
outputs transmitted from the input layer of the network
are fuzzy. Now, since the antecedent weights are also
fuzzy, this requires the design of a method to transmit a
fuzzy signal along a fuzzy weight. In this model signal
transmission along the fuzzy weight is handled by calcu-
lating the mutual subsethood. A product aggregation op-
erator computes the strength of firing at rule node. At
output layer the signal computation is done with volume
defuzzification to generate numeric outputs (y1 to yp). A
gradient descent learning technique allows the model to
fine tune rules with the help of numeric data.

2.1 Signal Transmission at Input Nodes

Since input features x1, ... , xn can be either numeric and
linguistic, there are two kinds of nodes in the input layer.
Linguistic nodes accept a linguistic input represented by
fuzzy sets with a Gaussian membership function and
modeled by a center ci and spread σi. These linguistic
inputs can be drawn from pre-specified fuzzy sets as
shown in Figure 2, where three Gaussian fuzzy sets have
been defined on the universe of discourse (UODs) [–1, 1].
Thus, a linguistic input feature xi is represented by the
pair (ci, σi). No transformation of inputs takes place at
linguistic nodes in the input layer. They merely transmit
the fuzzy input forward along antecedent weights.

x1

xi

xm

Xm+1

xn

Input Layer Rule Layer Output Layer

Numeric

nodes

Linguistic

nodes

y1

yk

yp

(cij,σij)

(cnj,σnj)

(cjk,σjk)

(cqk,σqk)

Antecedent

connection

Consequent

connection

Figure 1. Architecture of subsethood based FNN model

LOW MEDIUM HIGH

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2. Fuzzy sets for fuzzy inputs

Numeric nodes accept numeric inputs and fuzzify
them into Gaussian fuzzy sets. The numeric input is
fuzzified by treating it as the centre of a Gaussian mem-
bership function with a heuristically chosen spread. An
example of this fuzzification process is shown in Figure
3, where a numeric feature value of 0.3 has been fuzzi-
fied into a Gaussian membership function centered at 0.3
with spread 0.35. The Gaussian shape is chosen to match
the Gaussian shape of weight fuzzy sets since this facili-
tates subsethood calculations detailed in Section 2.2.
Therefore, the signal from a numeric node of the input
layer is represented by the pair (ci, σi). Antecedent con-
nections uniformly receive signals of the form (ci, σi).
Signals (S(xi) = (ci, σi)) are transmitted to hidden rule
nodes through fuzzy weights also of the form (cij, σij),
where single subscript notation has been adopted for the
input sets and the double subscript for the weight sets.

2.2 Signal Transmission from Input to Rule
Nodes (Mutual Subsethood Method)

Since both the signal and the weight are fuzzy sets, being

Copyright © 2010 SciRes. JILSA

Design of Hybrid Fuzzy Neural Network for Function Approximation 99

Figure 3. Fuzzification of numeric input

represented by Gaussian membership function, there is a
need to quantify the net value of the signal transmitted
along the weight by the extent of overlap between the
two fuzzy sets. This is measured by their mutual sub-
sethood [13].

Consider two fuzzy sets A and B with centers c1, c2 and
spreads σ1, σ2 respectively. These sets are expressed by
their membership functions as:

2
1 1(()/)() x ca x e   (1)

2
2 2(() /)() x cb x e   (2)

The cardinality C(A) of fuzzy set A is defined by
2

1 1(()/)() () x cC A a x dx e dx   

 
   (3)

Then the mutual subsethood (,)A B of fuzzy sets A

and B measures the extent to which fuzzy set A equals
fuzzy set B can be evaluated as:

()
(,)

() () ()

C A B
A B

C A C B C A B
 


  

 (4)

Further detail on the mutual subsethood measure can
be found in [13]. Depending upon the relative values of
centers and spreads of fuzzy sets A and B, the following
four different cases of nature of overlap arise:

Case 1: having any values of σ1 and σ2. 1c c 2

2 .Case 2: and 1c c 1 2 

Case 3: and 1c c 2 .1 2 

Case 4: and 1c c 2 .1 2 

In case 1, the two fuzzy sets do not cross over-either
one fuzzy set belongs completely to the other or two
fuzzy sets are identical. In case 2, there is exactly one
cross over point, whereas in cases 3 and 4, there are ex-
actly two crossover points. An example of case 4 type
overlap is shown in Figure 4.

To calculate the crossover points, by setting a(x) =
b(x), the two cross over points h1 and h2 yield as,

1
1 2

2
1

1

2

1

c c

h










 (5)

1
1 2

2
2

1

2

1

c c

h










 (6)

These values of h1 and h2 are used to calculate the
mutual subsethood (,)A B based on (C A B) , as
defined in (4).

Symbolically, for a signal () (,)i i is S x c i  and

fuzzy weight (,)ij ij ijw c  , the mutual subsethood is

()
(,)

() () ()
i ij

ij i ij
i ij i

C s w
s w

C s C w C s w
 


 

   ij

 (7)

As shown in Figure 5, in the subsethood based FNN
model, a fuzzy input signal is transmitted along a fuzzy
weight that represents an antecedent connection. The
transmitted signal is quantified ij , which denotes the

mutual subsethood between the fuzzy signal S(xi) and
fuzzy weight (,)ij ijc  and can be computed using (4).

Figure 4. Example of overlapping: c1 > c2 and σ1 < σ2

 ith input node

(numeric or linguistic)

jth rule node

εij

Fuzzy signal

 S(Xi)

Fuzzy weight

 wij

Mutual subsethood

Xi

Figure 5. Fuzzy signal transmission

Copyright © 2010 SciRes. JILSA

Design of Hybrid Fuzzy Neural Network for Function Approximation 100

The expression for cardinality can be evaluated for
each of the four cases in terms of standard error function
erf(x) represented as (8).

2

0

2
()

x terf x e dt


  (8)

The case wise expressions for are given

in Appendix (1).

(i ijC s w)

2.3 Activity Aggregation at Rule Nodes (Product
Operator)

The net activation zj of the rule node j is a product of all
mutual subsethoods known as the fuzzy inner product
can be evaluated as

1 1

((),)
n n

j ij i ij
i i

z S 
 

   x w (9)

The inner product in (9) exhibits some properties: it is
bounded between 0 and 1; monotonic increasing; con-
tinuous and symmetric. The signal function for the rule
node is linear.

()j jS z z (10)

Numeric activation values are transmitted unchanged
to consequent connections.

2.4 Output Layer Signal Computation (Volume
Defuzzification)

The signal of each output node is determined using stan-
dard volume based centroid defuzzification [13]. The
activation of the output node is yk, and Vjk's denote con-
sequent set volumes, then the general expression of de-
fuzzification is

1

1

q

j jk jkj
k q

j jkj

z c V
y

z V









 (11)

The volume Vjk is simply the area of consequent fuzzy
sets which are represented by Gaussian membership
function. From (11), the output can be evaluated as

1

1

q

j jk jkj
k q

j jkj

z c
y

z












 (12)

The signal of output node k is . ()k kS y y

3. Supervised Learning (Gradient Descent
Algorithm)

The subsethood based linguistic network is trained by
supervised learning. This involves repeated presentation
of a set of input patterns drawn from the training set. The

output of the network is compared with the desired value
to obtain the error, and network weights are changed on
the basis of an error minimization criterion. Once the
network is trained to the desired level of error, it is tested
by presenting a new set of input patterns drawn from the
testing set.

3.1 Update Equations for Free Parameters

Learning is incorporated into the subsethood-linguistic
model using the gradient descent method. A squared er-
ror criterion is used as a training performance parameter.

