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Editorial: Special Section on Reinforcement Learning 
and Approximate Dynamic Programming  

 

Approximate dynamic programming (ADP) is to com-
pute near-optimal solutions to Markov decision problems 
(MDPs) with large or continuous spaces. In recent years, 
the research works on ADP have been brought together 
with the reinforcement learning (RL) community [1-4].  
RL is a machine learning framework for solving sequen-
tial decision making problems that can also be modeled 
as the MDP formalism. The common objective of RL 
and ADP is to develop efficient algorithms for sequential 
decision making under uncertain complex conditions. 
Therefore, there are many potential applications of RL 
and ADP in real-world problems such as autonomous 
robots, intelligent control, resource allocation, network 
routing, etc. 
  This special section of JILSA focuses on key research 
problems emerging at the junction of RL and ADP. After 
a rigorous reviewing process, three papers were accepted 
for publication in this special section. 
  The first paper by M. A. Wiering [5] focuses on the 
applications of reinforcement learning with value func-
tion approximation in game playing. In the paper, three 
different schemes were studied for learning to play Back-
gammon with temporal difference learning. The three 
training schemes include: 1) self-play, 2) playing against 
an expert program, and 3) viewing experts play against 
each other. Extensive experimental results using tempo-
ral difference methods with neural networks were pro-
vided to compare the three learning schemes. It was il-
lustrated that the drawback of learning from experts is 
that the learning program has few chances for explora-
tion. The results also indicate that observing an expert 
play is the worst method and learning by playing against 
an expert seems to be the best strategy. 
  The second paper by J. H. Zaragoza, and E. F. 
Morales [6] proposed a relational reinforcement learning 
approach with continuous actions, called TS-RRLCA, 
which is based on the combination of behavioral cloning 
and locally weighted regression. The TS-RRLCA ap-
proach includes two main stages to learn continuous ac-
tion policy for robots in partially known environments. 
The first stage is to develop a relational representation of 
robot states and actions and the rQ-learning algorithm is 
applied with behavioral cloning so that optimized control 
policies with discrete actions can be obtained efficiently. 
In the second stage, the learned policy is transformed 
into a relational policy with continuous actions through a 

Locally Weighted Regression (LWR) process. The pro-
posed method was successfully applied to a simulated 
and a real service robot for navigation and following 
tasks with different conditions. 
  The combination of reinforcement learning or ap-
proximate dynamic programming with learning from 
demonstration is studied in the third paper [7]. A learn-
ing strategy was proposed to generate a control field for 
a mobile robot in an unknown and uncertain environment, 
which integrates learning, generalization, and explora-
tion into a unified architecture. Some Simulation results 
were provided to evaluate the performance of the pro-
posed method.  
  Although RL and ADP provide efficient ways for de-
veloping machine intelligence in a trial-and-error manner, 
the incorporation of human intelligence is important for 
the successful applications of RL and ADP. In this spe-
cial section on RL and ADP, all the three papers studied 
the relationships between machine intelligence and hu-
man intelligence in different aspects. The results of the 
first paper demonstrate that an expert program for game 
playing will be very helpful to develop computer pro-
grams using RL [5]. The usage of relational RL to in-
corporate human examples was investigated in the sec-
ond paper [6]. In the third paper [7], the method of 
learning from human demonstration was employed to 
generate initial control field for an autonomous mobile 
robots. Therefore, the results in this special section will 
be good references for future research in related topics.  
  At last, I would like to thank all of the authors and 
reviewers who have made contributions to this special 
section. 
 
 
                                Xin Xu 
                             Editor-in-Chief, 
                                 JILSA 
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ABSTRACT 

A promising approach to learn to play board games is to use reinforcement learning algorithms that can learn a game 
position evaluation function. In this paper we examine and compare three different methods for generating training 
games: 1) Learning by self-play, 2) Learning by playing against an expert program, and 3) Learning from viewing ex-
perts play against each other. Although the third possibility generates high-quality games from the start compared to 
initial random games generated by self-play, the drawback is that the learning program is never allowed to test moves 
which it prefers. Since our expert program uses a similar evaluation function as the learning program, we also examine 
whether it is helpful to learn directly from the board evaluations given by the expert. We compared these methods using 
temporal difference methods with neural networks to learn the game of backgammon. 
 
Keywords: Board Games, Reinforcement Learning, TD(λ), Self-Play, Learning From Demonstration 

1. Introduction 

The success of the backgammon learning program 
TD-Gammon of Tesauro (1992, 1995) was probably the 
greatest demonstration of the impressive ability of ma-
chine learning techniques to learn to play games. TD- 
Gammon used reinforcement learning [1,2] techniques, 
in particular temporal difference (TD) learning [2,3], for 
learning a backgammon evaluation function from train-
ing games generated by letting the program play against 
itself. This has led to a large increase of interest in such 
machine learning methods for evolving game playing 
computer programs from a randomly initialized program 
(i.e., initially there is no a priori knowledge of the game 
evaluation function, except for a human extraction of 
relevant input features). Samuel (1959, 1967) pioneered 
research in the use of machine learning approaches in his 
work on learning a checkers program. In his work he 
already proposed an early version of temporal difference 
learning for learning an evaluation function. 

For learning to play games, value function based rein-
forcement learning (or simply reinforcement learning) or 
evolutionary algorithms are often used. Evolutionary 
algorithms (EAs) have been used for learning to play 
backgammon [4], checkers [5], and Othello [6] and were 
quite successful. Reinforcement learning has been ap-
plied to learn a variety of games, including backgammon 
[7,8], chess [9,10], checkers [11,12,13], and Go [14]. 

Other machine learning approaches learn an opening 
book, rules for classifying or playing the endgame, or use 
comparison training to mimic the moves selected by hu-
man experts. We will not focus on these latter ap-
proaches and refer to [15] for an excellent survey of ma-
chine learning techniques applied to the field of game- 
playing. 

EAs and reinforcement learning (RL) methods con-
centrate on evolving or learning an evaluation function 
for a game position and after learning choose positions 
that have the largest utility or value. By mapping inputs 
describing a position to an evaluation of that position or 
input, the game program can choose a move using some 
kind of look-ahead planning. For the evaluation function 
many function approximators can be used, but commonly 
weighted symbolic rules (a kind of linear network), or a 
multi-layer perceptron that can automatically learn non- 
linear functions of the input is used. 

A difference between EAs and reinforcement learning 
algorithms is that the latter usually have the goal to learn 
the exact value function based on the long term reward 
(e.g., a win gives 1 point, a loss –1, and a draw 0), 
whereas EAs directly search for a policy which plays 
well without learning or evolving a good approximation 
of the result of a game. Learning an evaluation function 
with reinforcement learning has some advantages such as 
better fine-tuning of the evaluation function once it is 
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quite good and the possibility to learn from single moves 
without playing an entire game. Finally, the evaluation 
function allows feedback to a player and can in combina-
tion with multiple outputs for different outcomes also be 
used for making the game-playing program play more or 
less aggressive. 

In this paper we study the class of reinforcement 
learning methods named temporal difference (TD) 
methods. Temporal difference learning [3,7] uses the 
difference between two successive positions for back- 
propagating the evaluations of the successive positions to 
the current position. Since this is done for all positions 
occurring in a game, the outcome of a game is incorpo-
rated in the evaluation function of all positions, and 
hopefully the evaluation functions improves after each 
game. Unfortunately there is no convergence proof that 
current RL methods combined with non-linear function 
approximators such as feed-forward neural networks will 
find or converge to an optimal value function. 

For learning a game evaluation function for mapping 
positions to moves (which is done by the agent), there are 
the following three possibilities for obtaining experiences 
or training examples; 1) Learning from games played by 
the agent against itself (learning by self-play), 2) Learn-
ing by playing against a (good) opponent, 3) Learning 
from observing other (strong) players play games against 
each other. The third possibility might be done by letting 
a strong program play against itself and let a learner pro-
gram learn the game evaluation function from observing 
these games or from database games played by human 
experts. 

Research Questions. In this paper we compare dif-
ferent methods for acquiring and learning from training 
examples. We pose ourselves the following research 
questions: 

1) Which method combined with temporal difference 
learning results in the best performance after a fixed 
number of games? Is observing an expert player, playing 
against an expert, or self-play the best method?  

2) When the learning program immediately receives 
accurate evaluations of encountered board positions, will 
it then learn faster than when it uses its initially random-
ized function approximator and TD-learning to get the 
board evaluations?  

3) Is a function approximator with more trainable pa-
rameters more efficient for learning to play the game of 
backgammon than a smaller representation?  

4) Which value for λ in TD (λ) works best for obtain-
ing the best performance after a fixed number of games?  

Outline. This paper first describes game playing pro-
grams in section 2. Section 3 describes reinforcement 
learning algorithms. Then section 4 presents experimen-
tal results with learning the game of backgammon for 
which the above mentioned three possible methods for 

generating training games are compared. Section 5 con-
cludes this paper. 

2. Game Playing Programs 

Game playing is an interesting control problem often 
consisting of a huge number of states, and therefore has 
inspired research in artificial intelligence for a long time. 
In this paper we deal with two person, zero-sum, alterna-
tive move games such as backgammon, Othello, draughts, 
Go, and chess. Furthermore, we assume that there is no 
hidden state such as in most card games. Therefore our 
considered board games consist of: 

1) A set of possible board positions. 
2) A set of legal moves in a position. 
3) Rules for carrying out moves. 
4) Rules for deciding upon termination and the result 

of a game. 
A game playing program consists of a move generator, 

a look-ahead algorithm, and an evaluation function. The 
move generator just generates all legal moves, possibly 
in some specific order (taking into account some priority). 
The look-ahead algorithm deals with inaccurate evalua-
tion functions. If the evaluation function would be com-
pletely accurate, look-ahead would only need to examine 
board positions resulting from each legal move. For most 
games an accurate evaluation function is very hard to 
make, however. Therefore, by looking ahead many moves, 
positions much closer to the end of a game can be exam-
ined and the difference in evaluations of the resulting 
positions is larger and therefore the moves can be more 
easily compared. A well known method for looking ahead 
in games is the Minimax algorithm, however faster algo-
rithms such as alpha-beta pruning, Negascout, or princi-
pal variation search [16,17] are usually used for good 
game playing programs. 

If we examine the success of current game playing 
programs, such as Deep Blue which won against Kas-
parov in 1997 [18], then it relies heavily on the use of 
very fast computers and look-ahead algorithms. Deep 
Blue can compute the evaluation of about 1 million posi-
tions in a second, much more than a human being who 
examines less than 100 positions in a second. Also 
draughts playing programs currently place emphasis on 
look-ahead algorithms for comparing a large number of 
positions. Expert backgammon playing programs only 
use 3-ply look-ahead, however, and focus therefore much 
more on the evaluation function. 

Board games can have a stochastic element such as 
backgammon. In backgammon dice are rolled to deter-
mine the possible moves. Although the dice are rolled 
before the move is made, and therefore for a one-step 
look-ahead the dice are no computational problem, this 
makes the branching factor for computing possible posi-
tions after two or more moves much larger (since then 
look-ahead needs to take into account the 21 outcomes of 
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the two dice). This is the reason that looking ahead many 
moves in stochastic games is infeasible for human ex-
perts or computers. For this Monte Carlo simulations [19] 
can still be helpful for evaluating a position, but due to 
the stochasticity of these games, many games have to be 
simulated. 

On the other hand, we argue that looking ahead is not 
very necessary due to the stochastic element. Since the 
evaluation function is determined by dice, the evaluation 
function will become smoother since a position’s value is 
the average evaluation of positions resulting from all dice 
rolls. In fact, in backgammon it often does not matter too 
much whether some single stone or field occupied by 2 
or more stones are shifted one place or not. This can be 
again explained by the dice rolls, since different dice in 
similar positions can results in a large number of equal 
subsequent positions. Looking ahead multiple moves for 
backgammon may be helpful since it combines approxi-
mate evaluations of many positions, but the variance may 
be larger. A search of 3-ply is commonly used by the 
best backgammon playing programs [7,8]. 

This is different with e.g. chess or draughts, since for 
these games (long) tactical sequences of moves can be 
computed which let a player win immediately. Therefore, 
the evaluations of many positions later vary significantly 
and are more easily compared. Furthermore, for chess or 
draughts moving a piece one position can make the dif-
ference between a winning and losing position. Therefore 
the evaluation function is much less smooth (evaluations 
of close positions can be very different) and harder to 
learn. We think that the success of learning to play 
backgammon [8] relies on this smoothness of the evalua-
tion function. It is well known that learning smooth func-
tions requires less parameter for a machine learning al-
gorithm and therefore faster search for a good solution 
and better generalization. 

In the next section we will explain how we can use TD 
methods for learning to play games. After that the results 
of using TD learning for learning the game of Back-
gammon using different strategies for obtaining training 
examples will be presented. 

3. Reinforcement Learning 

Reinforcement learning algorithms are able to let an 
agent learn from its experiences generated by its interac-
tion with an environment. We assume an underlying 
Markov decision process (MDP) which does not have to 
be known to the agent. A finite MDP is defined as; 1) 
The state-space S = {s1, s2, . . . , sn}, where st ∈ S de-
notes the state of the system at time t; 2) A set of actions 
available to the agent in each state A(s), where at ∈ A(st) 
denotes the action executed by the agent at time t; 3) A 
transition function P (s, a, s’) mapping state action pairs s, 
a to a probability distribution of successor states s’; 4) A 

reward function R(s, a, s’) which denotes the average 
reward obtained when the agent makes a transition from 
state s to state s’ using action a, where rt denotes the 
(possibly stochastic) reward obtained at time t; 5) A dis-
count factor 0 ≤ γ ≤ 1 which discounts later rewards 
compared to immediate rewards. 

3.1 Value Functions and Dynamic Programming 

In optimal control or reinforcement learning, we are in-
terested in computing or learning an optimal policy for 
mapping states to actions. We denote an optimal deter-
ministic policy as π∗(s) → a∗|s. It is well known that for 
each MDP, one or more optimal deterministic policies 
exist. An optimal policy is defined as a policy that re-
ceives the highest possible cumulative discounted re-
wards in its future from all states. 

In order to learn an optimal policy, value-function 
based reinforcement learning [1,2,3] uses value functions 
to summarize the results of experiences generated by the 
agent in the past. We denote the value of a state Vπ(s) as 
the expected cumulative discounted future reward when 
the agent starts in state s and follows a particular policy 
π: 

Vπ(s) = E (∑i = 0 γ
iri |s0 = s, π) 

The optimal policy is the one which has the largest 
state-value in all states. It is also well-known that there 
exists a recursive equation known as the Bellman opti-
mality equation [20] which relates a state value of the 
optimal value function to other optimal state values 
which can be reached from that state using a single local 
transition: 

V∗(s) =∑s’ P (s, π∗(s), s’) (R(s, π∗(s), s’) + γV∗(s’)) 

Value iteration can be used for computing the optimal 
V-function. For this we repeat the following update many 
times for all states: 

Vk+1(s) = maxa ∑s’ P (s, a, s’) (R(s, a, s’) + γVk(s’)) 

The agent can then select optimal actions using: 

π∗(s) = argmaxa ∑s’ P (s, a, s’) (R(s, a, s’) + γV∗(s’)) 

3.2 Reinforcement Learning 

Although dynamic programming algorithms can be effi-
ciently used for computing optimal solutions for particu-
lar MDPs, they have some problems for more practical 
applicability; 1) The MDP should be known a-priori; 2) 
For large state-spaces the computational time would be-
come very large; 3) They cannot be directly used in con-
tinuous state-action spaces. 

Reinforcement learning algorithms can cope with 
these problems; first of all the MDP does not need to be 
known a-priori, all that is required is that the agent is 
allowed to interact with an environment which can be 
modeled as an MDP; secondly, for large or continuous 
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state-spaces, an RL algorithm can be combined with a 
function approximator for learning the value function. 
When combined with a function approximator, the agent 
does not have to compute state-action values for all pos-
sible states, but can concentrate itself on parts of the 
state-space where the best policies lead into. 

There are a number of reinforcement learning algo-
rithms, the first one known as temporal difference learn-
ing or TD(0) [3] computes an update of the state value 
function after making a transition from state st to state 
st+1 and receiving a reward of rt on this transition by us-
ing the temporal difference learning rule: 

V(st) = V(st) + α(rt + γV(st+1) − V(st)) 

where 0 < α ≤ 1 is the learning rate (which is treated here 
as a constant, but should decay over time for conver-
gence proofs). Although it does not compute action-value 
functions, it can be used to learn the value function of a 
fixed policy (policy-evaluation). Furthermore, if com-
bined with a model of the environment, the agent can use 
a learned state value function to select actions: 

π(s) = argmaxa  ∑s’ P (s, a, s’)(R(s, a, s’) + γV(s’)) 

It is possible to learn the V-function of a changing pol-
icy that selects greedy actions according to the value 
function. This still requires the use of a transition func-
tion, but can be used effectively for e.g. learning to play 
games [7,8]. 

There exists a whole family of temporal difference 
learning algorithms known as TD(λ)-algorithms [3] 
which are parameterized by the value λ which makes the 
agent look further in the future for updating its value 
function. It has been proved [21] that this complete fam-
ily of algorithms converges under certain conditions to 
the same optimal state value function with probability 1 
if tabular representations are used. The TD(λ)-algorithm 
works as follows. First we define the TD(0)-error of V(st) 
as: 

δt = (rt + γV(st + 1) − V(st)) 

TD(λ) uses a factor λ ∈ [0, 1] to discount TD-errors 
of future time steps: 

V(st) ← V(st) + αδt
λ  

where the TD(λ)-error δt
λ is defined as 

δt
λ = ∑i = 0 (γλ)i δt+i 

Eligibility traces. The updates above cannot be made 
as long as TD errors of future time steps are not known. 
We can compute them incrementally, however, by using 
eligibility traces [3,22]. For this we use the update rule: 

V(s) = V(s) + αδtet(s) 

for all states, where et(s) is initially zero for all states and 
updated after every step by: 

et(s) = γλet−1(s) + ηt(s) 

where ηt(s) is the indicator function which returns 1 if 
state s occurred at time t, and 0 otherwise. A faster algo-
rithm to compute exact updates is described in [23]. The 
value of λ determines how much the updates are influ-
enced by events that occurred much later in time. The 
extremes are TD(0) and TD(1) where (online) TD(1) 
makes the same updates as Monte Carlo sampling. Al-
though Monte Carlo sampling techniques that only learn 
from the final result of a game do not suffer from biased 
estimates, the variance in updates is large and that leads 
to slow convergence. A good value for λ depends on the 
length of an epoch and varies between applications, al-
though often a value between 0.6 and 0.9 works best. 

3.3 Reinforcement Learning with Neural  
Networks 

To learn value functions for problems with many state 
variables, there is the curse of dimensionality; the num-
ber of states increases exponentially with the number of 
state variables, so that a tabular representation would 
quickly become infeasible in terms of storage space and 
computational time. Also when we have continuous states, 
a tabular representation requires a good discretization 
which has to be done a-priori using knowledge of the 
problem, and a fine-grained discretization will also qui- 
ckly lead to a large number of states. Therefore, instead 
of using tabular representations it is more appropriate to 
use function approximators to deal with large or con-
tinuous state spaces. 

There are many function approximators available such 
as neural networks, self-organizing maps, locally 
weighted learning, and support vector machines. When 
we want to combine a function approximator with rein-
forcement learning, we want it to learn fast and online 
after each experience, and be able to represent continu-
ous functions. Appropriate function approximators com-
bined with reinforcement learning are therefore feed- 
forward neural networks [24]. 

In this paper we only consider fully-connected feed- 
forward neural networks with a single hidden layer. The 
architecture consist of one input layer with input units 
(when we refer to a unit, we also mean its activation): 
I1, . . . , I|I |, where |I | is the number of input units, one 
hidden layer H with hidden units: H1 , . . . , H|H|, and one 
output layer with output units: O1, . . . , O|O|. The network 
has weights: wih for all input units Ii to hidden units Hh, 
and weights: who for all hidden Hh to output units Oo. 
Each hidden unit and output unit has a bias bh or bo with 
a constant activation of 1. The hidden units most often 
use sigmoid activation functions, whereas the output 
units use linear activation functions. 

Forward propagation. Given the values of all input 
units, we can compute the values for all output units with 
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forward propagation. The forward propagation algorithm 
looks as follows: 

1) Clamp the input vector I by perceiving the envi-
ronment. 

2) Compute the values for all hidden units Hh ∈ H as 
follows: 

Hh = σ (∑i wih Ii + bh), where σ(x) is the Sigmoid func-
tion: σ(x) = 1/(1+e-x). 

3) Compute the values for all output units Oo = ∑h who 
Hh + bo. 