The squared error at iteration t is computed in the
standard way

te

2

1

1
(()

2

p
t t

k k
k

e d S y


 )t (13)

where is the desired value at output node k, and the

error evaluated over all p outputs for a specific pattern k.
Both the centers and spreads

t
kd

, ,ij jk ijc c  and jk of

antecedents and consequent connections are modified on
the basis of update equations given as follows:

1 1
t

t t t
ij ij ijt

ij

e
c c c

c
  

   


 (14)

where  is the learning rate,  is the momentum pa-

rameter, and

1t t t
ij ij ijc c c 1    (15)

3.2 Partial Derivative Evaluation

The expressions of partial derivatives required in these
update equations are derived as follows:

For the error derivative with respect to consequent
centers

1

() j jkk
k k q

jk k jk j jkj

zye e
d y

c y c z






 
   

   
 (16)

and the error derivative with respect to the consequent
spreads

1 1

2
1

()
()

k

jk k jk

q q

j jk j jk j j jk jkj j
k k q

j jkj

ye e

y

z c z z z c
d y

z

 

 


 



 


  


  

 


 (17)

The error derivatives with respect to antecedent cen-
ters and spreads involve subsethood derivatives in the
chain and are somewhat more involved to evaluate. Spe-
cifically, the error derivative chains with respect to ante-
cedent centers and spreads are given as following,

Copyright © 2010 SciRes. JILSA

Design of Hybrid Fuzzy Neural Network for Function Approximation

Copyright © 2010 SciRes. JILSA

101

1

1

()

p
j ijk

kij k j ij ij

p
j ijk

k k
k j ij ij

zye e

c y z c

zy
d y

z c











  


    

 
  

  




 (18)  

 

1 1

2

1

1 1

2

1

1

()

q q

jk jk j jk jk j jk jkj jk

q
j

j jkj

q q

jk j jk j jk jkj j
jk

q

j jkj

jk jk k

q

j jkj

c z z cy

z z

c z z c

z

c y

z

   



 








 



 










    
  




 


 




 (21)

1

1

()

p
j ijk

kij k j ij ij

p
j ijk

k k
k j ij ij

zye e

y z

zy
d y

z


  


 





  


    

 
  

  




 (19)

and
and the error derivative chains with respect to input fea-
ture spread is evaluated as

1,

n
j

ij
i i jij

z


  




  (22)

1 1

1 1

()

q p
j ijk

j kj k j ij i

q p
j ijk

k k
j k j ij i

zye e

y z

zy
d y

z


  


 

 

 

  


    

 
  

  




 (20)

The expressions for antecedent connection, mutual

subsethood partial derivatives ij

ijc




 and ij

ij






 are ob-

tained by differentiating (7) with respect to cij, σij and σi
as in (23), (24) and (25). where

 

 2

() ()
() () ()

() ()

i ij i ij
i ij i ij i ij

ij ijij

ij
i ij i ij

C s w C s w
C s w C s w

c c

c C s w

  


  

      
                    

 
 



 (23)

2

() ()
(() ()) ()

(() ())

i ij i ij
ij i i ij i ij

ij ijij

ij ij i i ij

C s w C s w
C s w C s w

C s w

   
 

   

       
                    

    
 
  





 (24)

2

() ()
(() ()) ()

(() ())

i ij i ij
ij i i ij i ij

i iij

i ij i i ij

C s w C s w
C s w C s w

C s w

   
 

   

        
                      

  





ij

 (25)

In these equations, the calculation of () /i ij ijC s w c   ,

() /i ijC s w    and i() /i ijC s w    are require

which depends on ature of overlap o

termining or learning depends on how
fin

d

 the n f the input fea-
ture fuzzy set and weight fuzzy set. The case wise ex-
pressions are demonstrated in Appendix (2).

4. Function Approximation

Function approximation involves de
the input-output relations using numeric input-output
data. Conventional methods like linear regression are
useful in cases where the relation being learnt, is linear or
quasi-linear. For nonlinear function approximation mul-
tilayer neural networks are well suited to solve the prob-

lem but with the drawback of their black box nature and
heuristic decisions regarding network structure and tun-
able parameters. Interpretability of learnt knowledge in
conventional neural networks is a severe problem. On the
other hand, function approximation by fuzzy systems
employs the concept of dividing the input space into sub
regions, and for each sub region a fuzzy rule is defined
thus making the system interpretable.

The performance of the fuzzy system
ally the sub regions are generated. The practical imita-

tion arises with fuzzy systems when the input variables
are increased and the number of fuzzy rules explodes
leading to the problem known as the curse of dimension-
ality. It is now well known that both fuzzy system and

Design of Hybrid Fuzzy Neural Network for Function Approximation 102

neural network are universal function approximators and
can approximate functions to any arbitrary degree of ac-
curacy [13,14]. Fuzzy neural system also has capability
of approximating any continuous function or modeling a
system [15-17].

There are two broad applications of function ap-
pr

sethood based linguistic network proposed in
th

e proposed model can be

oximation-prediction and interpretation. In this paper,
the work has been done on applications of function ap-
proximation related to prediction. In prediction, it is
expected that, in future, new observations will be en-
countered for which only the input values are known,
and the goal is to predict a likely output value for each
case. The function estimate obtained from the training
data through the learning algorithm is used for this
purpose.

The sub
e present paper has been tested on two different ap-

proximation problem: sine-cosine function approxima-
tion and Narazaki-Ralescu function [18].

4.1 Sine-Cosine Function

The learning capabilities of th
demonstrated by approximating the sine-cosine function
given by

(,) sin() cos()f x y x y (26)

for the purpose of training the networ

ameters that subsethood based
FN

 5,
10

k the above func-
tion was described by 900 sample points, evenly distrib-
uted in a 30 × 30 grid in the input cross-space [0, 2π] ×
[0, 2π]. The model is tested by another set of 400 points
evenly distributed in a 20 × 20 grid in the input
cross-space [0, 2π] × [0, 2π]. The mesh plots of training
and testing patterns are shown in Figure 6. For training
of the model, the centers of fuzzy weights between the
input layer and rule layer are initially randomized in the
range [0, 2π] while the centers of fuzzy weights between
rule layer and output layer are initially randomized in the
range [–1, 1]. The spreads of all the fuzzy weights and
the spreads of input feature fuzzifiers are initialized ran-
domly in range [0.2, 0.9].

The number of free par
N employs is straightforward to calculate: one spread

for each numeric input; a center and a spread for each
antecedent and consequent connection of a rule. For this
function model employs a 2-r-1 network architecture,
where r is the number of rule nodes. Therefore, since
each rule has two antecedents and one consequent, an
r-rule FNN system will have 6r + 2 free parameters.

Model was trained for different number of rules—
, 15, 20, 30 and 50. Simulations were performed with

different learning schedules given in Table 1 to study the
effect of learning parameters on the performance of
model.

0
2

4
6

8

0

2

4

6

8
-1

-0.5

0

0.5

1

xy

f(
x,

y)

(a)

0
2

4
6

8

0

2

4

6

8
-1

-0.5

0

0.5

1

xy

f(
x,

y)

(b)

Figure 6. (a) Mesh plot and rs of 900 training pat-

able 1. Details of different learning schedules used for

e Details

 counte
terns; (b) mesh plot and counters of 400 testing

T
simulation studies

Learning Schedul

LS = 0.2 η and α to 0.2 are fixed

LS = 0.1 η and α are fixed to 0.2

LS = 0.01 η and α are fixed to 0.2

LS = 0.001 η and α are fixed to 0.2

( -learning rate and  -momentum)

The root mean square error, evaluated for both training
an

d testing patterns, is given as

2()
training patterns

trn

desired actual
RMSE

number of training patterns





 (27)

2()
testing patterns

test

desired actual
RMSE

number of testing patterns





 (28)

Copyright © 2010 SciRes. JILSA

Design of Hybrid Fuzzy Neural Network for Function Approximation 103

In order to visualize the surface obtained from the test
set after training the function f(x, y) = sin(x) co
250 epochs the three dimensional plots of the functio
ge

 Function

s(y) for
n is

nerated. Figure 7 illustrates surface plots of the func-
tion and the error surface for different values of rule
counts with learning schedule as LS = 0.01. It can be
observed that a model of mere 5 rules seems to be
coarsely approximating the given function. The error is
more where the slope of the function changes in that re-
gion. Thus, increasing the number of rules generates bet-
ter approximated surface as can be observed as shown in
Figure 7. As per the observation shown in Table 2, we
can conclude that for learning schedule LS = 0.2 or
higher and with small rule count the subsethood model is
unable to train, resulting in oscillations in error trajecto-
ries shown as Figure 8. This may occur due to the im-
proper selection of learning parameters (learning rate (η)
and momentum (α)) and number of rules. But with same
learning parameters and higher rule counts like 30 and 50
rules model produces good approximation.

The observations for fuzzy neuro model drawn in the
above experiments can be summarized as the following:

1) As the number of rules increases the approximation
performance of model improves to a certain limit.

2) For higher learning rates and momentum with lower
rule counts the model is unable to learn. In contrast if the
learning rate and momentum are kept to small values a
smooth decaying trajectory is obtained even for small
rule counts.

3) In general, Model works fairly well even for simple
learning schemes by keeping the learning rate and mo-
mentum fixed to small values.

4) Most of the learning is achieved in a small number
of epochs.

4.2 Narazaki and Ralescu

The function is expressed as follows,

() 0.2 0.8(0.7sin(2)), 0y x x x x 1     (29)

 Figure 9.
proximating single

input-output function is 1-r-1, where r is the n
mploys

training and test sets generated are

and the plot of the function is shown in
The system architecture used for ap

umber of
rule nodes. The tunable parameters that model e
for this application is calculated to be as, one spread for
one input, and a center and a spread for each antecedent
and consequent connection of rule. As each rule has one
antecedent and one consequent, r rule architecture will
have 4r + 1 free parameters. The model is trained using
21 training patterns. These patterns were generated at
intervals of 0.05 in range [0, 1]. Thus, the training pat-
terns are of the form:

(0, (0)), (0.05, (0.05)), , (1, (1))y y y (30)

The evaluation was done using 101 test data taken at
intervals of 0.01. The

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 7. f(x, y) surface plot and their corresponding testing
error surface after 250 epochs for different rule counts w
learning schedu ace for 5 rul ;
(b) f(x, y) surfac ce for 15 rules;

ith
esle as LS = 0.01, (a) f(x, y) surf

e for 10 rules; (c) f(x, y) surfa
(d) error surface for 5 rules; (e) error surface for 10 rules;
(f) error surface for 15 rules; (g) f(x, y) surface for 20 rules;
(h) f(x, y) surface for 30 rules; (i) f(x, y) surface for 50 rules;
(j) error surface for 20 rules; (k) error surface for 30 rules;
(l) error surface for 50 rules

Copyright © 2010 SciRes. JILSA

Design of Hybrid Fuzzy Neural Network for Function Approximation 104

Table 2. Root mean square errors for different rule count
and learning schedules for 250 epochs

Rules LS = 0.2 LS = 0.1

 RMSEtrn RMSEtest RMSEtrn RMSE test

5 0.4306 0. 3464

10 0.1851 0.3144 0.2745 0.3239

15 0.0897 0.1125 0.1250 0.1746

30 0.0418 0.0522 0.0518 0.0615

50 0.0316 0.0323 0.0219 0.0452

Rules LS = 0.001

5928 0. 0.6210

20 0.0631 0.1518 0.0811 0.1026

LS = 0.01

 RMS RMS RMSEtrn Etest Etrn RMSEtest

5 0.3352 0.3428

10 0.

15 0.

0.4080 0.3567

1758 0.1997 0.2194 0.2783

1419 0.1516 0.2771 0.2954

20 0.0972 0.1247 0.1446 0.1432

30 0.0645 0.0735 0.1135 0.1246

50 0.0336 0.0354 0.0336 0.0354

mu ly e e. T rfor indice d J2
as d ned , us val re giv w:

tual xclusiv wo pe mance s J1 an
efi in [18] ed for e uation a en belo

1
1 100

21 training data

J
desired output

  

(31)

actual output desired output

1
2 100

101 test data

actual output desired output
J

desired output


  

(32)

Experiments were conducted for different rule counts,
using a learning rate of 0.01 and momentum of 0.01
throughout the learning procedure. Table 3 summa
th

rizes
e performance of model in terms of indices J1 and J2

for rule counts 3 to 6. It is evident from the performance
measures that for 5 or 6 rules the approximation accuracy
is much better than that for 3 or 4 rules. In general up to a
certain limit, as the number of rules grows, the perform-
ance of model improves.

Table 4 compares the test accuracy performance index
J2 for different models along with the number of rules
and tunable parameters used to achieve it. With five rules
our model obtained J1 = 0.9467 and J2 = 0.7403 as better
than all other schemes. From the above results, it can be
infer that subsethood-based FNN shows the ability to
approximate function with good accuracy in comparison
with other models.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 rules
10 rules

15 rules

20 rules

30 rules
50 rules

epochs

te
st

in
g

 e
rr

o
r

(R
m

se
)

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

epochs

te
st

in
g

 e
rr

o
r

(R
m

se
)

5 rules

10 rules

15 rules

20 rules

30 rules

50 rules

(b)

Figure 8. Error trajectories for different rules and learning
schedule (a) LS = 0.2, (b) LS = 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y(
x)

Figure 9. Narazaki-Ralescu function

Copyright © 2010 SciRes. JILSA

Design of Hybrid Fuzzy Neural Network for Function Approximation

Copyright © 2010 SciRes. JILSA

105

Table 3. Subsethood based FNN performance for Na-
razaki-Ralescu’s function

Number
of Rules

Trainable
Parameter

Training
Accuracy

(J1%)

Testing
Accuracy

(J2%)

3 13 2.57 1.7015

4 17 1.022 0.7350

5 21 0.9468 0.7403

6 25 0.6703 0.6595

Table 4. Performance comparison of subsethood based F
with other methods for Narazaki-Ralescu’s function

Methods and
reference

Number
of rules

Trainable
Parameters

Testing
Accuracy

(J2%)

NN

FuGeNeS 0.856 ys [19] 5 15

Lin and Cunning-
ham III [20]

4 16 0.987

Narazaki and
Ralescu [18]

Subsetho

sed

Na 12

od ba
N

Subsethood based
FNN

5 1

3.19

FN
3 13 1.7015

2 0.7403

5. C clusion

In th per the osed sub d based u-
al Network model has now proved to be a universal

approximation problem empirically. The applications
func at iv ncl o-
main s, eco c nin
ing ing a image c pression.
work aut e conce ts of fuzzy neural
function approximator in image com ssion.

REFERENCES

[1] . S. G. Lee, “Neural-Netw
Fu gic Control d Decisio stem,” I ns-
actions on Computers, Vol. 40, No. 12, 1991, pp. 1320-

. R. Yager and H. Tahani, “Neura

sterms, Vol.

[6] S. Mitra and layer Perceptron,
Inferencing and Rule EE Transactions on

 Interpretability-Accuracy Representation,” IEEE

vel Online Neu-

al Networks,

, Vol. 1,
No. 1, 1992, pp. 32-45.

on s

is pa prop sethoo Fuzzy Ne
r

Lin

function approximator. The model is tested on two dif-
ferent applications and found suitable for any function

of
[14] K. Hornik, “Approximation Capabilities of Multilayer

Feed forward Networks are Universal Approximators,”
IEEE Transaction on Neural Networks, Vol. 2, No. 5, tion approxim ion are d

nomics,
erse and i

ontrol, plan
ude the d
g, forecaof physic st-

, machine learn nd om
p

 In future

1989, pp. 359-366.