Backpropagation. For training the system we can use 
the back-propagation algorithm [25]. The learning goal is 
to learn a mapping from the inputs to the desired outputs 
Do for which we update the weights after each example. 
For this we use backpropagation to minimize the squared 
error measure: 

E = ½∑o (Do – Oo)
2 

To minimize this error function, we update the weights 
and biases in the network using gradient descent steps 
with learning rate α. We first compute the delta values of 
the output units (for a linear activation function): 

δO (o) = (Do − Oo) 

Then we compute the delta values of all hidden units 
(for a sigmoid activation function): 

δH (h) = ∑o δO(o)who Hh(1 − Hh) 

Then we change all hidden-output weights and output 
bias values: 

who = who + αδO(o)Hh; bo = bo + αδO(o) 

And finally we change all input-hidden weights and 
hidden bias values: 

wih = wih + αδH(h)Ii; bh = bh + αδH(h) 

Offline TD-methods. All we need is a desired output 
and then backpropagation can be used to compute weight 
updates to minimize the error-function on every different 
example. To get the desired output, we can simply use 
offline temporal difference learning [26] which waits 
until an epoch has ended and then computes desired val-
ues for the different time-steps. For learning to play 
games this is useful, since learning from the first moves 
will not immediately help to play the rest of the game 
better. In this paper we used the offline TD(λ) method 
which provides the desired values for each board position, 
taking into account the result of a game and the predic-
tion of the result by the next state. The final position at 
time-step T is scored with the result rT of the game, i.e. a 
win for white (= 1), a win for black (= –1) or a draw (= 0). 

V′(sT) = rT                (1) 

The desired values of the other positions are given by 
the following function: 

V′(st) = γV(st+1) + rt + λγ(V′(st+1) − V(st+1)) 

After this, we use V′(st) as the desired value of state 
st and use back-propagation to update all weights. In 
Backgammon, we used a minimax TD-rule for learning 
the game evaluation function. Instead of using an input 
that indicates which player is allowed to move, we al-
ways reverted the position so that white was to move. In 
this case, evaluations of successive positions are related 
by V(st) = −V(st + 1). Without immediate reward and a 
discount factor of 1, the minimax TD-update rule be-
comes: 

V′(st) = −V(st+1) + λ(V(st+1 ) − V′(st+1)) 

4. Experiments with Backgammon 

Tesauro’s TD-Gammon program learned after about 
1,000,000 games to play at human world class level, but 
already after 300,000 games TD-Gammon turned out to 
be a good match against the human grand-master Rober-
tie. After this TD-Gammon was enhanced by a 3-ply 
look-ahead strategy that made it even stronger. Currently, 
TD-Gammon is still probably the best backgammon 
playing program in the world, but other programs such as 
BGBlitz from Frank Berger or Fredrik Dahl’s Jellyfish 
also rely on neural networks as evaluation functions and 
obtained a very good playing level. All of these programs 
are much better than Berliner’s backgammon playing 
program BKG [27] which was implemented using human 
designed weighted symbolic rules to get an evaluation 
function. 

4.1 Learning an Expert Backgammon Program 

We use an expert backgammon program against which 
we can train other learning programs and which can be 
used for generating games that can be observed by a 
learning program. Furthermore, in later experiments we 
can evaluate the learning programs by playing test-games 
against this expert. To make the expert player we used 
TD-learning combined with learning from self-play using 
hierarchical neural network architecture. This program 
was trained by playing more than 1 million games 
against itself. Since the program was not always improv-
ing by letting it play more training games, we tested the 
program after each 10,000 games for 5,000 test games 
against the best previous saved version. Then we re-
corded the score for each test and the weights of the 
network architecture with the highest score were saved. 
Then after each 100,000 games we made a new opponent 
which was the previous network with the highest score 
over all tests and this program was also used as learning 
program and further trained by self-play while testing it 
against the previous best program. This was repeated 
until there was no more progress, i.e. the learning pro-
gram was not able to significantly beat the previous best 
learned program anymore. This was after more than 
1,000,000 training games. 
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Architecture. We used modular neural network ar-
chitecture, since different strategic positions require dif-
ferent knowledge for evaluating the positions [28]. There- 
fore we used a neural network architecture consisting of 
the following 9 neural networks for different strategic 
position classes, and we also show how many learning 
examples these networks received during training this 
architecture by self-play: 

1) One network for the endgame; all stones are in the 
inner-board for both players or taken out (10.7 million 
examples). 

2) One network for the racing game or long endgame; 
the stones can not be beaten anymore by another stone 
(10.7 million examples).  

3) One network for positions in which there are no 
stones on the bar or stones in the first 6 fields for both 
players (1.9 million examples).  

4) One network if the player has a prime of 5 fields or 
more and the opponent has one piece trapped by it (5.5 
million examples).  

5) One network for back-game positions where one 
player has a significant pip-count disadvantage and at 
least three stones in the first 6 fields (6.7 million exam-
ples).  

6) One network for a kind of holding game; the player 
has a field with two stones or more or one of the 18, 19, 
20, or 21 points (5.9 million examples).  

7) One network if the player has all its stones further 
than the 8 point (3.3 million examples).  

8) One network if the opponent has all its stones fur-
ther than the 8 point (3.2 million examples).  

9) One default network for all other positions (34.2 
million examples).  

For each position which needs to be evaluated, our 
symbolic categorization module uses the above rules to 
choose one of the 9 networks to evaluate (and learn) a 
position. The rules are followed from the first category to 
the last one, and if no rule applies then the default cate-
gory and network is used. 

Input features. Using this modular design, we also 
used different features for different networks. E.g., the 
endgame network does not need to have inputs for all 
fields since all stones have been taken out or are in the 
inner-board of the players. For the above mentioned 
neural network modules, we used different inputs for the 
first (endgame), second (racing game), and other (general) 
categories. The number of inputs for them is: 

1) For the endgame we used 68 inputs, consisting of 
56 inputs describing raw input information and 12 higher 
level features.  

2) For the racing game (long endgame) we used 277 
inputs, consisting of the same 68 inputs as for the end-
game, another 192 inputs describing the raw board in-
formation, and 17 additional higher level features.  

3) For the rest of the networks (general positions) we 
used 393 inputs consisting of 248 inputs describing raw 
board information and 145 higher level features includ-
ing for example the probabilities that stones can be hit by 
the opponent in the next move. 

For the neural networks we used 7 output units in 
which one output learned on the average result and the 
other six outputs learned a specific outcome (such as 
winning with 3, 2, or 1 point or losing with 3, 2, or 1 
point). The good thing of using multiple output units is 
that there is more learning information going in the net-
works. Therefore the hidden units of the neural networks 
need to be useful for storing predictive information for 
multiple related subtasks, possibly resulting in better 
representations [29]. For choosing moves, we combined 
the average output with the combined outputs of the 
other output neurons to get a single board position 
evaluation. For this we took the average of the single 
output (with a value between –3 and 3) and the combined 
value of the other outputs times their predicted probabil-
ity values. Each output unit only learned from the same 
output unit in the next positions using TD-learning (so 
the single output only learned from its own evaluations 
of the next positions). Finally, the number of hidden units 
(which use a sigmoid activation function) was 20 for the 
endgame and long endgame, and 40 for all other neural 
networks. We call the above described network architec-
ture the large neural network architecture and trained it 
by self-play using TD(λ) learning with a learning rate of 
0.01, a discount factor γ of 1.0, and a value for λ of 0.6. 
After learning we observed that the 2 different evaluation 
scores were always quite close and that the 6 output units 
usually had a combined activity close to 1.0 with only 
sometimes small negative values (such as –0.002) for 
single output units if the probability of the result was 0, 
which only have a small influence on the evaluation of a 
position. 

Now we obtained an expert program, we can use it for 
our experiments in analyzing the results of new learners 
that train by self-play, train by playing against this expert, 
or learn by viewing games played by the expert against 
itself. 

4.2 Experiments with Learning Backgammon 

We first made a number of simulations in which 200,000 
training games were used and after each 5,000 games we 
played 5,000 test games between the learner and the ex-
pert to evaluate the learning program. Because these 
simulations took a lot of time (several days for one 
simulation), they were only repeated two times for every 
setup. 

The expert program was always the same as described 
before. For the learning program we also made use of a 
smaller architecture consisting of three networks; one for 
the endgame of 20 hidden units, one for the long end-
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game (racing game) of 20 hidden units, and one for the 
other board positions with 40 hidden units. We also used 
a larger network architecture with the same three net-
works, but with 80 hidden units for the other board posi-
tions, and finally we used an architecture with 20, 20, 40 
hidden units with a kind of radial basis activation func-

tion: Hj = .These architectures were trained 
by playing training games against the expert. We also 
experimented with a small network architecture that 
learns by self-play or by observing games played by the 
expert against itself. 

ij i j( W I +b )2e 

Because the evaluation scores fluctuate a lot during the 
simulation, we smoothed them a bit by replacing the 
evaluation of each point (test after n games) by the aver-
age of it and its two adjacent evaluations. Since we used 
2 simulations, each point is therefore an average of 6 
evaluations obtained by testing the program 5,000 games 
against the expert (without the possibility of doubling the 
cube). For all these experiments we used extended back-
propagation [30] and TD(λ)-learning with a learning rate 
of 0.01 and an eligibility trace factor λ of 0.6 that gave 
the best results in preliminary experiments. Figures 1 
and 2 show the obtained results. 

First of all, it can be noted that the neural network ar-
chitecture with RBF like activation functions for the 
hidden units works much worse. Furthermore, it can be 
seen that most other approaches work quite well and 
reach equity of almost 0.5. Table 1 shows that all archi-
tectures, except for the architecture using RBF neurons, 
obtained an equity higher than 0.5 in at least one of 
 

 

Figure 1. Results for different architectures from learning 
against the expert, and the small architecture that learns by 
self-play or by observing games of the expert 

 

Figure 2. Results for different architectures from learning 
against the expert, and the small architecture that learns by 
self-play or by observing games of the expert. More detailed 
plot without the architecture with RBF hidden units 
 
Table 1. Results for the different methods as averages of 6 
matches of 5,000 games played against the expert. Note that 
the result after 5,000 games is the average of the tests after 
100, 5000, and 10000 games 

Architecture 5000 100,000 175,000 
Max 
after 

Max 
eval 

Small Network 0.327 0.483 0.478 190,000 0.508

Large architecture 0.290 0.473 0.488 80,000 0.506

Network 80 hidden 0.309 0.473 0.485 155,000 0.505

Network 40 RBF 0.162 0.419 0.443 120,000 0.469

Small network Self-play 0.298 0.471 0.477 200,000 0.502

Small network Observing 0.283 0.469 0.469 110,000 0.510

 
the 80 tests. Testing these found solutions 10 times for 
5000 games against the expert indicated that their play-
ing strengths were equal. If we take a closer look at Fig-
ure 2, we can see that the large architecture with many 
module finally performs a bit better than the other ap-
proaches and that learning by observing the expert 
reaches a slightly worse performance. 

Smaller simulations. We also performed a number of 
smaller simulations of 15,000 training games where we 
tested after each 500 games for 500 testing games. We 
repeated these simulations 5 times for each neural net-
work architecture and method for generating training 
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games. Because there is an expert available with the 
same kind of evaluation function, it is also possible to 
learn with TD-learning using the evaluations of the ex-
pert itself. This is very similar to supervised learning, 
although the agent generates its own moves (depending 
on the method for generating games). In this way, we can 
analyze what the impact of bootstrapping on an initially 
bad evaluation function is compared to learning immedi-
ately from outputs for positions generated by a better 
evaluation function. Again we used extended back-
propagation [30] and TD(λ) with a learning rate of 0.01 
and set λ = 0.6. 

In Figure 3, we show the results of the smaller archi-
tecture consisting of three networks with 20, 20, and 40 
hidden units. We also show the results in Figure 4 where 
we let the learning programs learn from evaluations 
given by the expert program, but for which we still use 
TD-learning on the expert’s evaluations with λ = 0.6 to 
make training examples. 

The results show that observing the expert play and 
learning from these generated games progress slower and 
reach slightly worse results within 15,000 games if the 
program learns from its own evaluation function. In Fig-
ure 4 we can see faster learning and better final results 
if the programs learn from the expert’s evaluations 
(which is like supervised learning), but the differences are 
not very large compared to learning from the own evalua-
tion function. It is remarkable that good performance 
 

 

Figure 3. Results for the small architecture when using a 
particular method for generating games. The evaluation on 
which the agent learns is its own 

 

Figure 4. Results when the expert gives the evaluations of 
positions 
 
has already been obtained after only 5,000 training games. 

In Table 2 we can see that if we let the learning pro-
gram learn from games played against the expert, in the 
beginning it almost always loses (its average test-result 
or equity after 100 training games is 0.007), but already 
after 500 training games the equity has increased to an 
average value of 0.26. We can conclude that the learning 
program can learn its evaluation function by learning 
from the good positions of its opponent. This good 
learning performance can be attributed to the minimax 
TD-learning rule, since otherwise always losing will 
quickly result in a simple evaluation function that always 
returns a negative result. However, using the minimax 
TD-learning rule, the program does not need to win 
many games in order to learn the evaluation function. 
Learning by self-play performs almost as good as learn-
ing from playing against the expert. If we use the ex-
pert’s evaluation function then learning progresses much 
faster in the beginning, although after 10,000 training 
games almost the same results are obtained. Learning by 
observing the expert playing against itself progresses 
slower and reaches worse results if the learning program 
learns from its own evaluation function. If we look at the 
learning curve, we can still see that it is improving how-
ever. 

We repeated the same simulations for the large archi-
tecture consisting of 9 modules. The results are shown in 
Figures 5 and 6. The results show that learning with the 
large network architecture progresses much slower, 
which can be explained by the much larger number of  
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Table 2. Results for the three different methods for gener-
ating training games with learning from the own or the 
expert’s evaluation function. The results are averages of 5 
simulations 

Method Eval-function 100 500 1000 5000 10,000

Self-play Own 0.006 0.20 0.36 0.41 0.46

Self-play Expert 0.15 0.33 0.38 0.46 0.46

Against  expert Own 0.007 0.26 0.36 0.45 0.46

Against  expert Expert 0.20 0.35 0.39 0.47 0.47

Observing  expert Own 0.003 0.01 0.16 0.41 0.43

Observing  expert Expert 0.05 0.22 0.32 0.45 0.46

 

 

Figure 5. Results for the large architecture when using a 
particular method for generating games. The evaluation on 
which the agent learns is its own 
 
parameters which need to be trained and the fewer ex-
amples for each individual network. The results also 
show that learning from observing the expert play against 
itself performs worse than the other methods, although 
after 15,000 games this method also reaches quite high 
equities, comparable with the other methods. The best 
method for training the large architecture is when games 
are generated by playing against the expert. Figure 6 
shows faster progress if the expert’s evaluations are used. 

Effect of λ. Finally, we examine what the effect of dif-
ferent values for λ is when the small architecture learns 
by playing against the expert. We tried values for λ of 0.0, 
0.2, 0.4, 0.6, 0.8, and 1.0. When using λ = 1 we needed to 
use a smaller learning-rate, since otherwise initially the 

weights became much too large. Therefore we used a 
learning rate of 0.001 for λ = 1.0 and a learning rate of 
0.01 for the other values for λ. Figure 7 shows the results 
averaged over 5 simulations. It can be seen that a λ-value 
of 1.0 works much worse and that values of 0.6 or 0.8 
perform the best. Table 3 shows the results after 100, 
500, 1000, 5000, and 10,000 games. We can see that 
higher values of λ initially result in faster learning which 
 

 

Figure 6. Results for the large architecture when using a 
particular method for generating games. Results when the 
expert gives the evaluations 
 

 

Figure 7. Results for the small architecture when using dif-
ferent values for λ. The games are generated by self-play 
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Table 3. Results for different values of λ when the small 
architecture learns against the expert 

λ 100 500 1000 5000 10,000 

0.0 0.004 0.13 0.31 0.42 0.43 

0.2 0.002 0.24 0.34 0.43 0.45 

0.4 0.002 0.26 0.35 0.44 0.44 

0.6 0.007 0.26 0.36 0.45 0.46 

0.8 0.06 0.34 0.39 0.44 0.45 

1.0 0.12 0.23 0.31 0.39 0.40 

 
can be explained by the fact that bootstrapping from the 
initially random evaluation function does not work too 
well and therefore larger eligibility traces are profitable. 
After a while λ values between 0.2 and 0.8 perform all 
similarly. 

4.3 Discussion 

Learning a good evaluation function for backgammon 
with temporal difference learning appears to succeed 
very well. Already within few thousands of games which 
can be played in less than one hour a good playing level 
is learned with equity of around 0.45 against the expert 
program. We expect this equity to be similar to a human 
player who regularly plays backgammon. The results 
show that learning by self-play and by playing against 
the expert obtain the same performance. 

Learning by observing an expert play progresses ap-
proximately two or three times slower than the other 
methods. In our current experiments the learning pro-
gram observed another program that still needed to select 
moves. Therefore there was no computational gain in 
generating training games. However, if we would have 
used a database, then in each position also one-step 
look-ahead would not be needed. Since the branching 
factor for a one-step look-ahead search is around 16 for 
backgammon, we would gain 94% of the computational 
time for generating and learning from a single game. 
Therefore learning from database games could still be 
advantageous compared to learning by self-play or play-
ing against an expert. A problem of using a (small) data-
base is that overfitting the evaluation function may occur. 
This may be solved by combining this approach with 
learning by self-play. In the large experiment, the learn-
ing behavior of the method that learns by observing the 
expert is a bit more fluctuating, but it still obtained equity 
a bit larger than 0.5 during one of the test-games in the 
large experiment and additional tests indicated that its 
playing strength at that point was equal to the expert 
player. 

We also noted that training large architectures initially 
takes longer which can be simply explained by the larger 
number of parameters which need to be learned and 
fewer examples for individual modules. After training for 
a longer time, such bigger architectures can reach higher 
performance levels than smaller architectures. We note 
that since the agent learns on the same problem as on 
which it is tested, in these cases overfitting does not oc-
cur. A large value for λ (larger than 0.8) initially helps to 
improve the learning speed, but after some time smaller 
values for λ (smaller than 0.8) perform better. An an-
nealing schedule for λ may therefore be useful. Finally 
we observed in all experiments that the learning pro-
grams are not always improving by playing more games. 
This can be explained by the fact that there is no conver-
gence guarantee for RL and neural networks. Therefore 
testing the learning program against other fixed programs 
on a regular basis is necessary to be able to save the best 
learning program. It is interesting to note the similarity to 
evolutionary algorithms evolving game playing programs 
which also use tests. However, we expect that temporal 
difference learning and gradient descent is better for 
fine-tuning the evaluation function than a more random-
ized evolutionary search process. 

Another approach that receives a lot of attention in re-
cent RL research and good results for particular control 
problems is kernel-based least policy iteration (LSPI) 
learning [31]. However, it is unlikely that RBF kernels 
will generalize well to the huge state space of backgam-
mon and that therefore kernel based LSPI is not likely to 
be successful. In fact, we implemented Support vector 
machines with RBF kernels for the game of Othello, and 
this showed indeed that RBF kernels are not good for 
games involving huge state-spaces. For this sigmoid 
functions are needed, but they are difficult to use as ker-
nels, since they require a lot of structural design. The use 
of neural networks with sigmoid activation functions is 
therefore the current method of choice for difficult 
games. 

5. Conclusions 

In this paper different strategies for obtaining training 
examples for learning game evaluation functions have 
been examined. The possible advantage of playing against 
or observing an expert, namely that games are initially 
played at a high level was not clearly shown in the ex-
perimental results. We will now return to our research 
questions and answer them here. 

1) Question 1. Which method combined with temporal 
difference learning results in the best performance after a 
fixed number of games? Is observing an expert player, 
playing against an expert, or self-play the best method?  

Answer. The results indicate that observing an expert 
play is the worst method. The reason can be that the 
learning program is never actively involved in playing 
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and therefore can not learn to penalize particular moves 
that it may have overestimated. Learning by playing 
against an expert seems to be the best strategy. Another 
approach that could be useful is learning from the expert 
combined with learning by self-play. 

2) Question 2. When the learning program immedi-
ately receives accurate evaluations of encountered board 
positions, will it then learn faster than when it uses its 
initially randomized function approximator and TD- 
learning to estimate the board evaluations?  

Answer. Initially, learning goes much faster when ac-
curate evaluations are given. However, after 10,000 
training games, the disadvantage of the initially random-
ized function approximator has almost disappeared.  

3) Question 3. Is a function approximator with more 
trainable parameters more efficient for learning to play 
the game of backgammon than a smaller representation?  

Answer. Yes, in general the larger function approxi-
mators obtain better performance levels, although in the 
beginning they learn at a slower rate. Since the agent is 
tested on exactly the same problem as on which it is 
trained (different from supervised learning), overfitting 
does not occur in reinforcement learning. 

4) Question 4. Which value for λ in TD(λ) works best 
for obtaining the best performance after a fixed number 
of games?  

Answer. Initially larger values for λ result in a faster 
learning rate. However, the final performance is best for 
intermediate values of λ around 0.6. It should be noted 
that this observation is quite problem specific.  

Future work. Although in this paper it was demon-
strated that learning from observing an expert is not prof-
itable to learn to play backgammon, we also mentioned 
some advantages of using an expert or a database. Ad-
vantages of learning from experts are that the system 
does not explore the whole huge state-space and that in 
some applications it is a safer method for obtaining ex-
periences than learning by trial-and-error. Furthermore, 
learning game evaluation functions from databases has 
the advantage that no look-ahead during game-play is 
necessary. 

Learning from experts or databases can also be used 
for other applications, such as learning in action or stra-
tegic computer games for which human games played 
with a joystick can be easily recorded. Furthermore, for 
therapy planning in medicine, databases of therapies may 
be available and could therefore be used for learning 
policies. For robotics, behavior may be steered by hu-
mans and these experiences can be recorded and then 
learned by the robot [32]. Thus, we still think that learn-
ing from observing an expert has many advantages and 
possibilities for learning control knowledge, although 
care should be taken that the learner tries out its own 
behavior during learning. 
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ABSTRACT 

Reinforcement Learning is a commonly used technique for learning tasks in robotics, however, traditional algorithms 
are unable to handle large amounts of data coming from the robot’s sensors, require long training times, and use dis-
crete actions. This work introduces TS-RRLCA, a two stage method to tackle these problems. In the first stage, low-level 
data coming from the robot’s sensors is transformed into a more natural, relational representation based on rooms, 
walls, corners, doors and obstacles, significantly reducing the state space. We use this representation along with Be-
havioural Cloning, i.e., traces provided by the user; to learn, in few iterations, a relational control policy with discrete 
actions which can be re-used in different environments. In the second stage, we use Locally Weighted Regression to 
transform the initial policy into a continuous actions policy. We tested our approach in simulation and with a real ser-
vice robot on different environments for different navigation and following tasks. Results show how the policies can be 
used on different domains and perform smoother, faster and shorter paths than the original discrete actions policies. 
 
Keywords: Relational Reinforcement Learning, Behavioural Cloning, Continuous Actions, Robotics 

1. Introduction 

Nowadays it is possible to find service robots for many 
different tasks like entertainment, assistance, maintenance, 
cleanse, transport, guidance, etc. Due to the wide range 
of services that they provide, the incorporation of service 
robots in places like houses and offices has increased in 
recent years. Their complete incorporation and accep-
tance, however, will depend on their capability to learn 
new tasks. Unfortunately, programming service robots for 
learning new tasks is a complex, specialized and time 
consuming process.  

An alternative and more attractive approach is to show 
the robot how to perform a task, rather than trying to 
program it, and let the robot to learn the fine details of 
how to perform the task. This is the approach that we 
follow on this paper. 

Reinforcement Learning (RL) [1] has been widely used 
and suggested as a good candidate for learning tasks in 
robotics, e.g., [2-9]. This is mainly because it allows an 
agent, i.e., the robot, to “autonomously” develop a con-
trol policy for performing a new task while interacting 
with its environment. The robot only needs to know the 

goal of the task, i.e., the final state, and a set of possible 
actions associated with each state. 

The use and application of traditional RL techniques 
however, has been hampered by four main aspects: 1) 
vast amount of data produced by the robot’s sensors, 2) 
large search spaces, 3) the use of discrete actions, and 4) 
the inability to re-use previously learned policies in new, 
although related, tasks. 

Robots are normally equipped with laser range sensors, 
rings of sonars, cameras, etc., all of which produce a 
large number of readings at high sample rates creating 
problems to many machine learning algorithms.  

Large search spaces, on the other hand, produce very 
long training times which is a problem for service robots 
where the state space is continuous and a description of a 
state may involve several variables. Researchers have 
proposed different strategies to deal with continuous state 
and action spaces, normally based on a discretization of 
the state space with discrete actions or with function ap-
proximation techniques. However, discrete actions pro-
duce unnatural movements and slow paths for a robot 
and function approximation techniques tend to be com-
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putationally expensive. Also, in many approaches, once a 
policy has been learned to solve a particular task, it can-
not be re-used on similar tasks.  

In this paper, TS-RRLCA (Two-Stage Relational Rein- 
forcement Learning with Continuous Actions), a two- 
stage method that tackles these problems, is presented. In 
the first stage, low-level information from the robot’s 
sensors is transformed into a relational representation to 
characterize a set of states describing the robot’s envi-
ronment. With these relational states we applied a variant 
of the Q-learning algorithm to develop a relational policy 
with discrete actions. It is shown how the policies learned 
with this representation framework are transferable to 
other similar domains without further learning. We also 
use Behavioural Cloning [10], i.e., human traces of the 
task, to consider only a subset of the possible actions per 
state, accelerating the policy learning process and ob-
taining a relational control policy with discrete actions in 
a few iterations. In the second stage, the learned policy is 
transformed into a relational policy with continuous ac-
tions through a fast Locally Weighted Regression (LWR) 
process.  

The learned policies were successfully applied to a 
simulated and a real service robot for navigation and fol-
lowing tasks with different scenarios and goals. Results 
show that the continuous actions policies are able to 
produce smoother, shorter, faster and more similar paths 
to those produced by humans than the original relational 
discrete actions policies. 

This paper is organized as follows. Section 2 describes 
related work. Section 3 introduces a process to reduce the 
data coming from the robot’s sensors. Section 4 describes 
our relational representation to characterize states and 
actions. Sections 5 and 6 describe, respectively, the first 
and second stages of the proposed method. Section 7 
shows experiments and results, Section 8 presents some 
discussion about our method and the experimental results, 
and Section 9 concludes and suggests future research 
directions. 

2. Related Work 

There is a vast amount of literature describing RL tech-
niques in robotics. In this section we only review the 
most closely related work to our proposal.  

In [8] a method to build relational macros for transfer 
learning in robot’s navigation tasks is introduced. A 
macro consists of a finite state machine, i.e., a set of 
nodes along with rulesets for transitions and action 
choices. In [11], a proposal to learn relational decision 
trees as abstract navigation strategies from example paths 
in presented. These two approaches use relational repre-
sentations to transfer learned knowledge and use training 
examples to speed up learning, however, they only con-
sider discrete actions.  

In [9], the authors introduced a method that temporar-
ily drives a robot which follows certain initial policy 
while some user commands play the role of training input 
to the learning component, which optimizes the autono-
mous control policy for the current task. In [2], a robot is 
tele-operated to learn sequences of state-action pairs that 
show how to perform a task. These methods reduce the 
computational costs and times for developing its control 
scheme, but they use discrete actions and are unable to 
transfer learned knowledge. 

An alternative to represent continuous actions is to ap-
proximate a continuous function over the state space. The 
work developed in [12] is a Neural Network coupled 
with an interpolation technique that approximates Q- 
values to find a continuous function over all the search 
space. In [13], the authors use Gaussian Processes for 
learning a probabilistic distribution for a robot navigation 
problem. The main drawback of these methods is the 
computational costs and the long training times as they 
try to generate a continuous function over all of the 
search space. 

Our method learns, through a relational representation, 
relational discrete actions policies able to transfer know- 
ledge between similar domains. We also speed up and 
simplify the learning process by using traces provided by 
the user. Finally we use a fast LWR to transform the 
original discrete actions policy into a continuous actions 
policy. In the following sections we describe in detail the 
proposed method. 

3. Natural Landmarks Representation 

A robot senses and returns large amounts of data read-
ings coming from its sensors while performing a task. In 
order to produce a smaller set of meaningful information 
TS-RRLCA uses a process based on [14,15] In [14] the 
authors described a process able to identify three kinds of 
natural landmarks through laser sensor readings: 1) dis-
continuities, defined as an abrupt variation in the meas-
ured distance of two consecutive laser readings (Figure 
1(a)), 2) walls, identified using the Hough transform 
(Figure 1(c)), and 3) corners, defined as the location 
where two walls intersect and form an angle (Figure 
1(d)). We also add obstacles identified through sonars 
and defined as any detected object within certain range 
(Figure 1(e)).  

A natural landmark is represented by a tuple of four 
attributes: (DL, θL, A, T). DL and θL are, respectively, 
the relative distance and orientation from the landmark to 
the robot. T is the type of landmark: l for left discontinu-
ity, r for right discontinuity (see Figure 1(b)), c for cor-
ner, w for wall and o for obstacle. A is a distinctive at-
tribute and its value depends on the type of landmark; for 
discontinuities A is depth (dep) and for walls A is its  
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(a)                (b)                (c) 

 

   
(d)                 (e) 

Figure 1. Natural landmarks types and associated attributes, 
(a) discontinuity detection; (b) discontinuity Types; (c) wall 
detection; (d) corner detection; (e) wall detection 
 
length (len), for all of the other landmarks the A attribute 
is not used. 

In [15] the data from laser readings is used to feed a 
clustering-based process which is able to identify the 
robot’s actual location such as room, corridor and/or in-
tersection (the location where rooms and corridors meet). 
Figure 2 shows examples of the resulting location classi-
fication process.  

Table 1 shows an example of the data after applying 
these processes to the laser and sonar readings from Fig-
ure 3. The robot’s actual location in this case is in-room.  

The natural landmarks along with the robot’s actual 
location are used to characterize the relational states that 
describe the environment. 

4. Relational Representations for States and 
Actions 

A relational representation for states and actions has the 
advantage that it can produce relational policies that can 
be re-used in other, although similar, domains without 
any further learning. The idea it to represent states as sets 
of properties that can be used to characterize a particular 
situation which may be common to other states. For ex-
ample, suppose the robot has some predicates that are 
able to recognize a room from its sensors’ readings. If the 
robot has learned a policy to exit a room, then it can ap-
ply it to exit any recognizable room regardless of the 
current environment. 

A relational state (r-state) is a conjunction of first or-
der predicates. Our states are characterized by the fol-
lowing predicates which receive as parameters a set of 
values such as those shown in Table 1.  

1) place: This predicate returns the robot’s location, 
which can be in-room, in-door, in-corridor and in- 
intersection. 

   
(a)                (b)                (c) 

Figure 2. Locations detected through a clustering processes, 
(a) room; (b) intersection; (c) corridor 
 
Table 1. Identified natural landmarks from the sensor’s 
readings from Figure 3 

N DL θL A T 

1 0.92 -17.60 4.80 r 

2 1.62 -7.54 3.00 l 

3 1.78 17.60 2.39 l 

4 0.87 -35.70 1.51 w 

5 4.62 -8.55 1.06 w 

6 2.91 -6.54 1.88 w 

7 1.73 23.63 0.53 w 

8 2.13 53.80 2.38 w 

9 5.79 -14.58 0.00 c 

10 2.30 31.68 0.00 c 

11 1.68 22.33 0.00 c 

12 1.87 -170.00 0.00 o 

13 1.63 -150.00 0.00 o 

14 1.22 170.00 0.00 o 

15 1.43 150.00 0.00 o 

 

 

Figure 3. Robot sensing its environment through laser and 
sonar sensors and corresponding natural landmarks 
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2) doors-detected: This predicate returns the orienta-
tion and distance to doors. A door is characterized by 
identifying a right discontinuity (r) followed by a left 
discontinuity (l) from the natural landmarks. The door’s 
orientation angle and distance values are calculated by 
averaging the values of the right and left discontinuities 
angles and distances. The discretized values used for 
door orientation are: right (door’s angle between –67.5° 
and –112.5°), left (67.5° to 112.5°), front (22.5° to 
–22.5°), back (157.5° to –157.5°), right-back (–112.5° to 
–157.5°), right-front (–22.5° to –67.5°), left-back (112.5° 
to 157.5°) and left-front (22.5° to 67.5°). The discretized 
values used for distance are: hit (door’s distance between 
0 m and 0.3 m), close (0.3 m to 1.5 m), near (1.5 m to 
4.0 m) and far (door’s distance > 4.0 m). 

For example, if the following discontinuities are ob-
tained from the robot’s sensors (shown in Table 1: [0.92, 
–17.60, 4.80, r], [1.62, –7.54, 3.00, l]), the following 
predicate is produced: 

doors-detected ([front, close, –12.57, 1.27])  
This predicate corresponds to the orientation and dis-

tance descriptions of a detected door (shown in Figure 3), 
and for every pair of right and left discontinuities a list 
with these orientation and distance descriptions is gener-
ated.  

3) walls-detected: This predicate returns the length, 
orientation and distance to walls (type w landmarks). 
Possible values for wall’s length are: small (length be-
tween 0.15 m and 1.5 m), medium (1.5 m to 4.0 m) and 
large (wall’s size or length > 4.0 m). The discrete values 
used for orientation and distance are the same as with 
doors and the same goes for predicates corners-detected 
and obstacles-detected described below. 

4) corners-detected: This predicate returns the orienta-
tion and distance to corners (type c landmarks).  

5) obstacles-detected: This predicate returns the orien-
tation and distance to obstacles (type o landmarks).  

6) goal-position: This predicate returns the relative ori-
entation and distance between the robot and the current 
goal. Receives as parameter the robot’s current position 
and the goal’s current position, though a trigonometry 
process, the orientation and distance values are calcu-
lated and then discretized as same as with doors. 

7) goal-reached: This predicate indicates if the robot is 
in its goal position. Possible values are true or false. 

The previous predicates tell the robot if it is in a room, 
a corridor or an intersection, detect walls, corners, doors, 
obstacles and corridors and give a rough estimate of the 
direction and distance to the goal. Analogous to r-states, 
r-actions are conjunctions of the following first order 
logic predicates that receive as parameters the odome-
ter’s speed and angle readings. 

8) go: This predicate returns the robot’s actual moving 

action. Its possible values are front (speed > 0.1 m/s), nil 
(–0.1 m/s < speed < 0.1 m/s) and back (speed < –0.1 
m/s).  

9) turn: This predicate returns the robot’s actual turn-
ing angle. Its possible values are slight-right (–45° < an-
gle < 0°), right (–135° < angle ≤ –45°), far-right (angle 
≤ –135°), slight-left (45° > angle > 0°), left (135° > angle 
≥ 45°), far-left (angle ≥ 135°) and nil (angle = 0°). 

Table 2 shows an r-state-r-action pair generated with 
the previous predicates which corresponds to the values 
from Table 1. As can be seen, some of the r-state predi-
cates (doors, walls, corners and obstacles detection) be-
sides returning the nominal descriptions; they also return 
the numerical values of every detected element. The 
r-action predicates also return the odometer’s speed and 
the robot’s turning angle. These numerical values are 
used in the second stage of the method as described in 
Section 6. The discretized or nominal values, i.e., the 
r-states and r-actions descriptions, are used to learn a 
relational policy through rQ-learning as described below. 

5. TS-RRLCA First Stage 

TS-RRLCA starts with a set of human traces of the task 
that we want the robot to learn. A trace Τk = {fk1, fk2, …, 
fkn} is a log of all the odometer, laser and sonar sensor’s 
readings of the robot while it is performing a particular 
task. A trace-log is divided in frames; every frame is a 
register with all the low-level values of the robot’s sen-
sors (fkj = {laser1 = 2.25, laser2 = 2.27, laser3 = 2.29, …, 
sonar1 = 3.02, sonar2 = 3.12, sonar3 = 3.46, …, speed = 
0.48, angle = 87.5}) at a particular time.  

Once a set of traces (Τ1, Τ2, ..., Τm) has been given to 
TS-RRLCA, every frame in the traces, is transformed  

Table 2. Resulting r-state-r-action pair from the values in 
Table 1 

r-state r-action 

Place (in-room), go (nil, 0.0), 

doors-detected ([[front, close, –12.57, 1.27]]), turn (right, 92).

walls-detected ([[right-front, close, medium, –35.7, 
0.87], [front, far, small, –8.55, 4.62], 
[front, near, medium, –6.54, 2.91], 
[left-front, near, small, 23.63, 1.73], [left-front, 
near, medium, 53.80, 2.13]]), 

 

corners-detected ([[front, far, –14.58, 5.79], 
[front, near, 31.68, 2.30], 
[left-front, near, 22.33, 1.68]]), 

 

obstacles-detected ([[back, near, –170.00, 1.87], 
[right-back, near, –150.00, 1.63], 
[back, close, 170.00, 1.22], 
[left-back, close, 150.00, 1.43]]), 

 

goal-position ([right-front, far]),  

goal-reached (false).  
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into natural landmarks along with the robot’s location. 
This transformed frames are given to the first order 
predicates to evaluate the set of relations, i.e., generate 
the corresponding r-state and r-action (as the one shown 
in Table 2). By doing this, every frame from the traces 
corresponds to an r-state-r-action pair and every one of 
these pairs is stored in a database (DB).  

Algorithm 1 gives the pseudo-code for this Behav-
ioural Cloning (BC) approach. At the end of this BC ap-
proach, the DB contains r-state-r-action pairs correspond-
ing to all the frames in the set of traces. 

As the traces correspond to different examples of the 
same task and as they might have been generated by dif-
ferent users, there can be several r-actions associated to 
the same r-state. RL is used to develop a control policy 
that selects the best r-action in each r-state. 

5.1 Relational Reinforcement Learning 

The RL algorithm selects the r-action that produces the 
greatest expected accumulated reward among the possi-
ble r-actions in each r-state. Since we only used informa-
tion from traces only a subset of all the possible r-actions, 
for every r-state, are considered which significantly re-
duces the search space. In a classical reinforcement 
learning framework a set of actions (A) is predefined for 
all of the possible states (S). Every time the agent reaches 
a new state, it must select one action from all of the pos-
sible actions in S to reach a new state. In our RL ap-
proach when the robot reaches a new r-state, it chooses 
one action from a subset of r-actions performed in that 
r-state in the traces.  

In order to execute actions, each time the robot reaches 
an r-state, it retrieves from the DB the associated r-ac-
tions. It chooses one according to its policy and the asso-
ciated nominal value of the selected r-action is trans-
formed into one of the following values: 

1) For the predicate go, if the description of the 
r-action is front the corresponding value is 0.5 m/s, for 
back the corresponding value is –0.5 m/s, and for nil the 
value is 0.0 m/s.  

2) For the predicate turn the values are: slight-right = 
–45°, right = –90°, far-right = –135°, slight-left = 45°, 
left = 90°, far-left = 135° and nil = 0°. 

Once the r-action has been chosen and executed the 
robot gets into a new r-state and the previous process is 
repeated until reaching a final r-state. 

Algorithm 2 gives the pseudo-code for this rQ-learning 
approach. This is very similar to the Q-learning algo-
rithm, except that the states and actions are characterized 
by relations. 

By using only the r-state-r-action pairs from the traces 
(stored in the DB) our policy generation process is very 
fast and thanks to our relational representation, policies 
can be transferred to different, although similar office or  

Algorithm 1. Behavioural cloning algorithm 

Require: T1, T2, …Tn: Set of n traces with examples of the task the 
robot has to learn. 

Ensure: DB: r-state-r-action pairs database. 

   for i = 1 to n do 

      k ← number of frames in the trace i 

       for j = 1 to k do 

Transform frameij (frame j from trace i) into their cor-
responding natural landmarks and into the correspond-
ing robot’s location. 
Use the natural landmarks and the robot’s location to 
get the corresponding r-state (through the first order 
predicates). 
Use  the robot’s speed  and  angle  to get  the corre-
sponding r-action. 
DB ← DB∪{r-state, r-action}. % Each register in DB 
contains an r-state with its corresponding r-action 

     End for 
End for 

 
Algorithm 2. rQ-learning algorithm 

Require: DB, r-state-r-action pairs database. 

Ensure: function Q: discrete actions relational control policy. 

   Initialize Q (St, At) arbitrarily 

   Repeat 

st ← robot’s sensors readings values.  

Transform st into its corresponding natural landmarks and 
into the corresponding robot’s location. 
St ← r-state (st)% Use those natural landmarks and the ro-
bot’s location to get the corresponding r-state (through the 
first order predicates). 

for each step of the episode do 

Search the r-state (St) description in DB. 

for each register in DB which contains the r-state (St) de-
scription do 

Get its corresponding r-actions 

End for 

Select an r-action At to be executed in St trough an action 
selection policy (e.g., ε-greedy). 

Execute action At, observe rt+1 and st+1 

Transform st+1 into its corresponding natural landmarks 
and into the corresponding robot’s location. 
St+1 ← r-state (st+1)% Use those natural landmarks and the 
robot’s location to get the corresponding r-state (through 
the first order predicates). 
Q(St, At) ← Q(St, At) + α(rt+ 1 + γmaxAt+1 Q(St+1, At+1) - Q(St, 
At)) 

St ← St+1 

End for 

until St is terminal 
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house-like environments. In the second stage, this dis-
crete actions policy is transformed into a continuous ac-
tions policy.  

6. TS-RRLCA Second Stage 

This second stage refines the coarse actions from the 
previously generated discrete actions policy. This is 
achieved using Locally Weighted Regression (LWR). 