[15] B. Kosko, “Fuzzy Systems as Universal Approximators,”
IEEE Transactions on computers, Vol. 43, No. 11, 1994, hors shall incorporat

pre

 C. T. Lin and C
zzy Lo

ork-B
EEE Tra

ased

Systems, Vol. 3, No. 2, 1995, pp. 169-189.

[17] L. X. Wang and J. M. Mendel, “Generating Fuzzy Rules
from Numerical Data, with Application,” Technical Re-
port 169, USC SIPI, University of Southern California,
Los Angeles, January 1991.

 an n Sy

1336.

[2] J. M. Keller, R l Net- [18] H. Narazaki and A. L. Ralescu, “An Improved Synthesis
Method for Multilayered Neural Networks Using Qualita-
tive Knowledge’s,” IEEE Transactions Fuzzy Systems,
Vol. 1, No. 2, 1993, pp. 125-137.

work Implementation of Fuzzy Logic,” Fuzzy Sets and
Systems, Vol. 45, No. 5, 1992, pp. 1-12.

[3] S. Horikawa, T. Furuhashi and Y. Uchikawa, “On Fuzzy
Modeling Using Fuzzy Neural Networks with the Back
Propagation Algorithm,” IEEE transactions on Neural
Networks, Vol. 3, No. 5, 1992, pp. 801-806.

[4] D. Nauck and R. Kruse, “A Neuro-Fuzzy Method to
Learn Fuzzy Classification Rules from Data,” Fuzzy Sets
and Systems, Vol. 89, No. 3, 1997, pp. 277-288.

[5] J. S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy
Inference System,” IEEE Transactions on Sy
23, 1993, pp. 665-685.

S. K. Pal, “Fuzzy Multi
Generation,” IE

Neural Networks, Vol. 6, No. 1, 1995, pp. 51-63.

[7] W. L. Tung and C. Quek, “A Mamdani-Takagi-Sugeno
Based Linguistic Neural-Fuzzy Inference System for Im-
proved
International Conference on Fuzzy Systems, Jeju Island,
August 2009, pp. 367-372.

[8] W. L. Tung and C. Quek, “eFSM-A No
ral-Fuzzy Semantic Memory model,” IEEE Transactions
on Neural Networks, Vol. 21, No. 1, 2010, pp. 136-157.

[9] P. K. Simpson, “Fuzzy Min-Max Neural Networks-Part 1:
Classification,” IEEE Transactions on Neur
Vol. 3, No. 5, 1992, pp. 776-786.

[10] P. K. Simpson, “Fuzzy Min-Max Neural Networks-Part 2:
Clustering,” IEEE Transaction on Fuzzy Systems

[11] R.-J. Wai and Z.-W. Yang, “Adaptive Fuzzy Neural Net-
work Control Design via a T-S Fuzzy Model for a Robot
Manipulator Including Actuator Dynamics,” IEEE Trans-
actions on System, Man and Cybernetics-Part B, Vol. 38,
No. 5, 2008, pp. 1326-1346.

[12] P. Sandeep and S. Kumar, “Subsethood Based Adaptive
guistic Networks for Pattern Classification,” IEEE

Transaction on System, man and cybernetics-part C: ap-
plication and reviews, Vol. 33, No. 2, 2003, pp. 248-258.

[13] B. Kosko, “Fuzzy Engineering,” Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1997.

pp. 1329-1333.

[16] C. T. Lin and Y. C. Lu, “A Neural Fuzzy System with
Linguistic Teaching Signals,” IEEE Transactions Fuzzy

[19] M. Russo, “FuGeNeSys-a Fuzzy Genetic Neural System
for Fuzzy Modeling,” IEEE Transactions Fuzzy Systems,
Vol. 6, No. 3, 1993, pp. 373-388.

[20] Y. Lin and G. A. Cunningham, “A New Approach to
Fuzzy-Neural System Modeling,” IEEE Transactions
Fuzzy Systems, Vol. 3, No. 2, 1995, pp. 190-198.

Design of Hybrid Fuzzy Neural Network for Function Approximation106

Appendix

1. Expressions for ()C s wi ij

The expression for cardinality can be evaluated in terms
of the standard error function erf (x) given in (8). The

ij

case wise expressions for ()i ijC s w for all four possi-

bilities identified in Section (2.2) are as follows.
Case 1— i ijC C : If i  , the signal fuzzy set is

d the completely belongs to weight fuzzy set , an

)

 the

(iC s
ijw

cardinality ()i ijC s w 

2(()/)() ()

[() ()]
2

i ix c
i ij i

i

C s w C s e dx

erf erf






 



  

   



.

 (33)

,) if j

i

Similarly w () (i ij ijC s w C i i  and

()i ij ijC s w    . If j i i  , the two

identical. Summarizing these three sub cases, the values
of cardinality can be shown as (34).

fuzzy sets are

.() ,

ij

j ij i ijC s

()

() ,

() ,

()

i ij

i i i ij

ij i ij

i i i

C s w

C s if

C w if

C w if

   

   

    

 

  
  

   

(34)




Case 2— i ijC C , i ij  : In this case there will be

exactly one cross over point h1. Assuming , the

cardinality (valuated as
ij ic c

)j can be ei iC s w

 

 

2 21

1

(()/) (()/)

1

11
2

i
i

i

h c
erf




 
      

()

1
2

ij ij i i
h x c x c

i ij h

ij

i
ij

C s w e dx e dx

h c
erf

 




   


  

  
   

    


 

 

 (35)

If , the expression for cardinality ij ic c ()i ijC s w

is
221

1

(()/)(()/)() ij iji i
h x cx c

i ij h
C s w e dx e dx

    


   

 11
2

i
i

i

h c
erf




  
       

 1
1

2

ij

i
ij

h c
erf




  
   

    
 (36)

Case 3— i ijC C , i ij  : In this case, there will be

two crossover points h1 and h2, as calculated in (5) and
(6). Assuming h h1 2 and c ij i

()i ijC s w

c , the cardinality

 can be evaluated as

 

 

 

 

1
2

2
2

1

2

2

(()/)

(()/)

(()/)

1

2

1

()

1
2

2

2

i i

ij ij

i i

x c
i ij

h x c

h

x c

h

i
i

i

i
i

ij

ij
ij

ij

ij

C s w e dx

e dx

e dx

h c
erf

h c
erf

h c
erf

















 



 

  

 





11 ih c
erf



h

  
       

  
       

  
  

   
 
 

  







 (37)

if ij ic c , the expression for is identical to

(3

()C s w i ij

7).
Case 4— i ijC C , i ij  : This case is similar to

case 3 and once a ere wil cross over points
s calculated in (5) and (6

gain th l be two
h1 and h2, a). Assuming 1 2h h ,

evalu-and can be

ated as

x

x

ij ic c , the cardinality ()i ijC s w

1 2(()/)
() ji ji

h
x c

i ijC s w e dx
 



  

22

1

(() /)i i
h x c

h
e d 

2

2

(() /)ij ix c

h
e d

  

 1
1

2

ij

ij
ij

h c
erf




  
   

    

 1
1

2

ij

ij
ij

h c
erf




  
   

    

Copyright © 2010 SciRes. JILSA

Design of Hybrid Fuzzy Neural Network for Function Approximation 107

 2

2
i

i
i

h c
erf




  
      

 1 i

i

h c
erf



 
    

 (38)

if , the expression for is identical to

(38).
Corresponding expressions for

ij ic c ()i ijC s w

()i ijs w 

of C s 

 are ob-

tained by substituting the values from

(34)-(38) to (7).