The idea is to combine discrete actions’ values given 
by the policy obtained in the first stage with the action’s 
values previously observed in the traces. This way the 
robot follows the policy, developed in the first stage, but 
the actions are tuned through a LWR process. What we 
do is to detect the robot’s actual r-state, then, for this 
r-state the previously generated discrete actions policy 
determines the action to be executed (Figure 4(a)). Be-
fore performing the action, the robot searches in the DB 
for all the registers that share this same r-state description 
(Figure 4(b)). Once found, the robot gets all of the nu-
meric orientation and distance values from these registers. 
This orientation and distance values are used to perform 
a triangulation process. This process allows us to esti-
mate the relative position of the robot from previous 
traces with respect to the robot’s actual position. Once 
this position has been estimated, a weight is assigned to 
the previous traces action’s values. This weight depends 
on the distance of the robot from the traces with respect 
to the actual robot’s position (Figure 4(c)). These weights 
are used to perform the LWR that produces continuous 
r-actions (Figure 4(d)).  

The triangulation process is performed as follows. The 
robot R in the actual r-state (Figure 5(a)), senses and 
detects elements E and E’ (which can be a door, a corner, 
a wall, etc.). Each element has a relative distance (a and  
 

        
(a)                     (b) 

 

        
(c)                    (d) 

Figure 4. Continuous actions developing process, (a) r-state 
and corresponding r-action; (b) a trace segment; (c) dis-
tances and weights; (d) resulting continuous action 

   
(a)               (b)               (c) 

Figure 5. Triangulation process, (a) R robot’s r-state and 
identified elements; (b) R’robot from traces; (c) elements to 
be calculated 
 
b) and a relative angle with respect to R. The angles are 
not directly used in this triangulation process, what we 
use is the absolute difference between these angles (α). 
The robot reads from the DB all the registers that share 
the same r-state description, i.e., that have the same 
r-state discretized values. The numerical angle and dis-
tance values associated with these DB registers corre-
spond to the relative distances (a’ and b’) from the robot 
R’ in a trace relative to the same elements E and E’, and 
the corresponding angle β (Figure 5(b)). In order to 
know the distance between R and R’ (d) through this tri-
angulation process, Equations (1)-(4) are applied. 

2 2 2 cos( )EE a b ab     : Distance between E and E’. 

(1) 

 arcsin /a EE     : Angle between a’ and EE . 

(2) 

arcsin( / )a EE  : Angle between a and EE . (3) 

2 2 2 cos( )d a a aa     : Distance between R and R’. 

(4) 

These four equations give the relative distance (d) be-
tween R and R’. Once this value is calculated, a kernel is 
used to assign a weight (w). This weight is multiplied by 
the speed and angle values of the R’ robot’s r-action. The 
resulting weighted speed and angle values are then added 
to the R robot’s speed and angle values. This process is 
applied to every register read from the DB whose r-state 
description is the same as R and is repeated every time 
the robot reaches a new r-state.  

To summarize this process, each time the robot 
reaches an r-state and chooses an r-action according to 
the learned policy; it retrieves from the DB all the regis-
ters that share the same r-state. It uses the numerical val-
ues of the retrieved r-states to evaluate the relative dis-
tance of the position of the robot in a trace to the position 
of the robot in the actual r-state. Once all the distance 
values (di) are calculated we apply a Gaussian kernel 
(Equation (5)) to obtain a weight wi. We tried different 
kernels, e.g., Tricubic kernel, and results were better with 
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Gaussian kernel but further tests are needed. 
2( ) exp( )i i iw d d  : Gaussian kernel.      (5) 

Then, every weight wi is multiplied by the corre-
sponding speed and angle values (wi × speedDBi and wi × 
angleDBi) of the r-state-r-action pairs retrieved from the 
DB. The resulting values are added to the discrete 
r-action (rAt = {disc_speed, disc_angle}) values of the 
policy obtained in the first stage in order to transform 
this discrete r-action into a continuous action (Equations 
(6) and (7)) that is finally executed by the robot. This 
process is performed in real-time every time the robot 
reaches a new r-state. 

continuous_speed = disc_speed + {w1 × speedDB1} + {w2 
× speedDB2} + … + {wn × speedDBn}: LWR for develop-
ing the continuous speed.                       (6) 

continuous_angle = disc_angle + {w1 × angleDB1} + {w2 
× angleDB2} + … + {wn × angleDBn}: LWR for develop-
ing the continuous angle.                       (7) 

The weights are directly related to the distances be-
tween the robots in the actual r-state to the r-states to the 
robot in the human traces stored in the DB. The closer 
the human traces registers are to the robot’s actual posi-
tion, the higher the influence they have in transforming 
the discrete action into a continuous action. 

The main advantage of our approach is the simple and 
fast strategy to produce continuous actions policies that, 
as will be seen in the following section, are able to pro-
duce smoother and shorter paths in different environ-
ments.  

7. Experiments 

For testing purposes, two types of experiments were per-
formed: 

1) Learning Curves: In these experiments we com-
pared the number of iterations it takes our method 
TS-RRLCA to learn a policy against classical Reinforce-
ment Learning (RL) and against the rQ-learning algo-
rithm (shown in Algorithm 2) without using Behavioural 
Cloning approach, which we will refer to as Relational 
Reinforcement Learning (RRL).  

2) Performance: In these experiments we compared the 
performance of the policies learned through TS-RRLCA 
with discrete actions against the policies learned through 
TS-RRLCA with continuous actions. Particularly we tested: 
How close the tasks are to the tasks performed by the 
user and how close the tasks are from obstacles in the 
environment. 

3)Execution times. 
These experiments were carried out in simulation 

(Player/Stage [16]) and with a real robot which is an 
ActivMedia GuiaBot (www.activrobots.com). 

Both robots (simulated and real) are equipped with a 
180° front laser sensor and an array of four back sonars 
(located at –170°, –150°, 150° and 170°).  

The laser range is 8.0 m and for the sonars is 6.0 m. 
The tasks in these experiments are “navigating through 
the environment” and “following an object”. 

The policy generation process was carried out in the 
map shown in Figure 6 (Map 1 with size 15.0 m × 9.0 m). 
For each of the two tasks a set of 20 traces was generated 
by the user. For the navigation tasks, the robot and the 
goal’s global position (for the goal-position predicate) 
were calculated using the work developed in [14]. For 
the following tasks we used a second robot which orien-
tation and angle were calculated through the laser sensor. 
Figure 6 shows an example of navigation and a follow-
ing trace. 

To every set of traces, we applied our approach to ab-
stract the r-states and induce the subsets of relevant r- 
actions. Then, rQ-learning was applied to learn the poli- 
cies. For generating the policies, Q-values were initialized 
to –1, ε = 0.1, γ = 0.9 and α = 0.1. Positive reinforcement, r 
(+100) was given when reaching a goal (within 0.5 m), 
negative reinforcement (–20) was given when the robot 
hits an element and no reward value was given otherwise 
(0). 

 

 
(a) 

 

 
(b) 

Figure 6. Traces examples, (a) navigation trace; (b) follow-
ing trace 
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7.1 Learning Curves 

Our method (TS-RRLCA) was compared in the number of 
iterations it takes to develop a control policy, against 
classical reinforcement learning (RL) and against the 
rQ-learning algorithm described in Algorithm 2, consid-
ering all the possible r-actions (the 8 r-actions, shown in 
Section 4) per r-state (RRL).  

For developing the “navigating through the environ-
ment” policy with RL we discretized the state and action 
space as follows: the training Map 1, depicted in Figure 6, 
was divided in states of 25 cm2. Since this map’s size is 
15 m × 9 m, the number of states is 2,160. In every state, 
one of the next 8 actions can be chosen to get into a new 
state which gives a total of 17,280 state-action pairs (This 
set of 8 actions correspond to the set of 8 r-actions we 
used in our rQ-learning algorithm).  

1) front: robot goes forward 25 cm. 
2) back: robot goes back 25 cm. 
3) slight-right: robot turns –45°. 
4) right: robot turns –90°. 
5) far-right: robot turns –135°. 
6) slight-left: robot turns 45°. 
7) left: robot turns 90°. 
8) far-left: robot turns 135°. 
For developing the navigation policy with RRL we 

have 655 r-states with 8 possible r-actions for each r-state, 
this gives a total of 5,240 possible r-state-r-action pairs. 
The number of r-states corresponds to the total number of 
r-states in which the training map can be divided.  

For developing the navigation policy with TS-RRLCA 
we used 20 navigation traces from which 934 r-state- 
r-action pairs were obtained. As can be seen, by using 
our Behavioural Cloning approach we significantly re-
duced the number of state-action pairs to consider in the 
learning process. 

In each trace, every time our program performed a ro-
bot’s sensors reading, which includes laser, sonars and 
odometer, we first transformed the laser and sonar read-
ings into natural landmarks (as described in Section 3). 
These natural landmarks are sent to the predicates to 
generate the corresponding r-state, the corresponding 
r-action is generated by using the odometer’s readings (as 
described in Section 4). This gives an r-state-r-action pair 
such as the one shown in Table 2.  

Figure 7(a) shows the learning curves of RL, RRL and 
TS-RRLCA for a navigation policy. They show the ac-
cumulated Q-values every 1,000 iterations. As can be 
seen from this figure, the number of iterations for devel-
oping an acceptable navigation policy with TS-RRLCA is 
very low when compared to RRL and is significantly 
lower when compared to RL. It should be noted that the 
navigation policy learned with RL only works for going 
to a single destination state while the policies learned 
with our relational representation can be used to reach 

 
(a) 

 

 
(b) 

Figure 7. Learning curves comparison, (a) learning curves 
for the navigation policies; (b) learning curves for the fol-
lowing policies 
 
several destination places in different environments. 

For developing the “following an object” policy, the 
number of r-state-r-action pairs using our relational rep-
resentation (RRL) is 3,149, while the number of r-state- 
r-action pairs using the same representation but with be-
havioural cloning (TS-RRLCA) is 1,406, obtained from 
20 traces. For the following policy we only compared our 
approach against RRL. 

Figure 7(b) shows the learning curves of these two 
methods. As can be seen the number of iterations that our 
method needs to generate an acceptable following policy 
is much lower than RRL.  

To generate the continuous actions policies, LWR was 
applied using the Gaussian kernel for estimating weights. 
In the next section we compare the traces performed with 
the discrete actions policy with those using continuous 
actions. 

7.2 Performance Tests 

Once the policies were learned, experiments were exe-
cuted in the training map with different goal positions and 
in two new and unknown environments for the robot (Map 
2 shown in Figure 8 with size 20.0 m × 15.0 m and Map 3, 
shown Figure 9, which corresponds to the real robot’s 
environment whose size is 8.0 m × 8.0 m). A total of 120  
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(a)                          (b) 

 

  
(c)                          (d) 

Figure 8. Navigation and following tasks performed with 
the policies learned with TS-RRLCA, (a) navigation task 
with discrete actions, Map 1; (b) navigation task with con-
tinuous actions, Map 1; (c) following task with discrete ac-
tions, Map 2; (d) following task with continuous actions, 
Map 2 
 

   
(a)               (b)                (c) 

 

   
(d)               (e)                (f) 

Figure 9. Navigation and following tasks examples from 
Map 3, (a) navigation task with discrete actions; (b) naviga-
tion task with continuous actions; (c) navigation task per-
formed by user; (d) following task with discrete actions; (e) 
Following task with continuous actions; (f) following task 
performed by user 
 
experiments were performed: 10 different navigation and 
10 following tasks in each map, each of these tasks were 
executed first with the discrete actions policy from the 
first stage and then with the continuous actions policy 
from the second stage. Each task has a different distance 
to cover and required the robot to traverse through dif-
ferent places. The minimum distance was 2 m. (Manhat-
tan distance), and it was gradually increased up to 18 m. 

Figure 8 shows navigation (on the top) and a following 
task (on the bottom) performed with discrete and con-

tinuous actions policies respectively. 
Figure 9 shows navigation and a following task per-

formed with the real robot, with the discrete and with the 
continuous actions policy. 

As we only use the r-state-r-action pairs from the traces 
developed by the user in Map 1 (as the ones shown in 
Figure 6), when moving the robot to the new environ-
ments (Map 2 and Map 3), sometimes, it was not able to 
match the new map’s r-state with one of the previously 
visited states by the user in the traces examples. So when 
the robot reached an unseen r-state, it asked the user for 
guidance. Through a joystick, the user indicates the robot 
which r-action to execute in the unseen r-state and the 
robot saves this new r-state-r-action pair in the DB. Once 
the robot reaches a known r-state, it continues its task. As 
the number of experiments increased in these new maps, 
the number of unseen r-states was reduced. Table 3 shows 
the number of times the robot asked for guidance in each 
map and with each policy. 

Figure 10(a) shows results in terms of the quality of the 
performed tasks with the real robot. This comparison is 
made against tasks performed by humans (For Figures 
10(a), 10(b) and 11, the following acronyms are used, 
NPDA: Navigation Policy with Discrete Actions, NPCA: 
Navigation Policy with Continuous Actions, FPDA: Fol-
lowing Policy with Discrete Actions and FPCA: Follow-
ing Policy with Continuous Actions).  

All of the tasks performed in the experiments with the 
real robot, were also performed by a human using a joy-
stick (Figures 9(c) and 9(f)), and logs of the paths were 
saved. The graphic shows the normalized quadratic error 
between these logs and the trajectories followed by the 
robot with the learned policy. 

Figure 10(b) shows results in terms of how closer the 
robot gets to obstacles. This comparison is made using the 
work developed in [17]. In that work, values were given to 
the robot accordingly to its proximity to objects or walls. 
The closer the robot is to an object or wall the higher cost 
it is given. Values were given as follows: if the robot is 
very close to an object (between 0 m and 0.3 m) a value of 
–100 is given, if the robot is close to an object (between 
0.3 m and 1.0 m) a value of –3 is given, if the robot is near 
an object (between 1.0 m and 2.0 m) a value of –1 is given, 
otherwise a value of 0 is given. As can be seen in the 
figure, quadratic error and penalty values for continuous 
actions policies are lower than those with discrete actions. 

Policies developed with this method allow a close-to- 
human execution of the tasks and tend to use the available 
free space in the environment. 

7.3 Execution Times 

Execution times with the real robot were also registered. 
We compared the time that takes to the robot to perform a 
tasks with discrete actions against tasks performed with  
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Table 3. Number of times the robot asked for guidance in 
the experiments 

Policy type Map 1 Map 2 Map 3 Total 

Navigation 2 6 14 22 

Following 7 15 27 49 

 

 
(a) 

 

 
(b) 

Figure 10. Navigation and following results of the tasks 
performed by the real robot, (a) quadratic error values; (b) 
penalty values 
 
continuous actions. Every navigating or following ex- 
periment, that we carried out, was performed first with 
discrete actions and then with continuous actions.  

As can be seen in Figure 11, continuous actions poli-
cies execute faster paths than the discrete actions policy 
despite our triangulation and LWR processes.  

8. Discussion 

In this work, we introduced a method for teaching a robot 
how to perform a new task from human examples. Ex-
perimentally we showed that tasks learned with this 
method and performed by the robot are very similar to  

 

Figure 11. Execution times results 
 
those tasks when performed by humans. Our two-stage 
method learns, in the first stage, a rough control policy  
which, in the second stage, is refined, by means of Locally 
Weighted Regression (LWR), to perform continuous ac-
tions. Given the nature of our method we can not guar-
anteed to generate optimal policies. There are two reasons 
why this can happen: 1) the actions performed by the user 
in the traces may not part of the optimal policy. In this 
case, the algorithm will follow the best policy given the 
known actions but will not be able to generate an optimal 
policy. 2) The LWR approach can take the robot to states 
that are not part of the optimal policy, even if they are 
smoother and closer to the user’s paths. This has not rep-
resented a problem in the experiments that we performed. 

With the Behavioural Cloning approach we observed 
around a 75% reduction in the state-action space. This 
reduction depends on the traces given by the user and on 
the training environment. In a hypothetical optimal case, 
where a user always performs the same action in the same 
state, the system only requires to store one action per state. 
This, however, is very unlikely to happen due to the con-
tinuous state and action space and the uncertainty in the 
outcomes of the actions perform with a robot. 

9. Conclusions and Future Work 

In this paper we described an approach that automatically 
transformed in real-time low-level sensor information into 
a relational representation. We used traces provided by a 
user to constraint the number of possible actions per state 
and use a reinforcement learning algorithm over this re-
lational representation and restricted state-action space to 
learn in a few iterations a policy. Once a policy is learned 
we used LWR to produce a continuous actions policy in 
real time. It is shown that the learned policies with con-
tinuous actions are more similar to those performed by 
users (smoother), and are safer and faster than the policies 
obtained with discrete actions. Our relational policies are 
expressed in terms of more natural descriptions, such as 
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rooms, corridors, doors, walls, etc., and can be re-used for 
different tasks and on different house or office-like envi-
ronments. The policies were learned on a simulated en-
vironment and later tested on a different simulated envi-
ronment and on an environment with a real robot with 
very promising results. 

There are several future research directions that we are 
considering. In particular, we would like to include an 
exploration strategy to identify non-visited states to com-
plete the traces provided by the user. We are also explor-
ing the use of voice commands to indicate the robot which 
action to take when it reaches an unseen state. 
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ABSTRACT 

The autonomous mobile robots must be flexible to learn the new complex control behaviours in order to adapt effec-
tively to a dynamic and varying environment. The proposed approach of this paper is to create a controller that learns 
the complex behaviours incorporating the learning from demonstration to reduce the search space and to improve the 
demonstrated task geometry by trial and corrections. The task faced by the robot has uncertainty that must be learned. 
Simulation results indicate that after the handful of trials, robot has learned the right policies and avoided the obstacles 
and reached the goal. 
 
Keywords: Mobile Robots, Learning from Demonstration, Neural Network Control, Reinforcement Learning 

1. Introduction 

Most of the autonomous mobile robots or the human 
controlled mobile robots working in the industrial, do-
mestic and entertainment environment lack the flexibility 
to learn and perform the new complex tasks. In this paper 
we consider the problem of motion control of an auto-
nomous mobile robot using the control field generated by 
a neural controller. The proposed system enables the 
autonomous mobile robot to learn, modify and adapt its 
skills efficiently in order to react adequately in complex 
and unstructured environment. To incorporate the preci-
sion and flexibility in robots, we incorporated three very 
common natural approaches that, human uses to learn and 
execute any task, 1) Learning from demonstration 2) 
Generalization of the learned task 3) Reinforcement of 
the task by trial and error [1,2]. The designing of a mo-
tion controller depends on the kinematics constraint of a 
mobile robot and the complexity and structure of a task, 
and is very difficult to design whereas the proposed con-
troller can easily and quickly learn the complex controls 
with some simple demonstrations and few trials. The 
major advantage of our technique is that any mobile robot 
can be taught to move in an unknown environment using 
the generated control field as the general control law. The 
control law is independent of both physical and virtual 
sensors. The use of domain knowledge has a great sig-
nificance in reducing the learning time and the use of trial 
and error learning method improves the learning con-
tinuously [3]. The learning from demonstration has re-
duced the robot programming and made it very simple to 
use [4,5]. The reinforcement learning has already been 

used in many navigational and reactive problems [6,7,8]. 
The ability of reinforcement learning to interact with the 
environment and the domain knowledge from demonstra-
tions has made it easier to tackle uncertainty. Due to the 
simplicity to operate and flexibility to learn uncertainty, 
the proposed controller can be operated by the non-pro-
fessionals who are not skilled enough to control and pro-
gram the sophisticated mobile robots in the complex in-
dustrial environment [3,9].  

The paper is presented in following manner. Section II 
presents the previous works related to the field. Section 
III presents the controller architecture and the proposed 
algorithm. Section IV presents the simulation results. 
Section V presents conclusions and discusses the work 
further. 

2. Related Works 

We have incorporated two different research areas: 
Learning from demonstration and Reinforcement Learn-
ing, which bears some relation to a number of previous 
works. The importance of human robot interaction and 
the need of modern artificial intelligence are described in 
[10] that focus on creating new possibilities for the flexi-
ble and interacting robot from the engineering point of 
view and from the humanistic point of view. The paper 
incorporates these ideas and focuses on flexible learning 
controller of a robot which can learn and adapt the 
changes in the environment very easily. The proposed 
methodology differs from [3,11,12] and [5] in two fun-
damental aspects. Firstly our approach learns from dem-
onstration, which acts as initial policy to perform the de- 
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sired task and builds a model of partially observable en-
vironment. Secondly, the methodology is offline and 
online computations are done on the basis of generated 
control field and the previous experience. The proposed 
controller initializes the weights of the controller from 
the demonstrated points of the task whereas in [11] the 
learner is initially empty. The proposed controller utilizes 
Q-values to avoid uncertainty where as [3] and [11] used 
fuzzy behaviour as a reflex to act into a new situation. 
The aim is to generate an abstract description of the task 
reflecting user’s intention and modelling the problem 
solution offline. In this context we also discuss the issues 
of evaluation, tuning, suitable generalization and execu-
tion of the elementary skills [9,13-15]. Instead of using 
radial basis as a function approximation [3,12], we used 
inverse distance interpolation. It works like local ap-
proximators. We also used learning through feedback, 
which improves the learning and generalization continu-
ously. 

3. Controller Architecture 

The proposed learning controller can be represented as 
recurrent neural network architecture. The controller has 
basically 3 layers, input layer, hidden layer and output 
layer and a reinforcement controller which is connected 

to the output layer and the hidden layer. NS R  and 
NA R  are the sensor input and output. The weight is 

updated when the sensor and the controller try to learn an 
unknown model from sensors to actuators, i.e. 

( )A f S                 (1)  

Input Layer—Input layer consists of several neural in-
put nodes that represent some state in the state space i.e. 
S. The sensor input is propagated through the hidden 
layer from the input layer to the output layer. Each neural 
node in the input layer is connected to all the neural 
nodes in the hidden layer. 

Hidden Layer—Hidden layer is composed of several 
computational neurons. The output of the hidden neurons 
is the distance between the input layer neuron and the 
weight similar to a prototype fuzzy law. The weight  

in the hidden layer neuron represents the centre i.e. the 
demonstrated data points. Each neural node of the input 
layer is connected to all the neural nodes of the hidden 
layer. The output of the hidden layer codes the distance 
of the input neurons from the hidden layer neurons.  

iW

Output layer—The output layer neuron computes the 
inverse weighted sum of the output  of the hidden 
layer neurons i.e. 
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The output layer neuron uses inverse distance interpo-
lation to update the weights of the output layer.  
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Figure 1. Neural network control architecture 
 
The advantage of using this technique is that, the esti-
mated data point has the influence of all the neighbouring 
data points depending on the distance from each proto-
type rule. This is the simplest generalized technique and 
mathematically expressed as 
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           (3) 

where,  is the estimated control action in term of a 

sensor state ;  is a prototyped action of the hidden 

layer neuron at state ; 

'v
'S iv

S pd  is the distance between S 
and S’; p is the power; N(v’) is the number of data points 
in the effective window of v’. Generally the distance can 
be calculated by simple Euclidean distance formula. The 
above generalization technique only acts as a function 
approximation that reproduces the generalized control 
field based on the distance from the existing prototype 
rule. But to tackle uncertainty and to produce an im-
proved control field, the robot needs to incorporate a 
weight that represents the significance of the previous 
learning history and incorporates continuous learning 
experiences. The idea is to improve the learning by trial 
and error. So Q-learning [16] is incorporated, which pro-
duces Q-matrix based on the scalar reward R. The 
Q-value determines the new policy to achieve the goal. 
Therefore in the neural network architecture, the output 
layer is connected to the reinforcement controller which 
in turn is connected to the hidden layer. Depending on the 
achievement of the desired goal, the reinforcement re-
ward R is given to the robot by the reinforcement con-
troller. The reward R updates the Q-matrix and the new 
Q-value is used to generate a new control field. The rein-
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forcement controller follows the online exploration and 
offline learning policy [17]. So the Q-value is updated in 
following two cases: 

Case 1: Online exploration—During online exploration 
the robot uses Q-matrix to avoid uncertainty like un-
known obstacles. Therefore, whenever the robot finds 
uncertainty in its next course of action, the control 
switches from the generalized control field to Q-matrix 
and selects an action with other maximum Q-value from 
its effective window that corresponds to a policy with 
next higher probability to reach the goal and avoids the 
uncertainty. This earns an online reward R and updates 
the Q-value online in that time step. The change in the 
action in that time step is used as a prototype rule i.e. 
center in the hidden layer. 

Case 2: Offline learning policy—In the end of the trial 
during offline learning policy, the reinforcement reward 
R is given offline to the robot. The reward R updates the 
corresponding Q-values of the trajectory based on the 
final payoff. After updating Q-value, the change is ap-
plied to the neurons in the hidden layer of the network 
architecture. So another factor that influences the output 
of the hidden layer is the Q-value. 

The Q-value is then used as a measure to calculate the 
relevance of the data points in terms of usefulness of that 
particular task geometry in achieving the goal. The change 
in the Q-matrix influences all the neighbouring data 
points in the control field. This is called the generaliza-
tion. After that the control field is transferred back to the 
robot. In every trial Q-matrix is updated and reflects the 
continuous learning. The steps are repeated until we get 
the desired control field. This technique of learning is 
known as online exploration and offline policy learning. 
The reward scheme for online exploration and offline 
policy learning is as follows: 

1 If the goal is achieved or obstacle is aovided

0 If no obstacle or no goal

1 If failed to achieve goal or unable to aovid obstacle

R


 


 

                                          (4) 

The reward function can represented as: 

uncertainty goalR R R              (5) 

In online exploration goalR  is set to zero and  

is awarded online to avoid obstacles on its path whereas 
in offline learning policy 

uncertaintyR

goalR  is awarded offline and 

 is set to zero. uncertaintyR

The Q update rule can be described in two steps. 
Step 1: Give Reward R using (4) and (5) and update 

the weight  using the weight update Equation.  wQ
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Here  ,wQ s a  is the weight matrix to be updated; (s, 

a) is the current state and action;  is the reward 

matrix; 

 ,R s a

 ' ',wQ s a  is the future state with the highest  

value; 
wQ

  is the learning rate;   is the discount factor in 
the range [0, 1]. The weight update Equation (6) is inher-
ited from the traditional Q-learning algorithm [16].  

Step 2: Estimate the data points  based on the  

calculated in step 1. The new estimate updates the previ-
ously generated control field and generates a new gener-
alized control field. To implement our idea we modify (3) 
by introducing . 
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Here w
p

Q

d
 is the weight. A small  value repre-

sents the small contribution of the point in accomplishing 
the goal where as a large  value signifies large con-

tribution of the point in accomplishing the goal.  is 

inversely related to the distance, which signifies that the 
 will have higher value when the estimated data point 

is closer to the good trajectories. The trajectories with 
lower  value have less contribution in the overall 

generalization.  

wQ

wQ

wQ

wQ

wQ

,w

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In the proposed context behaviour is improved based 
on scalar rewards from a critic. It does not require a per-
son to program the desired actions in different situations. 
However several difficulties stand in the way. Firstly a 
robot using the basic reinforcement-learning framework 
might require an extremely long time to converge to the 
right track and to acquire the right action. In our frame-
work learning from demonstration is used that reduces 
the search space to achieve an adequate control and it 
does not need any programming of the desired behaviour. 
The demonstration provides the domain knowledge, that 
gives hint to perform the desired task and reduces 
knowledge base significantly. Through trial and error the 
knowledge base can be improved further [18,19]. Sec-
ondly reinforcement learning is basically applied on the 
task where the state of the environment is completely 
observable, but in the real world tasks most of the 
knowledge is incomplete and inaccurate. The online ex-
ploration and offline learning policy explores the un-
known environment with the help of generalized control 
field and tackles the uncertainty by selecting the appro-
priate control action which signifies maximum experi-
ence i.e. maximum Q-value in the effective window in 
achieving the desired goal. The trajectory generated by it 
changes the control field and tackles the uncertainty in 
the environment.  
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Ideally for a real robot any learning algorithm should 
be feasible and efficient to perform the complex compu-
tations, keeping in mind the robots internal configuration 
under consideration. A robot has limited memory and 
limited computational ability. Almost all the cases of 
practical interest consist of far more state observation 
pairs than could possibly entered into the memory. The 
robot is even typically unable to perform enough compu-
tation per time step to fully use it. Especially in the real 
world experiences, which consist of large number of ac-
tion and observation pairs and at each step the robot 
needs to memorize and learn the action-observation pairs. 
Thus a good approach is to compute and store a limited 
number of data online which are relevant and learning the 
policy offline. In the proposed algorithm the old data can 
be used and new experiences can be collected, which are 
somewhat characteristic for the task. The best thing is the 
experience replay and the assessment of the performance 
of the previous experiences. Another important step is the 
generalization of the learned policy. The policy learned in 
this way keeps the learning continuous. This kind of 
learning is generally called as learning from experience. 
For a robot controller, it is also important to reduce the 
real time computation. The robot takes action on the gen-
erated control field only. Hence learning is made con-
tinuous and the computational overhead is also reduced. 
On the other hand the exploration is done online. The 
robot decides between exploration and exploitation based 
on the number of times an action has been chosen. The 
robot generally chooses action with the highest state ac-
tion value with high probability, which is known as ex-
ploitation. If the robot oscillates in a particular region 
then exploitation is stopped and control switches to ex-
ploration to avoid oscillation and finds a new path. Dur-
ing exploration the selection of next state is made random. 
This approach has a major advantage of not being influ-
enced by the limited knowledge only i.e. to avoid local 
optima. During exploration the robot can take the control 
actions which were never taken before and hence explor-
ing more of the unobserved environment. The balance 
between exploration and exploitation is necessary, be-
cause exploitation is helping the robot to avoid uncer-
tainty and to reach the goal where as exploration is 
avoiding all the oscillation and unnecessary iterations. So 
this methodology has a very positive approach to learn 
any new skill quickly. The robot can be restrained easily 
to adapt to environment changes and trained and learned 
improving the performance all the time. 

The proposed algorithm can be summarized as below: 
1) Build the control field by demonstrating the task, i.e. 

initializing the weights in the hidden layer with the dem-
onstrated data points and imitating the relevant knowl-
edge required to achieve the task.  

2) Based on the demonstrated control field, using in-
verse distance weight interpolation, generalize the field 

using (7). 
3) Transfer the generalized control field to the robot 

and do some trials to achieve the goal. Do some explora-
tion also. If all the trials are successful in achieving the 
goal then the demonstrated control field is perfect and 
does not need any changes. If in trials, at some point the 
robot hits or senses any obstacle then give reward 

 to the point using (4) and (5) and move to-

wards the point that has next highest Q-value, without 
any obstacle. The next higher Q-value represents the next 
most experienced and favorable point heading towards 
the goal. Then update the Q-values using (6). This will 
generate a new path to reach the goal. After the goal has 
been reached, generalize the control field offline using 
(7). The control field will have influence from the points 
updated. This will reproduce an updated control field.  

uncertaintyR

4) After reaching the goal, assign final reward goalR  

to the robot using (4) and (5). This reward represents the 
successful completion of the desired task avoiding all the 
obstacles and is made offline. Update all the Q-values of 
the updated control trajectory generated in step 3 using 
(6). 

5) Generalize the control field with the new updates 
using (7). The updated field represents the new control 
field. Repeat from Step 3 to 5 until the robot learns the 
desired task. 

4. Simulation Results 

In simulation we build a discrete workspace with a di-
mension of 20 × 20. The workspace contains a goal and 
obstacles, represented by the ‘G’ and the rectangles. Ro-
bot has a sensor of 3 × 3 neighbourhoods which means it 
can sense obstacles around its 8 neighbouring cells. The 
arrows represent the direction of each point in the field. 
The simulation is done based on the proposed algorithm 
in section 3. The robot was initially demonstrated to reach 
the goal. Based on the demonstration initial control field 
was built (Figure 2). The simulation considered two dif-
ferent tasks with different uncertain complexities with 
same initial control field.  

Task 1: The robot had to avoid an obstacle and reach 
the goal. 

Task 2: The robot had to avoid obstacles and pass 
through the door and reach the goal. 

In both the cases robot completed the tasks in few tri-
als avoiding all the uncertainties. The final control fields 
for task 1 and task 2 are shown in Figures 3 and 4.  

The learning history of the controller for both the cases 
is described in Figures 5-7. The broken line curve and 
the solid line curve represents first and second task.  

In Figure 6 it can be observed that number of hidden 
neurons increases with the number of trials. Increase in 
hidden layer neurons indicates the increase in number  
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Figure 2. Demonstrated control field 
 
 

G 

 

Figure 3. Final control field of task 1 
 

 

G

 

Figure 4. Final control field of task 2 
 
centers or prototype rules in the network. It clearly indi-
cates the learning in each trial. Figure 7 displays the plot-
ting of the total number reinforcements used in each trial. 
The total reinforcement can be defined as the sum of im-
mediate reinforcement the learner receives till the robot 
reaches the goal and the offline reinforcement the learner 
receives after reaching the goal. It is clear in Figure 7 that 
after trial 3 the controller did not use any reinforcements 
to complete the tasks. The controller needed only three 
trials 1-3 to learn a new control law to avoid uncertainty 
in both tasks. To see the reliability of the control field we 
chose different starting points. The robot was successful 
in completing the tasks from all the points.  

Another observation is that the number of reinforce- 
ment received (Figure 7) and the number of steps taken 

 

Figure 5. Number of steps taken to reach goal in each trial 
 

 

Figure 6. Number of hidden layer neurons used in each trial 
 

 

Figure 7. Number of reinforcements given in each trial 
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(Figure 5) in trial 1 in task 2 (solid line curve) is very 
high. It indicates that, in task 2 the maximum exploration 
was done in trial 1 where as in task 1 exploration was 
increasing with trials. Therefore with increase in explora-
tion reinforcement is also increasing. Furthermore, it was 
during first three trials the robot attained reinforcements 
(Figure 7) and a sharp growth in network (Figure 6). 

5. Conclusions 

This paper presented a learning strategy to generate a 
control field for a mobile robot in an unknown and un-
certain environment, which integrates learning, generali-
zation, exploration and offline computation into a unified 
architecture. After the learning, a robot can approach the 
goal by following the control field. The important lessons 
learned from the implementation included 1) imitation of 
very accurate and exact action sequence is not necessary 
[15]; 2) a prior knowledge is required to plan a model of 
the task to support rapid learning; 3) generalization is 
improved by improving the learning policies; 4) simple 
method like inverse distance is adequate to generalize the 
task; 5) offline learning is an important method for real 
time applications to avoid the large online computations; 
6) online exploration is required to explore other possi-
bilities to perform a task and to improve the quality of 
learning; 7) balance between exploration and exploitation 
improves the learning policies, which reduces the learn-
ing time significantly; 8) the robot can learn from few 
demonstrations but it effects the learning speed. The ma-
jor disadvantage of this method is the use of position in-
formation which is not always accurate in real robots due 
to inaccurate sensor information due to rotational or 
translational error caused by the slippage between robot’s 
wheel and the floor. 
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ABSTRACT 

Traditional geostatistical estimation techniques have been used predominantly by the mining industry for ore reserve 
estimation. Determination of mineral reserve has posed considerable challenge to mining engineers due to the geo-
logical complexities of ore body formation. Extensive research over the years has resulted in the development of several 
state-of-the-art methods for predictive spatial mapping, which could be used for ore reserve estimation; and recent ad-
vances in the use of machine learning algorithms (MLA) have provided a new approach for solving the problem of ore 
reserve estimation. The focus of the present study was on the use of two MLA for estimating ore reserve: namely, neural 
networks (NN) and support vector machines (SVM). Application of MLA and the various issues involved with using 
them for reserve estimation have been elaborated with the help of a complex drill-hole dataset that exhibits the typical 
properties of sparseness and impreciseness that might be associated with a mining dataset. To investigate the accuracy 
and applicability of MLA for ore reserve estimation, the generalization ability of NN and SVM was compared with the 
geostatistical ordinary kriging (OK) method. 
 
Keywords: Machine Learning Algorithms, Neural Networks, Support Vector Machine, Genetic Algorithms, Supervised 

1. Introduction 

Estimation of ore reserve is essentially one of the most 
important platforms upon which a successful mining op-
eration is planned and designed. Reserve estimation is a 
statistical problem and involves determination of the 
value (or quantity) of the ore in unsampled areas from a 
set of sample data (usually drill-hole samples) X1, X2, 
X3, …. Xn collected at specific locations within a deposit. 
During this process, it is assumed that the samples used 
to infer the unknown population or underlying function 
responsible for the data are random and independent of 
each other. Since the accuracy of grade estimation is one 
of the key factors for effective mine planning, design, 
and grade control, estimation methodologies have un-
dergone a great deal of improvement, keeping pace with 
the advancement of technology. There are a number of 
methodologies [1-6] that can be used for ore reserve estima-
tion. The merits and demerits associated with these 
methodologies determine their application for a particu-

lar scenario. The most common and widely used methods 
are the traditional geostatistical estimation techniques of 
kriging. Typically, the previously mentioned criteria of 
randomness and independence among the samples are 
rarely observed. The samples are correlated spatially, and 
this spatial relationship is incorporated in the traditional 
geostatistical estimation procedure. The resulting infor-
mation is contained in a tool known as the “variogram 
function,” which describes both graphically and numeri-
cally the continuity of mineralization within a deposit. 
The information can also be used to study the anisot-
ropies, zones of influence, and variability of ore grade 
values in the deposit. Although kriging estimators find a 
wide range of application in several fields, their estima-
tion ability depends largely on the quality of usable data. 
Usable data applies to the presence of good and sufficient 
data to map the spatial correlation structure. Their per-
formance is also appreciably better when a linear rela-
tionship exists between the input and output patterns. In 
real life, however, this is extremely unlikely. Even though 
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there are a number of kriging versions, such as log-nor-
mal kriging and indicator kriging that apply certain spe-
cific transformations to capture nonlinear relationships, 
they may not be efficient enough to capture the broad 
nature of spatial nonlinearity. 

Modernization and recent developments in computing 
technologies have produced several machine learning 
algorithms (MLA), for example, neural networks (NN) 
and support vector machines (SVM), that operate non- 
linearly. These artificial MLA learn the underlying func-
tional relationship inherently present in the data from the 
samples that are made available to them. The attractive-
ness of these nonlinear estimators lies in their ability to 
work in a black-box manner. Given sufficient data and 
appropriate training, they can learn the relationship be-
tween input patterns (such as coordinates) and output 
patterns (such as ore grades) in order to generalize and 
interpolate ore grades for areas between drill holes. With 
this approach, no assumptions must be made about fac-
tors or relationships of ore grade spatial variations, such 
as linearity, between boreholes. 

This study investigated ore-reserve estimation capa-
bilities of NN and SVM in the Nome gold deposit under 
data-sparse conditions. The performance of these MLA is 
validated by comparing results with the traditional ordi-
nary kriging (OK) technique. Several issues pertaining 
to model development are also addressed. Various es-
timation errors, namely, root mean square error (RMSE), 
mean absolute error (MAE), bias or mean error (ME), 
and Pearson’s correlation coefficient, were used as 
mea-sures to assess the relative performance of all the 
models. 

2. Nome Gold Deposit and Data Sparseness 

The Nome district is located on the south shore of the 
Seward Peninsula roughly at latitude 64°30’N and lon-
gitude 165°30’W. It is 840 km west of Fairbanks and 
860 km northwest of Anchorage (Figure 1). Placer gold 
at Nome was discovered in 1898. Gold and antimony 
have been produced from lode deposits in this district, 
and tungsten concentrates have been produced from re-
sidual material above the scheelite-bearing lodes near 
Nome. Other valuable metals, including iron, copper, 
bismuth, molybdenum, lead, and zinc, are also reported 
in the Nome district. 

[7] and [8] studied the Nome ore deposit and presented 
an excellent summary regarding its origins by chroni-
cling their exploration and speculating on the chronology 
of events in the complex regional glacial history that al-
lowed the formation and preservation of the deposit. 
Apart from the research just mentioned, several inde-
pendent agencies have carried out exploration work in 
this area over the last few decades. Figure 2 shows the 

composition of the offshore placer gold deposit. Alto-
gether, around 3500 exploration drill holes have been 
made available by the various sampling explorations in 
the 22,000-acre Nome district. The lease boundary is 
arbitrarily divided into nine blocks named Coho, Halibut, 
Herring, Humpy, King, Pink, Red, Silver, and Tomcod. 
These blocks represent a significant gold resource in the 
Nome area that could be mined economically.  

The present study was conducted in the Red block of 
the Nome deposit. Four hundred ninety-seven drill-hole 
samples form the data used for the investigation. Al-
though the length of each segment of core sample col-
lected from bottom sediment of the sea floor varied con-
siderably, the cores were sampled at roughly 1 m inter-
vals. On average, each hole was drilled to a depth of 30 m 
underneath the sea floor. Even though a database com-
piled from the core samples of each drill hole was made 
available, an earlier study by [9] revealed that most of the 
gold is concentrated within the top 5 m of bottom sedi-
ment of the sea floor. As a result, raw drill-hole samples 
were composited of the first 5 m of sea floor bottom 
sediment. These drill-hole composites were eventually 
used for ore grade modeling using NN, SVM, and Geo-
statistics.  