2. Expressions for ij ,

()i ijw

() /i ijC s w c  

ij() /i ijC s w    and ()i iC s w /j i  

As per the discussion in the Section (3.2) tha
lation of ij , ij

t, the calcu-
() /i ijC s w c   () /i ijC s w    and

() /i wij iC s    is required in (2 25),

which de nds on the nature of fore the
case w

3), (24) and (

pe overlap. There
expressions are given as followi

: As
ise ng:

Case 1 — i ij is evident from (34),

()i ijC s w is independent from cij, and therefore,

C C

(iC s w 
 (39)

)
0ij

ijc




Similarly the first derivative of (34) with respect to σij
and σi is shown as (40) and (41).

() ,

0,

i ij ij i ij i

ij ij i ij i

C s w if c c and

if c c and

  
  

    
  

 (40)

0,()

,

ij i ij ii ij

i ij i ij i

if c c andC s w

if c c and

 

   

    
  

 (41)

Case 2— ji iC C , j i i 

() /j ijc ,

 : when val-

ues of ij

ij ic c

()i ijw

, the

i iC s w  /C s    and

() /j ii iwC s    are derived by diff (3erentiating 5) as

follows :

2
1

2

1

2)/)1

2
1

(() /)

(()/)

((

)/)

()
ij ij

i i

ij ij

ij ij

h x ci ij

ij ij

x c

h
ij

h x c

ij

h c

C s w
e dx

c c

e dx
c

e dx
c

e







 



  

 



  


 









 







 (42)

(( 



2
1 (()()

ij
h x ci ij

ij ij

C s w
e d

 
 



  


 

2

1

2
1

/)

(()/)

(() /)

1 1

ij

i i

ij ij

x c

h
ij

h c

ij

ij

x

e dx

er








  

 






  1 ijh c
e




2 ij

h c
f




  




 (43)

       

2
1 (()/)()

ij ij
h x ci ij

i

C s w
e dx



 
 



  


 
2

1

(()/)i i

i

x c

h
i

e dx


  




2)/)i1((1 ih ci

i

i

h c
e





 


1 1
2

ih c
erf

   
   







 

 (44)

when ij ic c , the values of ,

ij

() /i ijC s w c   ij

()i ijw /C s    and ()i iC s w /j i   are derived

by differentiating (36) as follows :

21

2

1

2

(()/)

(()/)

ij ij

ij ij

x c

ij

x c

h

e d

e dx





 

  

1

2
1

(()/)

(() /)

()
i i

ij ij

hi ij x c

ij ij

h

ij

h c

C s w
e dx

c c

x
c

c

e





 





 

  


 















 

 (45)

21

2

1

2
1

(() /)

(()/)

(()/)1

1

()

1
2

i i

ij ij

ij ij

hi ij x c

ij ij

x c

h
ij

h cij

ij

ij

ij

C s w
e d

e

h c
e

h c
erf







 








 



  

 

  


 







 

x

dx

  
       




 (46)

21 (()/)()
i i

hi ij x c

i i

C s w
e d

 
 



  


  x

2

1

(()/)ij ijx c

h
i

e d



  


 x

Copyright © 2010 SciRes. JILSA

Design of Hybrid Fuzzy Neural Network for Function Approximation 108

2
1(()/)1 i ih ci

i

h c
e 


 

 

1 1
2

i

i

h c
erf




  
   

  


 (47)

Case 3— j , ji iC C i i 

those of Ca

) /i ijw c

: once again, two sub

cases arise se 2. When

the values of i

 similar to

(C s 

 ij ic c ,

ijj , () /i ijC s w    and

()i iC s w /j i   are derived by differentiating (36) as

follows:

21

2
2

1

2

2

2
2

1

1(()/)ij ij

h
ij

h c

c

e
 



 



2
2

2

(()/)

(() /)

(()/)

(()/)

(()/)

()
i i

ij ij

i i

ij ij

ij ij

hi ij x c

ij ij

h x c

h
ij

x c

h
ij

h x c

h c

C s w
e dx

c c

e dx
c

e dx
c

e dx

e











 



 

  

 

 

  


 






















 (48)

 

21

2
2

1

2

2

2
2

1

2
1

2
2

(()/)

(()/)

(() /)

(()/)

(()/)1

(()/)2

1

()

2

i i

ij ij

i i

ij ij

ij ij

ij ij

hi ij x c

ij ij

h x c

h
ij

x c

h
ij

h x c

h
ij

h cij

ij

h cij

ij

ij

ij

C s w
e d

e

x

e dx

e dx

h c
e

h c
e

h c
erf













 














 



 

  

 

 

 

  


 






















 
 











 

dx

2 ij

ij

h c
erf




 

 
 
 

   (49)

21 (()/)()
i i

hi ij x c

i i

C s w
e dx

2
2

1

(()/)ij ij
h x c

h
i

e d



 


 x

2

2

(()/)i ix c

h
i

e 


  


 dx

2
1 (()/)j i

h x c

i

e dx





 




 

2(() /)j ix c
e dx

  


2h
i


2

1(()/)1 i ih cih c
e  

i



2
2(()/)2 i ih ci

i

h c
e 


 



 1 1
2

i

i

h c
erf




           

 2
1

ij

ij

h c
erf



           
.

Similarly, if

 (50)

ij ic c

21

2
2

1

2

2

2
2

1

2
2

2
1

(()/)

(() /)

(()/)

(()/)

(()/)

(()/)

()
i i

ij ij

i i

ij ij

ij ij

ij ij

hi ij x c

ij ij

h x c

h
ij

x c

h
ij

h x c

h
ij

h c

h c

C s w
e d

c c

e d
c

e d
c

e d
c

e

e













 



 

  

 

 

 

x

x

x

x

  


 
















 











 (51)

Thus for both the cases , identical

expressions for

(ij ic c

() /i ij ijw c

or)ij ic c

C s  

 for

 are Simi-

larly, the ex ij

obtained.

()i ijwpressions /C s    and

() /i ijC s w i   also remain same as (49) and (50)

respectively in both the conditions.
Case 4— i iC C j , i ij 

) /j ijc

: When , the val-

ues of

ij ic c

(i iC s w   , (C s) /i ijw ij   and

()i iw /j iC s    are derived by di ingfferentiat (38)

as :



 
 



  


 
2

1 (()/)()
ij ij

h x ci ij

ij ij

C s w
e d

c c
 



  


  x

Copyright © 2010 SciRes. JILSA

Design of Hybrid Fuzzy Neural Network for Function Approximation

Copyright © 2010 SciRes. JILSA

109

2
2

1

(()/)j i
h x c

h
ij

e d
c

 




 

 

2
1

22

1

2

2

2
1

2
2

(()/)

(()

x

 (52)

2
1(()/)ij ijh c

e
  
2

2(()/)ij ijh c
e

 

 

 

2)1

2

1

2

2

2
1

2
1

(()/

(()/)

(()/)

(()/)1

(()/)2

1

2

()

2
2

ij ij

i i

ij ij

ij ij

ij ij

h x ci ij

ij ij

h x c

h
ij

x c

h
ij

h cij

ij

h cij

ij

ij

ij

ij

C s w
e dx

e dx

e dx

h c
e

h c
e

h
erf

h c
erf









 














 



 

  

 

 

  


 

















  
  

   

 


 











 (53)

2

ijc 




/)

(()/)

(()/)1

(() /)2

2

2

()

2

ij ij

i i

ij ij

i i

i i

h x ci ij

i i

h x c

h
i

x c

h
i

h ci

i

h ci

i

i

i

ij

ij

C s w
e dx

e dx

e dx

h c
e

h c
e

h c
erf

h c
erf









 














 



 

  

 

 

  


 
















           

      
 







 

 (54)

If ij ic c , the expressions for ij ,

ij

() /i ijC s w c  

()i ijw /C s    and ()i ijC s w / i   are again the

same as (52), (53) and (54) respectively.