Preliminary statistical analysis conducted on drill-hole 
composites from the Red block displayed a significantly 
large grade variation, with a mean and standard deviation 
of 440.17 mg/m3 and 650.58 mg/m3, respectively. The 
coefficient of variation is greater than one, which indi-
cates the presence of extreme values in the dataset. Spa-
tial variability of the dataset was studied and character-
ized through a variography study. Figure 3 presents a 
spatial plot showing an omni-directional variogram for 
gold concentration in the data set. From the variogram 
plot, it can be observed that there is a small amount of 
the regional component. Large proportions of spatial 
variability occur from the nugget effect, indicating the 
presence of a poor spatial correlation structure in the de-
posit over the study area. Poor spatial correlation, in 
general, tends to suggest that prediction accuracy for this 
deposit might not be reliable. Hence, borehole data are 
sparse for reserve estimation, considering the high spatial 
variation of ore grade that is commonly associated with 
placer gold deposit. A histogram plot of the gold data is 
presented in Figure 4. The histogram plot illustrates that 
the gold values are positively skewed. A log-normal dis-
tribution may be a suitable fit to the data. Visual por-
trayal of the histogram plot also reveals that the gold 
datasets are composed of a large proportion of low values 
and a small proportion of extremely high values. Closer 
inspection of the spatial distribution of high and low 
gold-grade values portrays a distinct spatial characteristic 
of the deposit. For example, the high values do not ex-

ibit any regular trend. Instead, one or two extremely  h 
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Figure 1. Location plot of the studied area 
 
high values occasionally occur in a mix of low values. 
This may pose a particular difficulty in ore grade model-
ing, since the pattern of occurrence of extremely high 
values is somewhat unpredictable.  

As it is discernable that the available gold data are 
sparse and exhibit a low level of spatial correlation, spa-
tial modeling of these datasets is complex. Prediction 

accuracy may be further reduced if the problem of sparse 
data is not addressed. Prediction accuracy not only de-
pends on the type of estimation method chosen but also, 
largely, on the model data subsets on which the model is 
built. Since learning models are built by exploring and 
capturing similar properties of the various data subsets, 
these data subsets should be statistically similar to each   
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Figure 2. Offshore placer gold deposit 
 

 

Figure 3. Omni-directional variogram plot 
 
other and should reflect the statistical properties of the 
entire dataset. Statistical similarity ensures that the com-
parisons made for the model built on the training dataset 
and tested on the prediction dataset are logical [10,11]. 
Traditionally used practices of random division of data 
might fail to achieve the desired statistical properties 
when data are sparse and heterogeneous. Due to sparse-
ness, limited data points categorized into data subsets by 
random division might result in dissimilarity of the data  

 

Figure 4. Histogram plot Red block 
 
subsets [12].Consequently, overall model performance 
will be decreased. In order to demonstrate the severity of 
data sparseness in random data division, a simulation 
study was conducted using the Nome datasets. One hun-
dred random data divisions were generated, in which 
sample members for training, calibration, and validation 
subsets were chosen randomly. The reason for the choice 
of three data subsets is presented in Section 3.0.1. Statis-
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tical similarity tests of the three data subsets, using 
analysis of variance (ANOVA) and Wald tests were 
conducted. Data division was based on a consideration of 
all the attributes associated with the deposit, namely, the 
x-coordinate, y-coordinate, water-table depth, and gold 
concentration. The results of the simulation study made 
obvious the fact that almost one-quarter of the data divi-
sions are bad during random division of data due to the 
existing sparseness. This figure can be regarded as quite 
significant. The unreliability of random data division is 
further explored through inspection of a bad data division. 
A statistical summary for one of the arbitrarily selected 
random data divisions for the dataset is presented in Ta-
ble 1. From the table, it is seen that both the mean and 
standard deviation values are significantly different. 
Therefore, careful subdivision of data during model de-
velopment is essential. Various methodologies were in-
vestigated in this regard for proper data subdivision un-
der such a modeling framework, including the applica-
tion of genetic algorithms (GA) [3,5,13,14] and Koho-
nen networks [11,14]. A detailed description of the the-
ory and working principle of these methodologies can be 
found in any NN literature [15,16].  

3. Nome Gold Reserve Estimation 

When estimating ore grade, northing, easting, and wa-
ter-table depth were considered as input variables, and 
gold grade associated with drill-hole composites up to a 
depth of 5 m of sea floor was considered an output vari-
able. The next few sections describe the application of 
NN and SVM to ore reserve estimation, along with vari-
ous issues that arose while using NN and SVM for ore 
reserve modeling. 

3.1 NN for Grade Estimation 

Neural networks form a computational structure inspired 
by the study of biological neural processing. This struc- 
ture exhibits certain brain-like capabilities, including per- 
ception, pattern recognition, and pattern prediction in a 
variety of situations. As with the brain, information pro- 
cessing is done in parallel using a network of “neurons.” 
As a result, NN have capabilities that go beyond algo-
rithmic programming and work exceptionally well for 
nonlinear input-output mapping. It is this property of 
nonlinear mapping that makes NN appealing for ore 
grade estimation.  

There is a fundamental difference in the principles of 
OK and NN. While OK utilizes information from local 
samples only, NN utilize information from all of the 
samples. Ordinary Kriging is regarded as a local estima-
tion technique, whereas NN are global estimation tech-
niques. If any nonlinear spatial trend is present in a de-
posit, it is expected that the NN will capture it reasonably 

well. The basic mechanisms of NN have been discussed 
at length in the literature [15,17]. A brief discussion of 
NN theory is presented below to provide an overview of 
the topic. 

In NN, information is processed through several in- 
terconnected layers, where each layer is simply repre- 
sented by a group of elements designated as neurons. 
Basic NN architecture is made of an input layer consist- 
ing of inputs, one or more hidden layers consisting of a 
number of neurons, and the output layer consisting of 
outputs. Typical network architecture, having three lay- 
ers, is presented in Figure 5. Note that while the input 
layer and the output layer have a fixed number of ele- 
ments for a given problem, the number of elements in the 
hidden layer is arbitrary. The basic functioning of NN 
involves a manipulation of the elements in the input layer 
and the hidden layer by a weighing function to generate 
network output. The goodness of the resulting output 
(how realistic it is) depends upon how each element in 
the layers is weighted to capture the underlying phe-  
nomenon. As it is apparent that the weights associated 
with the interconnections largely decide output accuracy, 
they must be determined in such a way as to result in 
minimal error. The process of determination of weights is 
called learning or training during which, depending upon 
the output, NN adjust weights iteratively based on their 
contribution to the error. This process of propagating the 
effect of the error onto all the weights is called back-
propagation. It is during the process of learning that NN 
map the patterns pre-existing in the data by reflecting the 
changes in data fluctuations in a spatial coordinate. The 
sample dataset for a given deposit is used for this pur- 
pose. Therefore, given the spatial coordinates and other 
relevant attributes as input and the grade attribute as 
output, NN will be able to generate a mapping function 
through a set of connection weights between the input 
and output. Hence, output, O, of a neural network can be 
regarded as a function of inputs, X, and connection 
weights, W: O =  (X), where  is a mapping function. 
Training of NN involves finding a good mapping func-
tion that maps the input-output patterns correctly. This is 
done, as previously described, by adjusting connection 
weights between the neurons of a network, using a suit- 
able learning algorithm while simultaneously fixing the 
network architecture and activation function.  

An additional criterion for optimization of the NN ar-
chitecture is to choose the network with minimal gener-
alization error. The main goal of NN modeling is not to 
generate an exact fit to the training data, but to generalize 
a model that will represent the underlying characteristics 
of a process. A simple model may result in poor gener-
alization, since it can not take into account all the intrica-
ies present in the data. On the other hand, a too-complex c 
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Table 1. Statistical summary of one of the random divisions for the Red dataset 

Mean Standard Deviation 
Attribute 

Overall Training Calibration Validation Overall Training Calibration Validation 

X 3941.8 3947.7 3838.2 4032.6 456.54 436.89 505.50 425.5 

Y 10198 10174 10350 10097 469.75 483.19 487.22 384.06 

Gold 440.17 297.75 781.77 385.00 650.58 353.31 10340 475.12 

WTD 8.4845 8.94 6.6242 9.414 5.2063 5.1679 5.3559 4.69 

 

 

Figure 5. A typical neural network architecture 
 
model is flexible enough to fit data with anomalies or 
noise. Therefore, complexity of a model should be well 
matched to improve generalization properties of the data. 
Past research has been devoted to improving the gener-
alization of NN models, including techniques such as 
regularization, quick-stop training, and smoothing, and 
combining several learning models using various ensem-
ble techniques like bragging and boosting [1,18]. In the 
present study, a quick-stop training method is employed 
to improve the NN model generalization. Quick-stop 
training is based on the notion that generalization per-
formance varies over time as the network adapts during 
training [15]. Using this method, the dataset is split into 
three subsets: training, calibration, and validation. The 
network actually undergoes training on the training set. 
However, the decision to stop the training is made on the 
network’s performance in the calibration set. The error 
for the training set decreases monotonically with an in-
creasing number of iterations; however, the error for the 
calibration set decreases monotonically to a minimum, 
and then starts to increase as the training continues. A 
typical profile of the training error and the calibration 
error of a NN model is presented in Figure 6. This ob-
served behavior occurs because, unlike the training data, 
the calibration data are not used to train the network. The 
calibration data are simply used as an independent meas-
ure of model performance. Thus, it is possible to stop 
over-training or under-training by monitoring the per-

formance of the network on the calibration subset, and 
then stop the training when the calibration error starts 
increasing. In order to make a valid model-performance 
measurement, the training, calibration, and validation sub-
sets should have similar statistical properties. Thus, the 
members of the data in the training, calibration, and vali-
dation subsets should be selected in such a way that the 
three data subsets acquire similar statistical properties. 
Once the data subsets are obtained, a NN model is de-
veloped based on the NN architecture and learning rule 
to generate model outputs. 

3.2 NN Grade Estimation Results 

The Levenberg-Marquardt backpropagation (LMBP) 
learning algorithm was used in conjunction with slab 
architecture, as shown in Figure 7, for NN modeling. 
The hidden layer consisted of 12 neurons. The number of 
hidden neurons chosen was based on the minimum gen-
eralization errors of NN models while experimenting 
with a different number of hidden nodes in the hidden 
slabs. A MATLAB code was developed for conducting 
all the studies associated with NN modeling. The model 
datasets were obtained by following an integrated ap-
proach using data segmentation and GA. Data segmenta-
tion involved the division of data into three prime seg-
ments of high-, medium-, and low-grade gold concentra-
tions. This division was based on a visual inspection of 
the histogram plot. Figure 8 presents a schematic dia-
gram of data segmentation and the GA approach. After 
data segmentation, GA was applied in each of the seg-
ments: segment 1, segment 2, and segment 3. The mem-
bers of the training, calibration, and the validation data-
sets were selected using GA from each of the segments. 
Once the members for the training, calibration, and vali-
dation data were chosen, the selected members from the 
segments were appended together to form respective 
subsets. Table 2 presents the summary statistics of the 
mean and standard deviation values for all variables of 
the three data subsets and the entire dataset. Observe that 
the mean and standard deviation values are similar for all 
the data subsets. The histogram plots of the three subsets  
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Figure 6. A typical profile of training and calibration error 
of a NN model [16] 
 

 

Figure 7. Slab architecture for NN modeling 
 

 

Figure 8. Data segmentation and genetic algorithms for 
data divisions 
 
and the entirety of the nine datasets are presented in 
Figure 9. From the figure, it can be seen that all the data 
subsets assume an almost identical shape to that of the 
overall dataset, and that the skewness of the data in the 
three subsets is preserved. Table 3 presents summary 
statistics of the generalization performance of the NN 
model for the Red dataset, while Figure 10 presents a 
scatterplot of the actual values versus predicted values of 
the validation data subset for the Red block. 

3.3 SVM for Ore Grade Estimation 

The SVM method is based on statistical learning theory 
(SLT) and performing structural risk minimization (SRM). 
Popularly known as support vector regression (SVR) for 
its regression abilities, the SVR not only has a solid 
mathematical background but also is robust to noise in 
measurements [19-21]. Support vector regression ac-
quires knowledge from the training data by building a 
model, during which the expected risk, R, is approxi-
mated and minimized by the empirical risk, Remp. This 
process always involves a generalization error bound and 
is given by 

R(h) ≤ Remp (h) + Ω (h)        (1) 

where R is the bound on the testing error, Remp is the em-
pirical risk on the training data, and Ω is the confidence 
term that depends on the complexity of the modeling 
function. Though a brief explanation of how the SVR 
approach works is described below, interested readers are 
referred to [20-22]. Given the training dataset {(xi, yi), i = 
1, 2,….L}, where xi is the input variable and yi is the 
output variable, the idea of SVR is to develop a linear 
regression hyperplane expressed in Equation (2), which 
allows, at most, ε deviation for the true values, yi, in the 
training data (see Figure 11) and at the same time 
searches for a solution that is as flat as possible [21]. 

( ) ( )T
Of x W x b               (2) 

where Wo is the optimum weight vector, b is the bias, and 
φ(x) is a mapping function used to transform the input 
variable in the input space to a higher dimensional fea-
ture space. This transformation allows the handling of 
any nonlinearity that might exist in the data. The desired 
flatness is obtained by seeking a small w [21]. In reality, 
however, a function that approximates all the (xi, yi) pairs 
with ε precision may not be feasible. Slack variables εi, 
εi

* [23] are introduced in such cases that allow the incor-
poration of some amount of error (see Figure 11). The 
problem of obtaining a small w and at the same time re-
stricting the errors to, at most, ε deviation after introduc-
ing the slack variables can be obtained by solving the 
following convex quadratic optimization problem: 
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In Equation (3), both the empirical risk, realized by the 
training error Σ (εi + εi

*), as well as the confidence term,  
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Table 2. Statistical summary of data division using GA (Red) 

Mean Standard Deviation 
Attribute 

Overall Training Calibration Validation Overall Training Calibration Validation 

X 3941.8 3950 3935.6 3931.6 456.54 456.6 457.6 458.6 

Y 10198 10194 10218 10186 469.75 471.2 467.2 472.4 

Gold 440.17 461.99 418.46 418.59 650.58 673.97 627.89 628.8 

WTD 8.4845 8.38 8.63 8.54 5.2063 5.23 5.19 5.19 

 

 

 

Figure 11. The soft margin loss settings for linear SVM [21] 
 
realized by the ||w||2 term (expressed by Equation (1)) are 
minimized. An optimum hyperplane is obtained by solv-
ing the above minimization problem employing the Kha-
rush-Kuhn-Tucker (KKT) conditions [24] which results 
in minimum generalization error. The final formulation 
to obtain the SVR model predictions is given by 

Figure 9. Histogram plot of Red dataset 
*
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Table 3. Generalization performance of the models for the 
Red block 

Statistics SVM NN OK 

Mean Error -8.1 -1.30 33.54 

Mean Absolute 
Error 

341.2 351.50 353.02 

Root Mean 
Squared Error 563.13 564.34 565.23 

R2 0.234 0.191 0.193 

where i, i
* are the weights corresponding to individual 

input patterns, K(xi, x) is a user-defined kernel function, 
and b is the bias parameter. Figure 12 presents a list of 
commonly used kernels. The most commonly used ker-
nel function is an isotropic Gaussian RBF defined by 

2

22( , )
ix x

iK x x e 

 

                (5) 

 where σ is the kernel bandwidth. The solution of this 
optimization problem might result in zero weight for 
some input patterns and non-zero weight for the rest. The 
patterns with zero weight are redundant and are insig-
nificant to the model structure. On the other hand, input 
patterns with non-zero weights are termed support vec-
tors (SV), and they are vital to obtaining model predic-
tions. As the number of support vectors increases, so 
does model complexity. The main parameters that influ-
ence SVR model performance are the C, σ, and ε. Pa-
rameter C is a trade-off between empirical risk and the 
weight vector norm ||w||. It decreases empirical risk but, 
at the same time, increases model complexity, which  

 

Figure 10. Actual vs. predicted for the validation data of 
Red block 
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Figure 12. Commonly used kemels in SVM 
 
deteriorates model generalization. Parameter ε defines 
the width of the insensitivity zone, and controls the 
number of SV. The effect of increase in ε is a decrease in 
the number of SV, which results in smoothing of the final 
solution during modeling of noisy data. Similarly, note 
from Equation (5) that a higher value of kernel width, σ, 
has a smoothing effect on the solution. Optimal values of 
these parameters can be obtained by a grid-search pro-
cedure. 

3.4 SVM Grade Estimation Results 

Out of the numerous options available for the choice of 
kernel function, a RBF kernel was selected, and the 
recommendations of [20] and [25] were considered care-
fully in the development of the SVM-based model. As 
per recommendations, the input data were first scaled 
assuming a uniform distribution. In other words, the 
scaled value of an attribute was calculated using the 
maximum and minimum values of the attribute. The drill 
holes were used to estimate SVM parameters, the cost 
function (C), the radial basis kernel parameter (σ), and 
the error margin (ε). Optimal SVM parameters were de-
termined based on a K-fold cross-validation technique 
applied to the training dataset. The K-fold cross-valida-
tion approach splits the available data into more or less K 
equal parts. Of the K parts of the data, only K-1 parts of 
the data were used to find the SVM estimate and calcu-
late the error of the fitted model, and for predicting the 
kth part of the data as part of the validation process. The 
procedure was then repeated for k = 1, 2, . . ., K, and the 
selection of parameters was based on the minimum pre-
diction error estimates over all K parts. The value of K is 
based on the shape of a “learning curve” [26], which is a 
plot of the training error versus the training size. For 
given SVM parameters, the training errors are calculated 
by progressively estimating the SVM model for in-
creased training data size, thereby constituting the learn-
ing curve. From the learning curve, an optimum training 
size (or in other words, the number of folds, K) can be 
obtained where the error is minimal. In this study, the 

optimum value of K was found to be 10. Once the value 
of K is obtained, the SVM model is trained using K-fold 
cross validation. Training and testing involves a thorough 
grid search for optimal C and σ values. Thus, unlike NN, 
where training involves passing a dataset through hidden 
layers to optimize the weights, optimal training of SVM 
involves estimation of parameters C and σ through a grid 
search such that the error is minimized. The optimum 
values for C and σ for the Red block was found to be 
0.53 and 9.5. These values are depicted by the troughs 
and flat regions of the error surface in Figure 13. Once 
the optimal values for the SVM model parameters were 
determined, the model was tested for its generalization 
ability on validation datasets for the Red block. Figure 
14 shows the performance of the SVM model in predict-
ing gold grade for the Red block, while performance sta-
tistics are presented in Table 3.  

4. Summary and Conclusions 

Nome gold reserve estimation is challenging because of 
the geologic complexity associated with placer gold de-
posits and because of sparse drill holes. Each drill hole 
contains information on northing (Y-coordinate), easting 
(X-coordinate), water-table depth, and gold grade in 
mg/m3, as well as other relevant information. For grade 
estimation, northing, easting, and water-table depth were 
considered input variables, and gold grade was consid-
ered an output variable. Gold grade up to a 5 m sea floor 
depth, were considered. The gold grade associated with 
the Nome deposit Red block was estimated using two 
MLA—the NN method and the SVM method—and their 
performance were compared using the traditional geosta-
tistical OK technique. Various issues involved in the use 
of these techniques for grade estimation were discussed. 
Based on the results from this study, the SVM-based 
model produced better estimates as compared with the 
other two methods. However, the improvement was only 
marginal, which may be due to the presence of extreme 
data values. The various criteria used to compare model 
performance were the mean error (ME), the mean abso-
lute error (MAE), the root mean squared error (RMSE), 
and the coefficient of determination (R2). Generally, a 
model with less error and high R2 is considered a better 
fit. Since the improvements were only marginal, a sum-
mary statistic was developed to compare the three mod-
els. This summary statistic, termed the skill value, is an 
entirely subjective measurement, expressed by Equation 
(6) [14,27-29]. Numerous skill measures can be devised; 
however, the one proposed in this study considers the 
ME, MAE, and RMSE equally, and applies scaling to the 
R2 so that it is of the same order of magnitude as the oth-
ers. Note that the lower the skill value, the better the 
method is. In this way, various methods can be ranked  
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Figure 13. Effect of cost and kernel width variation on error (Red) 
 

 

Figure 14. Scatterplot for actual vs. predicted grade (Red) 
 

Table 4. Model performances based on skill values 

Statistics SVM NN OK 

Skill Value 989.03 998.03 1032.49 

Rank 01 02 03 

 
based on their skill values, that is, their overall perform-
ance on the prediction dataset. 