J. Intelligent Learning Systems & Applications, 2010, 2: 110-118
doi:10.4236/jilsa.2010.22014 Published Online May 2010 (http://www.SciRP.org/journal/jilsa)

Copyright © 2010 SciRes. JILSA

Implementation of Adaptive Neuro Fuzzy
Inference System in Speed Control of Induction
Motor Drives

K. Naga Sujatha, K. Vaisakh

Department of Electrical Engineering, AU College of Engineering, Andhra University, Visakhapatnam, India.
Email: vaisakh_k@yahoo.co.in

Received December 18th, 2009; revised January 6th, 2010; accepted January 15th, 2010.

ABSTRACT

A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable
speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of motor drive system
and the motor speed can accurately track the reference signal. ANFIS has the advantages of employing expert knowl-
edge from the fuzzy inference system and the learning capability of neural networks. The various functional blocks of
the system which govern the system behavior for small variations about the operating point are derived, and the tran-
sient responses are presented. The proposed (ANFIS) controller is compared with PI controller by computer simulation
through the MATLAB/SIMULINK software. The obtained results demonstrate the effectiveness of the proposed control
scheme.

Keywords: ANFIS Controller, PI Controller, Fuzzy Logic Controller, Artificial Neural Network Controller, Induction

Motor Drive

1. Introduction

Over the last three decades, variable speed drives are the
most complex of all power electronic systems. Drive
technology has been a confluence of many professionals
from other fields, such as electrical machines, control
systems and traditional power engineering. To a tradi-
tional power electronics engineer with expertise in the
design of, such as thyristor phase-controlled converters,
switching mode power supplies, or uninterruptible power
supply systems, the technology is incomprehensible be-
cause of its complexity and multidisciplinary characteris-
tics.

Modern variable speed drive applications require stee-
ples control and suitable dynamic response and accuracy.
These considerations have been met to a large extent in
the past decade by thyristor-controlled dc machines.
However, the dc machine remains expensive in relation
to the types of rotating machines. For the higher power
drives in industries, the lighter, less expensive, reliable
simple, more robust and commutator less induction mo-
tors are desirable and these motors are being applied to-
day to a wider range of applications requiring variable

speed. Unfortunately, accurate speed control of such
machines by a simple and economical means remains a
difficult task. With the development of the silicon-
controlled rectifier, triac and related members of the thy-
ristor family, it has become most feasible to design vari-
able-speed induction motor drives for a wide variety of
applications. Different techniques have been used, using
SCR controllers. A back-to back connected SCR’ are
used in series with the rotor phases to control their effec-
tive impedance [1-4]. A chopper-controlled external re-
sistance is used to control the speed by varying the duty
cycle of the chopper. A controlled rectifier is used in the
rotor circuit to feed the external resistance, and by vary-
ing the firing angle, the effective rotor impedance is con-
trolled.

Generally, variable speed drives for Induction Motor
(IM) require both wide operating range of speed and fast
torque response, regardless of load variations. This leads
to more advanced control methods to meet the real de-
mand. Very recently, the artificial intelligence tools, such
as expert system, fuzzy logic and neural network are
showing impact on variable frequency drives.

Implementation of Adaptive Neuro Fuzzy Inference System in Speed Control of Induction Motor Drives 111

They are applied to important fields such as variable
speed drives, control systems, signal processing, and sys-
tem modeling. Artificial Intelligent systems, means those
systems that are capable of imitating the human reasoning
process as well as handling quantitative and qualitative
knowledge. It is well known that the intelligent systems,
which can provide human like expertise such as domain
knowledge, uncertain reasoning, and adaptation to a noisy
and time-varying environment, are important in tackling
practical computing problems. ANFIS has gain a lot of
interest over the last few years as a powerful technique to
solve many real world problems. Compared to conven-
tional techniques, they own the capability of solving prob-
lems that do not have algorithmic solution. Neural net-
works and fuzzy logic technique are quite different, and
yet with unique capabilities useful in information process-
ing by specifying mathematical relationships among nu-
merous variables in a complex system, performing map-
pings with degree of imprecision, control of nonlinear
system to a degree not possible with conventional linear
systems [5-11]. To overcome the drawbacks of Neural
networks and fuzzy logic, Adaptive Neuro-Fuzzy Infer-
ence System (ANFIS) was proposed in this paper. The
ANFIS is, from the topology point of view, an implemen-
tation of a representative fuzzy inference system using a
Back Propagation neural network structure.

The purpose of this paper is to present a general
method for estimating both the nature of the dynamic
response and the values of the significant parameters and
operating constraints of typical induction machines con-
trolled by SCR controllers [12,13]. The dynamic behav-
ior of a closed-loop speed-control system with delta-
connected SCR’s in the rotor is discussed. The various
functional blocks of the feedback system which governs
the system behavior for small variations about the oper-
ating point are derived, and responses for speed perturba-
tions are obtained analytically and simulated.

2. State Space Approach
A Set of nonlinear differential equations can describe the
behavior of the induction motor [14-16]. If a complete
solution of the dynamic behavior of the induction ma-

chine is desired, these equations must be solved in detail.
By linerarizing these questions about a steady state oper-
ating condition, the resulting equations in state form can
describe the dynamics, and provide the future state and
output of the system.

Perturbations in reference voltage or firing angle and
load torque leads to changes in rotor speed. The analyti-
cal results used to investigate these speed changes are
obtained considering the various previous functional
blocks, where the different input and output variables are
denoted by X1, X2, X3 and X4. These variables are defined
as follows:

X1 = , X2 = V, X3= Vc and X4 =  (1)

The differential equations, which govern the small
variations about the operating point, are written in terms
of the above variables and representing in matrix form in
Equation (2), where

 1 2 3 4

T
X x x x x , =    TL Ru T V   1 2

T
u u

3. System Description

The system consists of a slip-ring induction motor with
three equal external resistances, each connected to the
rotor phase and three delta-connected phase-controlled
SCR's placed at the open star point of the rotor as shown
in Figure 1.

In variable speed ac induction motor drives, a con-
tinuous monitoring or control of slip speed or slip fre-
quency is required. A permanent magnet tachogenerator
is mounted on the rotor shaft to provide a dc signal pro-
portional to the rotor speed to the feedback control cir-
cuit.

The block diagram of the feedback control scheme of
the induction motor is shown in Figure 2.

The induction motor stator is supplied with constant
voltage, constant frequency supply. The rotor speed is
controlled and adjusted by advancing or retarding the
firing angle  of the SCRs. The tachogenerator output
voltage proportional to the rotor speed and is compared

5 4

1 11

1 12 2

3 3 21 2 2 2

24 41 2 1

3

3 3

1
0 0

0
1

0 0
0 0

00 0

0 01
0 0

G G

G G G G

G

L

R

K K K K

T T T K

Tx xK

T Tx x T

x x KK K K K
Tx xT T T

K

T T

  
  

                  
V

                                       
    

 






 (2)

Copyright © 2010 SciRes. JILSA

Implementation of Adaptive Neuro Fuzzy Inference System in Speed Control of Induction Motor Drives 112

3 Phase
Supply

 T
o T

rigger
C

ircuit

Rex

a
T1Rex

Figure 1. Schematic diagram of phase controlled SCR’s in delta (Δ) configuration

Figure 2. Block diagram of feedback system

with a fixed dc level RV which represents the set speed.

The error voltage is forwarded to the controller. The set
peed is changed by varying RV automatically or manu-

ally. The controller may be a proportional, or propor-
tional integral or proportional integral derivation type.
The function of the controller is to give the required con-
trol voltage which will adjust the firing angle to the suit-
able value and can be used also as a stabilizing signal if
more than one controller is used.

The simulink block diagram of feedback control
scheme of the induction motor is shown in Figure 3.

Transfer functions for the functional blocks:
The transfer functions for the various functions blocks

of the feedback system are shown in Figure 4, and given
in details as follows:

1) Tachogenerator and filter: The transfer function of
this block is represented by:

  1
1

11

K
G s

ST



 (3)

where 1K is the combined gain of the tachogenerator

and the associated filter, and is the effective time

constant of the filter.
1T

2) Controller: The change in the output voltage of the
tachogenerator is compared with the reference voltage

RV and the resultant error voltage is fed to the controller.

The controller output voltage is corrected in accordance

with the input change in voltage. The change in the con-
troller output voltage is denoted as . The transfer

function of the proportional integral controller is:
cV

  2
1

2

(1)2K ST
G s

ST


 (4)

3) Firing Circuit: The firing circuit decides the change
in firing angle in accordance with the change in control
voltage . It consists of a ramp generator and a com-

parator. The ramp is synchronized with the signal avail-
able across the slip-rings of the machine. For a given
change in the control voltage , the change in firing

angle is given by:

cV

cV

1
cV

m
   (5)

where m is the slope of the ramp. For the present study,
the firing circuit transfer function can be written as

  3
3

31

K
G s

ST



 (6)

where 3K

is equal to l/m, and the time constant is equal

to one half of the maximum expected delay. If the slip of
the rotor at the operating point is s, then the time constant

 is given by: 3T

3

1

2 3
T

s f


  
 (7)

c T2

b

Rex

T3

_

TACHO
GENERATOR

REF.VOLTAGE

SLIP RING

ROTOR

+

ERROR SIGNAL

CONTROL
VOLTAGE

cV

SLIP RING
I.M

DELTA
CONNECTED

SCR’s

FIRING
CIRCUIT

P/PI/PID
CONTROLLER

“ ”
FIRING
ANGLE

RV

3-PHASE SUPPLY



Copyright © 2010 SciRes. JILSA

Implementation of Adaptive Neuro Fuzzy Inference System in Speed Control of Induction Motor Drives

 JILSA

113

Figure 3. The simulink block diagram of feedback control scheme of the induction motor drive

Figure 4. Functional blocks of closed-loop system

4) Induction Motor: The torque developed by the ma-
chine at a given operating point is a function of speed of
the machine and the firing angle of the thyristors. The
difference between the developed torque and the load
torque is applied to the rotating elements. The torque
developed by the machine is presented by

(,)dT F   (8)

where  is the rotor speed in rad/sec, and  is the
firing angle.

For the dynamic behavior of the induction machine
about any operating point for a given perturbation, the
small change in the developed torque can be represented
in terms of the small changes in rotor speed and firing
angle as:

tan
tan

d
d

d

T
T

T
cons t

cons t




 


 

  
 

 (9)

or

4 5dT K K      (10)

The constants 4K and 5K depend upon the operat-

ing point and are to be obtained from the steady-state
characteristics of the system.

The resultant change in the developed torque is repre-
sented as the summation of the outputs of the two blocks
(4) and (5). The change in the developed torque is com-
pared with the change in load torque and the resultant
value is forwarded to the mechanical system, whose
transfer function can be expressed as:

 
1

G
m

G

K
G s

ST



 (11)

where GK =
1

F
and = GT

J

F

(6)

(5)

(4) (2) (3)

dT

_
+

RV

SPEED 

CHARACT.

I.M.TECH
T

_

ELECTRICAL
TORQUE

“ ” FIRING
ANGLE cV

ERROR
SIGNAL

2 2

2

(1)K ST

ST

 3

31

K

ST
 4

d

c

T
K

 


5
d

c

T
K

 


1
G

G

K

ST

1

11

K

ST

+

LT

+
(1)

-K

-K

Switch
 S1

Scope

-

Gain

Gain

-

+
PI Controller

ANFIS Con-
troller

Without any controller

Transfer
Function

+

Transfer
Function Transfer

Function

Step

Step

+

Copyright © 2010 SciRes.

Implementation of Adaptive Neuro Fuzzy Inference System in Speed Control of Induction Motor Drives 114

F is the frictional constant in N.m/rad/s, and J is the

moment of inertia of the rotating system in 2mGK  .

4. ANFIS Based Speed Controller

Artificial Intelligent tools such as Fuzzy Logic and Arti-
ficial Neural Networks have shown great potential on
variable frequency drives. Artificial Neural Networks are
concerned with adaptive learning, nonlinear function
approximation, and universal generalization; fuzzy logic
with imprecision and approximate reasoning [17,18]. But
they share some common shortcomings that hinder them
from being used more widely. For example, neural net-
works, often suffer from a slow learning rate. This draw-
back renders neural networks less than suitable for time
critical applications. Therefore, new and enhanced meth-
ods can be put forward.

The fuzzy neural network is constructed to merge
fuzzy inference mechanism and neural networks into an
integrated system so that their individual weaknesses are
overcome. The ANFIS system determines a control ac-
tion by using a neural network which implements a fuzzy
inference. In this way, the prior expert’s knowledge can
be incorporated easily. The controller has two states, a
learning state and a controlling state. In the learning state,
the performance evaluation is carried out according to
the feedback which represents the process state. If in-
put-output training data is available, the performance can

be assessed easily, and supervised learning can be em-
ployed.

5. Adaptive Neuro-Fuzzy Principle

The fuzzy inference commonly used in ANFIS is first
order Sugeno fuzzy model because of its simplicity,
high interpretability, and computational efficiency, built-
in optimal and adaptive techniques. A typical architec-
ture of an ANFIS is as shown in Figure 5. Among
many FIS models, the Sugeno fuzzy model is the most
widely applied one for its high interpretability and
computational efficiency, and built-in optimal and adap-
tive techniques. For a first order Sugeno fuzzy model, a
common rule set with two fuzzy if-then rules can be
expressed as:

Rule 1: if x is A1 and y is B1, then z1 = p1x + q1y + r1

Rule 2: if x is A2 and y is B2, then z2 = p2x + q2y + r2

where Ai and Bi are the fuzzy sets in the antecedent, and
pi, qi and ri are the design parameters that are determined
during the training process.

Layer 1: Every node in this layer contains member-
ship functions.

 1 , 1, 2
ii Ao x i  (12)

 
2

1 , 3, 4
ii Bo y i


  (13)

where
iA and

iB can adopt any fuzzy membership

function (MF).

Figure 5. Adaptive neuro fuzzy structure

z

Controlled
output

y

Input2

x

input1



Fuzzification Inference entgne Defuzzification

Layer 1
Input layer

iw

i

iw

i

A

B

Layer 2
Fuzzfier layer
Input layer

Layer 3
Inference layer
Input layer

Layer 4
Defuzzifler layer
Interence layer
Input layer

Copyright © 2010 SciRes. JILSA

Implementation of Adaptive Neuro Fuzzy Inference System in Speed Control of Induction Motor Drives 115

Layer 2: This layer chooses the minimum value of

two input weights.

   2 , 1,2
i ii i A Bo w x y i    (14)

Layer 3: Every node of these layers calculates the
weight, which is normalized.

3

1 2

, 1,2i
i i

w
o w i

w w
  


 (15)

where iw is referred to as the normalized firing

strengths.
Layer 4: This layer includes linear functions, which

are functions of the input signals.
4 (),i i i i i i io w z w p x q y r i    1, 2 (16)

where iw is the output of layer 3, and {pi, qi, ri} is the

parameter set. The parameters in this layer are referred to
as the consequent parameters.