‘skill value’ = abs (ME) + MAE + RMSE + 100 × (1 – R2) 
(6) 

Table 4 presents skill values and ranks for the various 
methods that were used on the prediction dataset. It can 
be seen from the table that the MLA performed signifi-
cantly better than the traditional kriging method. The 
difference in the skill values is mainly due to the high 
variation in the R2 (Table 3). 
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ABSTRACT 

In this paper, a hybrid Fuzzy Neural Network (FNN) system for function approximation is presented. The proposed 
FNN can handle numeric and fuzzy inputs simultaneously. The numeric inputs are fuzzified by input nodes upon pres-
entation to the network while the Fuzzy rule based knowledge is translated directly into network architecture. The con-
nections between input to hidden nodes represent rule antecedents and hidden to output nodes represent rule conse-
quents. All the connections are represented by Gaussian fuzzy sets. The method of activation spread in the network is 
based on a fuzzy mutual subsethood measure. Rule (hidden) node activations are computed as a fuzzy inner product. 
For a given numeric o fuzzy input, numeric outputs are computed using volume based defuzzification. A supervised 
learning procedure based on gradient descent is employed to train the network. The model has been tested on two dif-
ferent approximation problems: sine-cosine function approximation and Narazaki-Ralescu function and shows its 
natural capability of inference, function approximation, and classification. 
 
Keywords: Cardinality, Classifier, Function Approximation, Fuzzy Neural System, Mutual Subsethood 

1. Introduction 

The conventional approaches to system modeling that are 
based on mathematical tools (i.e. differential equations) 
perform poorly in dealing with complex and uncertain 
systems. The basic reason is that, most of the time; it is 
very difficult to find a global function or analytical 
structure for a nonlinear system. In contrast, fuzzy logic 
provides an inference morphology that enables approxi-
mate human reasoning capability to be applied in a fuzzy 
inference system. Therefore, a fuzzy inference system 
employing fuzzy logical rules can model the quantitative 
aspects of human knowledge and reasoning processes 
without employing precise quantitative analysis. 

In recent past, artificial neural network has also played 
an important role in solving many engineering problems. 
Neural network has advantages such as learning, adap-
tion, fault tolerance, parallelism, and generalization. Fuzzy 
systems utilizing the learning capability of neural net-
works can successfully construct the input output map-
ping for many applications. The benefits of combining 
fuzzy logic and neural network have been explored ex-
tensively in the literature [1-3]. 

The term neuro-fuzzy system (also neuro-fuzzy meth-
ods or models) refers to combinations of techniques from 

neural networks and fuzzy system [4-8]. This never 
means that a neural network and a fuzzy system are used 
in some kind of combination, but a fuzzy system is cre-
ated from data by some kind of (heuristic) learning 
method, motivated by learning procedures used in neural 
networks. The neuro-fuzzy methods are usually applied, 
if a fuzzy system is required to solve a problem of func-
tion approximations or special case of it, like, classifica-
tion or control [9-12] and the otherwise manual design 
process should be supported and replaced by an auto-
matic learning process. 

Here, the attention has been focused on the function 
approximation and classification capabilities of the sub-
sethood based fuzzy neural model (subsethood based 
FNN). This model can handle simultaneous admission of 
fuzzy or numeric inputs along with the integration of a 
fuzzy mutual subsethood measure for activity propa-
gation. A product aggregation operator computes the 
strength of firing of a rule as a fuzzy inner product and 
works in conjunction with volume defuzzification to 
generate numeric outputs. A gradient descent framework 
allows the model to fine tune rules with the help of nu-
meric data. 

The organization of the paper is as follows: Section 2 
presents the architectural and operational detail of the 
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model. Sections 3 and 4 demonstrate the gradient descent 
learning procedure and the applications of the model to 
the task of function approximation respectively. Finally, 
the Section 5 concludes the paper. 

2. Architectural and Operational Detail 

To develop a fuzzy neural model, following issues are 
important to be discussed: 

1) Signal transmission at input node. 
2) Signal transmission method (similarity measures) 

from input nodes to rule nodes. 
3) Method for activity aggregation at rule nodes. 
4) Signal computation at output layer. 
5) Learning technique and its mathematical formula-

tion used in model. 
The proposed architecture of subsethood based Fuzzy 

neural network is shown in Figure 1. Here x1 to xm and 
xm + 1 to xn are numeric and linguistic inputs respectively. 
Each hidden node represents a rule, and input-hidden 
node connection represents fuzzy rule antecedents. Each 
hidden-output node connection represents a fuzzy rule 
consequent. Fuzzy set corresponding to linguistic levels 
of fuzzy if-then rules are defined on input and output 
UODs and are represented by symmetric Gaussian mem- 
bership functions specified by a center and spread. The 
center and spread of fuzzy weights wij from input nodes i 
to rule nodes j are shown as cij and σij of a Gaussian 
fuzzy set and denoted by wij = (cij, σij). As this model can 
handle simultaneous admission of numeric as well as 
fuzzy inputs, Numeric inputs are first fuzzified so that all 
outputs transmitted from the input layer of the network 
are fuzzy. Now, since the antecedent weights are also 
fuzzy, this requires the design of a method to transmit a 
fuzzy signal along a fuzzy weight. In this model signal 
transmission along the fuzzy weight is handled by calcu-
lating the mutual subsethood. A product aggregation op-
erator computes the strength of firing at rule node. At 
output layer the signal computation is done with volume 
defuzzification to generate numeric outputs (y1 to yp). A 
gradient descent learning technique allows the model to 
fine tune rules with the help of numeric data. 

2.1 Signal Transmission at Input Nodes 

Since input features x1, ... , xn can be either numeric and 
linguistic, there are two kinds of nodes in the input layer. 
Linguistic nodes accept a linguistic input represented by 
fuzzy sets with a Gaussian membership function and 
modeled by a center ci and spread σi. These linguistic 
inputs can be drawn from pre-specified fuzzy sets as 
shown in Figure 2, where three Gaussian fuzzy sets have 
been defined on the universe of discourse (UODs) [–1, 1]. 
Thus, a linguistic input feature xi is represented by the 
pair (ci, σi). No transformation of inputs takes place at 
linguistic nodes in the input layer. They merely transmit 
the fuzzy input forward along antecedent weights. 

x1

xi

xm

Xm+1

xn

Input Layer  Rule Layer Output Layer

Numeric 

nodes 

Linguistic 

nodes 

y1

yk

yp

(cij,σij) 

(cnj,σnj) 

(cjk,σjk) 

(cqk,σqk)

Antecedent 

connection 

Consequent 

connection  

Figure 1. Architecture of subsethood based FNN model 
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Figure 2. Fuzzy sets for fuzzy inputs 
 

Numeric nodes accept numeric inputs and fuzzify 
them into Gaussian fuzzy sets. The numeric input is 
fuzzified by treating it as the centre of a Gaussian mem-
bership function with a heuristically chosen spread. An 
example of this fuzzification process is shown in Figure 
3, where a numeric feature value of 0.3 has been fuzzi-
fied into a Gaussian membership function centered at 0.3 
with spread 0.35. The Gaussian shape is chosen to match 
the Gaussian shape of weight fuzzy sets since this facili-
tates subsethood calculations detailed in Section 2.2. 
Therefore, the signal from a numeric node of the input 
layer is represented by the pair (ci, σi). Antecedent con-
nections uniformly receive signals of the form (ci, σi). 
Signals (S(xi) = (ci, σi)) are transmitted to hidden rule 
nodes through fuzzy weights also of the form (cij, σij), 
where single subscript notation has been adopted for the 
input sets and the double subscript for the weight sets. 

2.2 Signal Transmission from Input to Rule 
Nodes (Mutual Subsethood Method) 

Since both the signal and the weight are fuzzy sets, being 
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Figure 3. Fuzzification of numeric input 
 
represented by Gaussian membership function, there is a 
need to quantify the net value of the signal transmitted 
along the weight by the extent of overlap between the 
two fuzzy sets. This is measured by their mutual sub-
sethood [13]. 

Consider two fuzzy sets A and B with centers c1, c2 and 
spreads σ1, σ2 respectively. These sets are expressed by 
their membership functions as: 

2
1 1(( )/ )( ) x ca x e                 (1) 

2
2 2(( ) / )( ) x cb x e                 (2) 

The cardinality C(A) of fuzzy set A is defined by 
2

1 1(( )/ )( ) ( ) x cC A a x dx e dx   

 
         (3) 

Then the mutual subsethood ( , )A B  of fuzzy sets A 

and B measures the extent to which fuzzy set A equals 
fuzzy set B can be evaluated as: 

( )
( , )

( ) ( ) ( )

C A B
A B

C A C B C A B
 


  

      (4) 

Further detail on the mutual subsethood measure can 
be found in [13]. Depending upon the relative values of 
centers and spreads of fuzzy sets A and B, the following 
four different cases of nature of overlap arise: 

Case 1:  having any values of σ1 and σ2. 1c c 2

2 .Case 2:  and 1c c 1 2   

Case 3:  and 1c c 2 .1 2   

Case 4:  and 1c c 2 .1 2   

In case 1, the two fuzzy sets do not cross over-either 
one fuzzy set belongs completely to the other or two 
fuzzy sets are identical. In case 2, there is exactly one 
cross over point, whereas in cases 3 and 4, there are ex-
actly two crossover points. An example of case 4 type 
overlap is shown in Figure 4. 

To calculate the crossover points, by setting a(x) = 
b(x), the two cross over points h1 and h2 yield as, 

1
1 2

2
1

1

2

1

c c

h










                (5) 

1
1 2

2
2

1

2

1

c c

h










               (6) 

These values of h1 and h2 are used to calculate the 
mutual subsethood ( , )A B  based on (C A B) , as 
defined in (4). 

Symbolically, for a signal ( ) ( , )i i is S x c i   and 

fuzzy weight ( , )ij ij ijw c  , the mutual subsethood is  

( )
( , )

( ) ( ) ( )
i ij

ij i ij
i ij i

C s w
s w

C s C w C s w
 


 

   ij

   (7) 

As shown in Figure 5, in the subsethood based FNN 
model, a fuzzy input signal is transmitted along a fuzzy 
weight that represents an antecedent connection. The 
transmitted signal is quantified ij , which denotes the 

mutual subsethood between the fuzzy signal S(xi) and 
fuzzy weight ( , )ij ijc   and can be computed using (4). 

 

 

Figure 4. Example of overlapping: c1 > c2 and σ1 < σ2 
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Figure 5. Fuzzy signal transmission 
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The expression for cardinality can be evaluated for 
each of the four cases in terms of standard error function  
erf(x) represented as (8). 

2

0

2
( )

x terf x e dt


              (8) 

The case wise expressions for  are given 

in Appendix (1). 

( i ijC s w )

2.3 Activity Aggregation at Rule Nodes (Product  
Operator) 

The net activation zj of the rule node j is a product of all 
mutual subsethoods known as the fuzzy inner product 
can be evaluated as 

1 1

( ( ), )
n n

j ij i ij
i i

z S 
 

   x w         (9) 

The inner product in (9) exhibits some properties: it is 
bounded between 0 and 1; monotonic increasing; con-
tinuous and symmetric. The signal function for the rule 
node is linear. 

( )j jS z z                (10) 

Numeric activation values are transmitted unchanged 
to consequent connections. 

2.4 Output Layer Signal Computation (Volume 
Defuzzification) 

The signal of each output node is determined using stan-
dard volume based centroid defuzzification [13]. The 
activation of the output node is yk, and Vjk's denote con-
sequent set volumes, then the general expression of de-
fuzzification is 

1

1

q

j jk jkj
k q

j jkj

z c V
y

z V









             (11) 

The volume Vjk is simply the area of consequent fuzzy 
sets which are represented by Gaussian membership 
function. From (11), the output can be evaluated as 

1

1

q

j jk jkj
k q

j jkj

z c
y

z












           (12) 

The signal of output node k is . ( )k kS y y

3. Supervised Learning (Gradient Descent 
Algorithm) 

The subsethood based linguistic network is trained by 
supervised learning. This involves repeated presentation 
of a set of input patterns drawn from the training set. The 

output of the network is compared with the desired value 
to obtain the error, and network weights are changed on 
the basis of an error minimization criterion. Once the 
network is trained to the desired level of error, it is tested 
by presenting a new set of input patterns drawn from the 
testing set. 

3.1 Update Equations for Free Parameters 

Learning is incorporated into the subsethood-linguistic 
model using the gradient descent method. A squared er-
ror criterion is used as a training performance parameter. 

The squared error  at iteration t is computed in the 
standard way 

te

2

1

1
( ( )

2

p
t t

k k
k

e d S y


  )t          (13) 

where  is the desired value at output node k, and the 

error evaluated over all p outputs for a specific pattern k. 
Both the centers and spreads 

t
kd

, ,ij jk ijc c   and jk  of 

antecedents and consequent connections are modified on 
the basis of update equations given as follows: 

1 1
t

t t t
ij ij ijt

ij

e
c c c

c
  

   


        (14) 

where   is the learning rate,   is the momentum pa-

rameter, and 

1t t t
ij ij ijc c c 1                (15) 

3.2 Partial Derivative Evaluation 

The expressions of partial derivatives required in these 
update equations are derived as follows: 

For the error derivative with respect to consequent 
centers 

1

( ) j jkk
k k q

jk k jk j jkj

zye e
d y

c y c z






 
   

   
   (16) 

and the error derivative with respect to the consequent 
spreads 

1 1

2
1

( )
( )

k

jk k jk

q q

j jk j jk j j jk jkj j
k k q

j jkj

ye e

y

z c z z z c
d y

z

 

 


 



 

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
  

 


 (17) 

The error derivatives with respect to antecedent cen-
ters and spreads involve subsethood derivatives in the 
chain and are somewhat more involved to evaluate. Spe-
cifically, the error derivative chains with respect to ante-
cedent centers and spreads are given as following, 
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1

1
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  (21) 

1

1
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p
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p
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zye e

y z
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z


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
 





  


    

 
  
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


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and 
and the error derivative chains with respect to input fea-
ture spread is evaluated as 

1,

n
j

ij
i i jij

z


  




               (22) 
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The expressions for antecedent connection, mutual 

subsethood partial derivatives ij

ijc




 and ij

ij






 are ob-

tained by differentiating (7) with respect to cij, σij and σi 
as in (23), (24) and (25). where 
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( ) ( ) ( )

( ) ( )

i ij i ij
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  
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                    

 
 


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                    

    
 
  



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           (24) 
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           (25) 

In these equations, the calculation of ( ) /i ij ijC s w c   , 

( ) /i ijC s w    and i( ) /i ijC s w     are require

which depends on ature of overlap o

termining or learning  depends on how 
fin

d 

 the n f the input fea-
ture fuzzy set and weight fuzzy set. The case wise ex-
pressions are demonstrated in Appendix (2). 

4. Function Approximation 

Function approximation involves de
the input-output relations using numeric input-output 
data. Conventional methods like linear regression are 
useful in cases where the relation being learnt, is linear or 
quasi-linear. For nonlinear function approximation mul-
tilayer neural networks are well suited to solve the prob-

lem but with the drawback of their black box nature and 
heuristic decisions regarding network structure and tun-
able parameters. Interpretability of learnt knowledge in 
conventional neural networks is a severe problem. On the 
other hand, function approximation by fuzzy systems 
employs the concept of dividing the input space into sub 
regions, and for each sub region a fuzzy rule is defined 
thus making the system interpretable.  

The performance of the fuzzy system
ally the sub regions are generated. The practical imita-

tion arises with fuzzy systems when the input variables 
are increased and the number of fuzzy rules explodes 
leading to the problem known as the curse of dimension-
ality. It is now well known that both fuzzy system and 
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neural network are universal function approximators and 
can approximate functions to any arbitrary degree of ac-
curacy [13,14]. Fuzzy neural system also has capability 
of approximating any continuous function or modeling a 
system [15-17]. 

There are two broad applications of function ap-
pr

sethood based linguistic network proposed in 
th

e proposed model can be 

oximation-prediction and interpretation. In this paper, 
the work has been done on applications of function ap-
proximation related to prediction. In prediction, it is 
expected that, in future, new observations will be en-
countered for which only the input values are known, 
and the goal is to predict a likely output value for each 
case. The function estimate obtained from the training 
data through the learning algorithm is used for this 
purpose. 

The sub
e present paper has been tested on two different ap-

proximation problem: sine-cosine function approxima-
tion and Narazaki-Ralescu function [18]. 

4.1 Sine-Cosine Function 

The learning capabilities of th
demonstrated by approximating the sine-cosine function 
given by 

( , ) sin( ) cos( )f x y x y            (26) 

for the purpose of training the networ

ameters that subsethood based 
FN

 5, 
10

k the above func-
tion was described by 900 sample points, evenly distrib-
uted in a 30 × 30 grid in the input cross-space [0, 2π] × 
[0, 2π]. The model is tested by another set of 400 points 
evenly distributed in a 20 × 20 grid in the input 
cross-space [0, 2π] × [0, 2π]. The mesh plots of training 
and testing patterns are shown in Figure 6. For training 
of the model, the centers of fuzzy weights between the 
input layer and rule layer are initially randomized in the 
range [0, 2π] while the centers of fuzzy weights between 
rule layer and output layer are initially randomized in the 
range [–1, 1]. The spreads of all the fuzzy weights and 
the spreads of input feature fuzzifiers are initialized ran-
domly in range [0.2, 0.9]. 

The number of free par
N employs is straightforward to calculate: one spread 

for each numeric input; a center and a spread for each 
antecedent and consequent connection of a rule. For this 
function model employs a 2-r-1 network architecture, 
where r is the number of rule nodes. Therefore, since 
each rule has two antecedents and one consequent, an 
r-rule FNN system will have 6r + 2 free parameters. 

Model was trained for different number of rules—
, 15, 20, 30 and 50. Simulations were performed with 

different learning schedules given in Table 1 to study the 
effect of learning parameters on the performance of 
model.  
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Figure 6. (a) Mesh plot and rs of 900 training pat-

able 1. Details of different learning schedules used for 

e Details 

 counte
terns; (b) mesh plot and counters of 400 testing 
 
T
simulation studies 

Learning Schedul

LS = 0.2 η and α  to 0.2  are fixed

LS = 0.1 η and α are fixed to 0.2 

LS = 0.01 η and α are fixed to 0.2 

LS = 0.001 η and α are fixed to 0.2 

( -learning rate and  -momentum)

The root mean square error, evaluated for both training 
an

 
 

d testing patterns, is given as 

2( )
training patterns

trn

desired actual
RMSE

number of training patterns





  (27) 

2( )
testing patterns

test

desired actual
RMSE

number of testing patterns





  (28) 
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In order to visualize the surface obtained from the test 
set after training the function f(x, y) = sin(x) co
250 epochs the three dimensional plots of the functio
ge

 Function 

s(y) for 
n is 

nerated. Figure 7 illustrates surface plots of the func-
tion and the error surface for different values of rule 
counts with learning schedule as LS = 0.01. It can be 
observed that a model of mere 5 rules seems to be 
coarsely approximating the given function. The error is 
more where the slope of the function changes in that re-
gion. Thus, increasing the number of rules generates bet-
ter approximated surface as can be observed as shown in 
Figure 7. As per the observation shown in Table 2, we 
can conclude that for learning schedule LS = 0.2 or 
higher and with small rule count the subsethood model is 
unable to train, resulting in oscillations in error trajecto-
ries shown as Figure 8. This may occur due to the im-
proper selection of learning parameters (learning rate (η) 
and momentum (α)) and number of rules. But with same 
learning parameters and higher rule counts like 30 and 50 
rules model produces good approximation. 

The observations for fuzzy neuro model drawn in the 
above experiments can be summarized as the following: 

1) As the number of rules increases the approximation 
performance of model improves to a certain limit. 

2) For higher learning rates and momentum with lower 
rule counts the model is unable to learn. In contrast if the 
learning rate and momentum are kept to small values a 
smooth decaying trajectory is obtained even for small 
rule counts. 

3) In general, Model works fairly well even for simple 
learning schemes by keeping the learning rate and mo-
mentum fixed to small values. 

4) Most of the learning is achieved in a small number 
of epochs. 

4.2 Narazaki and Ralescu

The function is expressed as follows, 

( ) 0.2 0.8( 0.7sin(2 )), 0y x x x x 1         (29) 

 Figure 9. 
proximating single 

input-output function is 1-r-1, where r is the n
mploys 

training and test sets generated are  

and the plot of the function is shown in
The system architecture used for ap

umber of 
rule nodes. The tunable parameters that model e
for this application is calculated to be as, one spread for 
one input, and a center and a spread for each antecedent 
and consequent connection of rule. As each rule has one 
antecedent and one consequent, r rule architecture will 
have 4r + 1 free parameters. The model is trained using 
21 training patterns. These patterns were generated at 
intervals of 0.05 in range [0, 1]. Thus, the training pat-
terns are of the form: 

(0, (0)), (0.05, (0.05)), , (1, (1))y y y       (30) 

The evaluation was done using 101 test data taken at 
intervals of 0.01. The 

  
(a)                          (b) 

  
(c)                         (d) 

  
(e)                        (f) 

  
(g)                      (h) 

  
(i)                        (j) 

  
(k)                      (l) 

Figure 7. f(x, y) surface plot and their corresponding testing 
error surface after 250 epochs for different rule counts w  
learning schedu ace for 5 rul ; 
(b) f(x, y) surfac ce for 15 rules; 

ith
esle as LS = 0.01, (a) f(x, y) surf

e for 10 rules; (c) f(x, y) surfa
(d) error surface for 5 rules; (e) error surface for 10 rules; 
(f) error surface for 15 rules; (g) f(x, y) surface for 20 rules; 
(h) f(x, y) surface for 30 rules; (i) f(x, y) surface for 50 rules; 
(j) error surface for 20 rules; (k) error surface for 30 rules; 
(l) error surface for 50 rules 
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Table 2. Root mean square errors for different rule count 
and learning schedules for 250 epochs 

Rules LS = 0.2 LS = 0.1 

 RMSEtrn RMSEtest RMSEtrn RMSE  test

5 0.4306 0. 3464 

10 0.1851 0.3144 0.2745 0.3239 

15 0.0897 0.1125 0.1250 0.1746 

30 0.0418 0.0522 0.0518 0.0615 

50 0.0316 0.0323 0.0219 0.0452 

Rules LS = 0.001 

5928 0. 0.6210 

20 0.0631 0.1518 0.0811 0.1026 

LS = 0.01 

 RMS  RMS  RMSEtrn Etest Etrn RMSEtest 

5 0.3352 0.3428 

10 0.