Layer 5: This layer sums all the incoming signals.
2

5 1 1 2 2

1 1 2
i i i

i

w z w z
o w z

w w


 

 (17)

The output z in Figure 5 can be rewritten as:

     
     

1 1 1 1 1 1

2 2 2 2 2

z w x p w y q w r

w x p w y q w r

  

   2

 (18)

In this paper the normalized membership functions of
input variables and output variable are shown in Figures
6 and 7. The Three-dimensional plot of Fuzzy Control
surface is shown in Figure 8.

6. Simulation Results

In this paper, performance of the proposed ANFIS speed
controller is evaluated and is compared with PI controller
and without any controller. The controller parameters are
chosen to optimize the performance criterion of the dy-
namic operation, and then the tuning was empirically
improved. The simulation is carried out to observe the
performance of the system at different load perturbations.

Figure 6. Triangular membership functions for input
variables e and e

Figure 7. Triangular membership functions for output
variable

Figure 8. Three-dimensional plot of control surface

The software environment used for this simulation is
Matlab ver. 7.1, with simulink package.

The change in rotor speed is due to the perturbations in
reference voltage or firing angle and load torque. The
analytical results used to investigate these speed changes
are obtained considering the various previous functional
blocks, where the different input and output variables are
denoted by X1, X2, X3 & X4. The differential equations
which govern the small variations about the operating
point in terms of above variables are given in Equation
(2).

The perturbation studies were carried out at different
operating points with different system parameters (gains
and time constants) which are given in Appendix. Studies
are carried out at operating points with various system
parameters (gains and time constants). The simulation
results give the present perturbation study for step
change in the load torque and reference voltage. From
the Figures 9 to 11 the starting transients are realized for
ANFIS controller at different operating conditions. It can
be observed from the figures that the performance of the
ANFIS gives better response compared with PI controller
and without any controller.

7. Conclusions

A framework for tuning and self organizing ANFIS con-
troller has been presented. This approach has been con-

Copyright © 2010 SciRes. JILSA

Implementation of Adaptive Neuro Fuzzy Inference System in Speed Control of Induction Motor Drives 116

trasted without any controller and with PI controller. The
dynamic behavior of a closed-loop, variable speed induc-
tion motor drive which uses three silicon controlled rec-
tifiers has been studied in this paper. Transfer function
blocks of the system for small variations about an oper-

ating point are derived, and the transient responses with
the analytical studies have been carried out. Comparison
of ANFIS controller, without any controller and with PI
controller under normal operation for a given load torque
and reference speed perturbations has been presented. It

Figure 9. Variation of speed deviation at 5% load change

Figure 10. Variation of speed deviation at 10% load change

Copyright © 2010 SciRes. JILSA

Implementation of Adaptive Neuro Fuzzy Inference System in Speed Control of Induction Motor Drives 117

Figure 11. Variation of speed deviation at 15% load change

has been demonstrated that the proposed method gives a
good response, regardless of parameter variations or ex-
ternal force. Simulation results have shown the capabili-
ties of the proposed controller in tracking predetermined
desired speed trajectory.

REFERENCES
[1] R. P. Basu, “A Variable Speed Induction Motor Using

Thyristors in the Secondary Circuit,” IEEE Transactions
on Parer Apparatus and Systems, Vol. 90, 1971, pp.
509-514.

[2] M. Ramamoorthy and M. Arunachalam, “A Solid-State
Controller for Slip Ring Induction Motors,” The IEEE
Industry Applications Society Annual Meeting, Los An-
geles, California, October 2-6, 1977.

[3] M. Ramamoorthy and M. Arunachalam, “Dynamic Per-
formance of a Closed Loop Induction Motor Speed Con-
trol System with Phase-Controlled SCR's in the Rotor,”
IEEE Transactions on Industry Applications, Vol. 15, No.
5, 1979, pp. 489-493.

[4] Y. Hsu and W. Chan, “Optimal Variable-Structure Con-
troller for DC Motor Speed Control,” IEEE Proceedings
D on Control Theory and Applications, Vol. 131, No. 6,
1984, pp. 233-237.

[5] B. S. Zhang and J. M. Edmunds, “On Fuzzy Logic Con-
trollers,” IEEE International Conference on Control, Ed-
inburg, UK, 1991, pp. 961-965.

[6] H. Ying, W. Siler and J. J. Buckley, “Fuzzy Control The-
ory: A nonlinear Case,” Automatica, Vol. 26, No. 3, 1990,
pp. 513-520.

[7] D. Dirankov, H. Hellendorn and M. Reinfrank, “An In-
troduction to Fuzzy Control,” Springer-Verlag, New
York, 1993.

[8] M. Maeda and S. Murakami, “A Self-Tuning Fuzzy Con-
troller,” Fuzzy sets and Systems, Vol.51, No. 1, 1992, pp.
29-40.

[9] T. J. Procyk and E. H. Mamdani, “A Linguistic Self-
Organizing Process Controller,” Automatica, Vol. 15, No.
1, 1979, pp. 53-65.

[10] R. Storn and K. Price, “Differential Evolution-A Simple
and Efficient Adaptive Scheme for Global Optimization
over Continuous Spaces,” ICSI Technical Report, March
1995.

[11] D. Karaboga and S. Okdem, “A Simple and Global Op-
timization Algorithm for Engineering Problems: Differ-
ential Evolution Algorithm,” Turk Journal of Electrical
Engineering, Vol. 12, No. 1, 2004, pp. 53-60.

[12] D. Borojevic, L. Garces and F. Lee, “Performance Com-
parison of Variable Structure Controls with PI Control for
DC Motor Speed Regulator,” IEEE Industry Applications
Conference, 1984, pp. 395-405.

[13] J. Zhao and B. K. Bose, “Evaluation of Membership
Functions for Fuzzy Logic Controlled Induction Motor
Drive,” IEEE 2002 28th annual Conference of the Indus-
trial Electronics Society, Vol. 1, 2002, pp. 229-234.

[14] A. S. A. Farag, “State-Space Approach to the Analysis of
DC Machines Controlled by SCRs,” IEEE Proceeding
Publication-on the Control of Power Systems Conference,
Oklahoma, March 10-12, 1976, pp. 157-163.

[15] N. Mohan, “Electric Drives: An Integrative Approach,”
Minnesota Power Electronics Research & Education,
Minnesota, 2003.

[16] N. Mohan, “Advanced Electric Drives: Analysis, Control
and Modeling using Simulink®,” Minnesota Power Elec-
tronics Research & Education, Minnesota, 2001.

[17] B. K. Bose, “Fuzzy Logic and Neural Network Applica-
tions in Power Electronics,” Proceedings of the IEEE,
Vol. 82, No. 8, 1994, pp. 1303-1323.

[18] M. G. Simoes and B. K. Bose, “Neural Network Based
Estimation of Feedback Signals for Vector Controlled
Induction Motor Drive,” IEEE Transactions on Industry
Applications, Vol. 31, No. 3, 1995, pp. 620-629.

Copyright © 2010 SciRes. JILSA

Implementation of Adaptive Neuro Fuzzy Inference System in Speed Control of Induction Motor Drives 118

Appendix

Various Gains and Time Constants used for Perturbation Study (Motor Speed 'N = 1050 rpm)

K1 = 0.032

K2 = 0.25

K3 = –60

K4 = –0.0363

K5 = 40.0

T1 = 0.009

T2 = 0.22

T3 = 0.01111

K5 = –0.095

TG = 15.6

Copyright © 2010 SciRes. JILSA

	JILSA 2-2 Contents
	journal information JILSA
	Editorial-new
	1-9601026
	2-9601027
	3-9601029
	4-9600008
	5-9401025
	6-9601003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.66667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.66667
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 807.874]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.66667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.66667
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 807.874]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.66667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.66667
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 807.874]
>> setpagedevice