15 0.

0.4080 0.3567 

1758 0.1997 0.2194 0.2783 

1419 0.1516 0.2771 0.2954 

20 0.0972 0.1247 0.1446 0.1432 

30 0.0645 0.0735 0.1135 0.1246 

50 0.0336 0.0354 0.0336 0.0354 

 
mu ly e e. T rfor indice d J2 
as d ned , us val re giv w: 

tual xclusiv wo pe mance s J1 an
efi  in [18] ed for e uation a en belo

1
1 100

21 training data

J
desired output

    

(31) 

actual output desired output

1
2 100

101 test data

actual output desired output
J

desired output


    

(32) 

Experiments were conducted for different rule counts, 
using a learning rate of 0.01 and momentum of 0.01 
throughout the learning procedure. Table 3 summa
th

rizes 
e performance of model in terms of indices J1 and J2 

for rule counts 3 to 6. It is evident from the performance 
measures that for 5 or 6 rules the approximation accuracy 
is much better than that for 3 or 4 rules. In general up to a 
certain limit, as the number of rules grows, the perform-
ance of model improves. 

Table 4 compares the test accuracy performance index 
J2 for different models along with the number of rules 
and tunable parameters used to achieve it. With five rules 
our model obtained J1 = 0.9467 and J2 = 0.7403 as better 
than all other schemes. From the above results, it can be 
infer that subsethood-based FNN shows the ability to 
approximate function with good accuracy in comparison 
with other models. 
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Figure 8. Error trajectories for different rules and learning 
schedule (a) LS = 0.2, (b) LS = 0.01 
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Figure 9. Narazaki-Ralescu function 
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Table 3. Subsethood based FNN performance for Na-
razaki-Ralescu’s function 

Number 
of Rules 

Trainable 
Parameter 

Training 
Accuracy 

(J1%) 

Testing 
Accuracy 

(J2%) 

3 13 2.57 1.7015 

4 17 1.022 0.7350 

5 21 0.9468 0.7403 

6 25 0.6703 0.6595 

 
Table 4. Performance comparison of subsethood based F
with other methods for Narazaki-Ralescu’s function 

Methods and 
reference 

Number 
of rules 

Trainable 
Parameters 

Testing 
Accuracy 

(J2%)

NN 

 

FuGeNeS 0.856 ys [19] 5 15 

Lin and Cunning-
ham III [20] 

4 16 0.987 

Narazaki and 
Ralescu [18]

Subsetho
 

sed 

Na 12 

od ba
N 

 

Subsethood based 
FNN 

5 1 

3.19 

FN
3 13 1.7015 

2 0.7403 

 

5. C clusion

In th per the osed sub d based u-
al Network model has now proved to be a universal

approximation problem empirically. The applications 
func at iv ncl o-
main s, eco  c nin
ing ing a  image c pression.
work aut e conce ts of fuzzy neural
function approximator in image com ssion. 
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Appendix 

1. Expressions for ( )C s wi ij  

The expression for cardinality can be evaluated in terms 
of the standard error function erf (x) given in (8). The

ij

 
case wise expressions for ( )i ijC s w  for all four possi-

bilities identified in Section (2.2) are as follows. 
Case 1— i ijC C : If i  , the signal fuzzy set is  

d the completely belongs to weight fuzzy set , an

)

 the 

( iC s  
ijw

cardinality ( )i ijC s w 

2(( )/ )( ) ( )

[ ( ) ( )]
2

i ix c
i ij i

i

C s w C s e dx

erf erf






 



  

   



   

.

   (33) 

, )  if j

i

Similarly w ( ) (i ij ijC s w C i i   and 

( )i ij ijC s w    . If j i i  , the two 

identical. Summarizing these three sub cases, the values 
of cardinality can be shown as (34). 

fuzzy sets are 

.( ) ,

ij

j ij i ijC s

( )

( ) ,

( ) ,

( )

i ij

i i i ij

ij i ij

i i i

C s w
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C w if

   

   

    
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  
  

   

(34) 




Case 2— i ijC C , i ij  : In this case there will be 

exactly one cross over point h1. Assuming , the 

cardinality ( valuated as 
ij ic c

)j  can be ei iC s w

 
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2 21
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If , the expression for cardinality ij ic c ( )i ijC s w  

is 
221
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Case 3— i ijC C , i ij  : In this case, there will be 

two crossover points h1 and h2, as calculated in (5) and 
(6). Assuming h h1 2  and c ij i

( )i ijC s w

c , the cardinality 

  can be evaluated as  
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if ij ic c , the expression for is identical to 

(3

( )C s w  i ij

7). 
Case 4— i ijC C , i ij  : This case is similar to 

case 3 and once a ere wil  cross over points 
s calculated in (5) and (6

gain th l be two
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 2

2
i

i
i

h c
erf




  
      

 

 1 i

i

h c
erf



 
    

            (38) 

if , the expression for is identical to 

(38). 
Corresponding expressions for 

ij ic c ( )i ijC s w  

( )i ijs w 

of C s 

 are ob-

tained by substituting the values  from 

(34)-(38) to (7).  

2. Expressions for ij , 

( )i ijw

( ) /i ijC s w c  

ij( ) /i ijC s w     and ( )i iC s w /j i    

As per the discussion in the Section (3.2) tha
lation of ij , ij
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ABSTRACT 

A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable 
speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of motor drive system 
and the motor speed can accurately track the reference signal. ANFIS has the advantages of employing expert knowl-
edge from the fuzzy inference system and the learning capability of neural networks. The various functional blocks of 
the system which govern the system behavior for small variations about the operating point are derived, and the tran-
sient responses are presented. The proposed (ANFIS) controller is compared with PI controller by computer simulation 
through the MATLAB/SIMULINK software. The obtained results demonstrate the effectiveness of the proposed control 
scheme. 
 
Keywords: ANFIS Controller, PI Controller, Fuzzy Logic Controller, Artificial Neural Network Controller, Induction 

Motor Drive 
 

1. Introduction 

Over the last three decades, variable speed drives are the 
most complex of all power electronic systems. Drive 
technology has been a confluence of many professionals 
from other fields, such as electrical machines, control 
systems and traditional power engineering. To a tradi-
tional power electronics engineer with expertise in the 
design of, such as thyristor phase-controlled converters, 
switching mode power supplies, or uninterruptible power 
supply systems, the technology is incomprehensible be-
cause of its complexity and multidisciplinary characteris-
tics. 

Modern variable speed drive applications require stee-
ples control and suitable dynamic response and accuracy. 
These considerations have been met to a large extent in 
the past decade by thyristor-controlled dc machines. 
However, the dc machine remains expensive in relation 
to the types of rotating machines. For the higher power 
drives in industries, the lighter, less expensive, reliable 
simple, more robust and commutator less induction mo-
tors are desirable and these motors are being applied to-
day to a wider range of applications requiring variable 

speed. Unfortunately, accurate speed control of such 
machines by a simple and economical means remains a 
difficult task. With the development of the silicon- 
controlled rectifier, triac and related members of the thy-
ristor family, it has become most feasible to design vari-
able-speed induction motor drives for a wide variety of 
applications. Different techniques have been used, using 
SCR controllers. A back-to back connected SCR’ are 
used in series with the rotor phases to control their effec-
tive impedance [1-4]. A chopper-controlled external re-
sistance is used to control the speed by varying the duty 
cycle of the chopper. A controlled rectifier is used in the 
rotor circuit to feed the external resistance, and by vary-
ing the firing angle, the effective rotor impedance is con-
trolled. 

Generally, variable speed drives for Induction Motor 
(IM) require both wide operating range of speed and fast 
torque response, regardless of load variations. This leads 
to more advanced control methods to meet the real de-
mand. Very recently, the artificial intelligence tools, such 
as expert system, fuzzy logic and neural network are 
showing impact on variable frequency drives. 
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They are applied to important fields such as variable 
speed drives, control systems, signal processing, and sys-
tem modeling. Artificial Intelligent systems, means those 
systems that are capable of imitating the human reasoning 
process as well as handling quantitative and qualitative 
knowledge. It is well known that the intelligent systems, 
which can provide human like expertise such as domain 
knowledge, uncertain reasoning, and adaptation to a noisy 
and time-varying environment, are important in tackling 
practical computing problems. ANFIS has gain a lot of 
interest over the last few years as a powerful technique to 
solve many real world problems. Compared to conven-
tional techniques, they own the capability of solving prob-
lems that do not have algorithmic solution. Neural net-
works and fuzzy logic technique are quite different, and 
yet with unique capabilities useful in information process-
ing by specifying mathematical relationships among nu-
merous variables in a complex system, performing map-
pings with degree of imprecision, control of nonlinear 
system to a degree not possible with conventional linear 
systems [5-11]. To overcome the drawbacks of Neural 
networks and fuzzy logic, Adaptive Neuro-Fuzzy Infer-
ence System (ANFIS) was proposed in this paper. The 
ANFIS is, from the topology point of view, an implemen-
tation of a representative fuzzy inference system using a 
Back Propagation neural network structure. 

The purpose of this paper is to present a general 
method for estimating both the nature of the dynamic 
response and the values of the significant parameters and 
operating constraints of typical induction machines con-
trolled by SCR controllers [12,13]. The dynamic behav-
ior of a closed-loop speed-control system with delta- 
connected SCR’s in the rotor is discussed. The various 
functional blocks of the feedback system which governs 
the system behavior for small variations about the oper-
ating point are derived, and responses for speed perturba-
tions are obtained analytically and simulated. 

2. State Space Approach 
A Set of nonlinear differential equations can describe the 
behavior of the induction motor [14-16]. If a complete 
solution of the dynamic behavior of the induction ma- 

chine is desired, these equations must be solved in detail. 
By linerarizing these questions about a steady state oper-
ating condition, the resulting equations in state form can 
describe the dynamics, and provide the future state and 
output of the system. 

Perturbations in reference voltage or firing angle and 
load torque leads to changes in rotor speed. The analyti-
cal results used to investigate these speed changes are 
obtained considering the various previous functional 
blocks, where the different input and output variables are 
denoted by X1, X2, X3 and X4. These variables are defined 
as follows: 

X1 = , X2 = V, X3= Vc and X4 =       (1) 

The differential equations, which govern the small 
variations about the operating point, are written in terms 
of the above variables and representing in matrix form in 
Equation (2), where 

 1 2 3 4

T
X x x x x , =     TL Ru T V   1 2

T
u u

3. System Description 

The system consists of a slip-ring induction motor with 
three equal external resistances, each connected to the 
rotor phase and three delta-connected phase-controlled 
SCR's placed at the open star point of the rotor as shown 
in Figure 1. 

In variable speed ac induction motor drives, a con-
tinuous monitoring or control of slip speed or slip fre-
quency is required. A permanent magnet tachogenerator 
is mounted on the rotor shaft to provide a dc signal pro-
portional to the rotor speed to the feedback control cir-
cuit. 

The block diagram of the feedback control scheme of 
the induction motor is shown in Figure 2. 

The induction motor stator is supplied with constant 
voltage, constant frequency supply. The rotor speed is 
controlled and adjusted by advancing or retarding the 
firing angle   of the SCRs. The tachogenerator output 
voltage proportional to the rotor speed and is compared 
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Figure 1. Schematic diagram of phase controlled SCR’s in delta (Δ) configuration 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Block diagram of feedback system 
 
with a fixed dc level RV  which represents the set speed. 

The error voltage is forwarded to the controller. The set 
peed is changed by varying RV  automatically or manu-

ally. The controller may be a proportional, or propor-
tional integral or proportional integral derivation type. 
The function of the controller is to give the required con-
trol voltage which will adjust the firing angle to the suit-
able value and can be used also as a stabilizing signal if 
more than one controller is used. 

The simulink block diagram of feedback control 
scheme of the induction motor is shown in Figure 3. 

Transfer functions for the functional blocks: 
The transfer functions for the various functions blocks 

of the feedback system are shown in Figure 4, and given 
in details as follows: 

1) Tachogenerator and filter: The transfer function of 
this block is represented by: 

  1
1

11

K
G s

ST



                (3) 

where 1K  is the combined gain of the tachogenerator 

and the associated filter, and  is the effective time 

constant of the filter. 
1T

2) Controller: The change in the output voltage of the 
tachogenerator is compared with the reference voltage 

RV  and the resultant error voltage is fed to the controller. 

The controller output voltage is corrected in accordance 

with the input change in voltage. The change in the con-
troller output voltage is denoted as . The transfer 

function of the proportional integral controller is: 
cV

  2
1

2

(1 )2K ST
G s

ST


                (4) 

3) Firing Circuit: The firing circuit decides the change 
in firing angle in accordance with the change in control 
voltage . It consists of a ramp generator and a com-

parator. The ramp is synchronized with the signal avail-
able across the slip-rings of the machine. For a given 
change in the control voltage , the change in firing 

angle is given by: 

cV

cV

1
cV

m
                    (5) 

where m is the slope of the ramp. For the present study, 
the firing circuit transfer function can be written as 

  3
3

31

K
G s

ST



               (6) 

where 3K
 

is equal to l/m, and the time constant is equal 

to one half of the maximum expected delay. If the slip of 
the rotor at the operating point is s, then the time constant 

 is given by: 3T

3

1

2 3
T

s f


  
               (7) 
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Figure 3. The simulink block diagram of feedback control scheme of the induction motor drive 
 

   

Figure 4. Functional blocks of closed-loop system 
 

4) Induction Motor: The torque developed by the ma-
chine at a given operating point is a function of speed of 
the machine and the firing angle of the thyristors. The 
difference between the developed torque and the load 
torque is applied to the rotating elements. The torque 
developed by the machine is presented by 

( , )dT F                    (8) 

where   is the rotor speed in rad/sec, and   is the 
firing angle. 

For the dynamic behavior of the induction machine 
about any operating point for a given perturbation, the 
small change in the developed torque can be represented 
in terms of the small changes in rotor speed and firing 
angle as: 

tan
tan

d
d

d

T
T

T
cons t

cons t




 


 

  
 

   (9) 

or 

4 5dT K K                   (10) 

The constants 4K  and 5K  depend upon the operat-

ing point and are to be obtained from the steady-state 
characteristics of the system. 

The resultant change in the developed torque is repre-
sented as the summation of the outputs of the two blocks 
(4) and (5). The change in the developed torque is com-
pared with the change in load torque and the resultant 
value is forwarded to the mechanical system, whose 
transfer function can be expressed as: 

 
1

G
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
               (11) 
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F is the frictional constant in N.m/rad/s, and J is the 

moment of inertia of the rotating system in 2mGK  . 

4. ANFIS Based Speed Controller 

Artificial Intelligent tools such as Fuzzy Logic and Arti- 
ficial Neural Networks have shown great potential on 
variable frequency drives. Artificial Neural Networks are 
concerned with adaptive learning, nonlinear function 
approximation, and universal generalization; fuzzy logic 
with imprecision and approximate reasoning [17,18]. But 
they share some common shortcomings that hinder them 
from being used more widely. For example, neural net-
works, often suffer from a slow learning rate. This draw- 
back renders neural networks less than suitable for time 
critical applications. Therefore, new and enhanced meth-
ods can be put forward. 

The fuzzy neural network is constructed to merge 
fuzzy inference mechanism and neural networks into an 
integrated system so that their individual weaknesses are 
overcome. The ANFIS system determines a control ac-
tion by using a neural network which implements a fuzzy 
inference. In this way, the prior expert’s knowledge can 
be incorporated easily. The controller has two states, a 
learning state and a controlling state. In the learning state, 
the performance evaluation is carried out according to 
the feedback which represents the process state. If in-
put-output training data is available, the performance can 

be assessed easily, and supervised learning can be em-
ployed. 

5. Adaptive Neuro-Fuzzy Principle 

The fuzzy inference commonly used in ANFIS is first 
order Sugeno fuzzy model because of its simplicity, 
high interpretability, and computational efficiency, built- 
in optimal and adaptive techniques. A typical architec-
ture of an ANFIS is as shown in Figure 5. Among 
many FIS models, the Sugeno fuzzy model is the most 
widely applied one for its high interpretability and 
computational efficiency, and built-in optimal and adap- 
tive techniques. For a first order Sugeno fuzzy model, a 
common rule set with two fuzzy if-then rules can be 
expressed as: 

Rule 1: if x is A1 and y is B1, then z1 = p1x + q1y + r1 

Rule 2: if x is A2 and y is B2, then z2 = p2x + q2y + r2 

where Ai and Bi are the fuzzy sets in the antecedent, and 
pi, qi and ri are the design parameters that are determined 
during the training process. 

Layer 1: Every node in this layer contains member-
ship functions. 

 1 , 1, 2
ii Ao x i                 (12) 

 
2

1 , 3, 4
ii Bo y i


                (13) 

where 
iA  and 

iB  can adopt any fuzzy membership 

function (MF). 
 

 

Figure 5. Adaptive neuro fuzzy structure 
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Layer 2: This layer chooses the minimum value of 

two input weights. 

   2 , 1,2
i ii i A Bo w x y i            (14) 

Layer 3: Every node of these layers calculates the 
weight, which is normalized. 

3

1 2

, 1,2i
i i

w
o w i

w w
  


           (15) 

where iw  is referred to as the normalized firing 

strengths. 
Layer 4: This layer includes linear functions, which 

are functions of the input signals. 
4 ( ),i i i i i i io w z w p x q y r i    1, 2        (16) 

where iw  is the output of layer 3, and {pi, qi, ri} is the 

parameter set. The parameters in this layer are referred to 
as the consequent parameters. 

Layer 5: This layer sums all the incoming signals. 
2

5 1 1 2 2

1 1 2
i i i

i

w z w z
o w z

w w


 

             (17) 

The output z in Figure 5 can be rewritten as: 

     
     

1 1 1 1 1 1

2 2 2 2 2

z w x p w y q w r

w x p w y q w r

  

   2

         (18) 

In this paper the normalized membership functions of 
input variables and output variable are shown in Figures 
6 and 7. The Three-dimensional plot of Fuzzy Control 
surface is shown in Figure 8. 

6. Simulation Results 

In this paper, performance of the proposed ANFIS speed 
controller is evaluated and is compared with PI controller 
and without any controller. The controller parameters are 
chosen to optimize the performance criterion of the dy-
namic operation, and then the tuning was empirically 
improved. The simulation is carried out to observe the 
performance of the system at different load perturbations. 
 

 

Figure 6. Triangular membership functions for input 
variables e and  e

 

Figure 7. Triangular membership functions for output 
variable 
 

 

Figure 8. Three-dimensional plot of control surface 
 
The software environment used for this simulation is 
Matlab ver. 7.1, with simulink package. 

The change in rotor speed is due to the perturbations in 
reference voltage or firing angle and load torque. The 
analytical results used to investigate these speed changes 
are obtained considering the various previous functional 
blocks, where the different input and output variables are 
denoted by X1, X2, X3 & X4. The differential equations 
which govern the small variations about the operating 
point in terms of above variables are given in Equation 
(2). 

The perturbation studies were carried out at different 
operating points with different system parameters (gains 
and time constants) which are given in Appendix. Studies 
are carried out at operating points with various system 
parameters (gains and time constants). The simulation 
results give the present perturbation study for step 
change in the load torque and reference voltage. From 
the Figures 9 to 11 the starting transients are realized for 
ANFIS controller at different operating conditions. It can 
be observed from the figures that the performance of the 
ANFIS gives better response compared with PI controller 
and without any controller. 

7. Conclusions 

A framework for tuning and self organizing ANFIS con-
troller has been presented. This approach has been con- 
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trasted without any controller and with PI controller. The 
dynamic behavior of a closed-loop, variable speed induc-
tion motor drive which uses three silicon controlled rec-
tifiers has been studied in this paper. Transfer function 
blocks of the system for small variations about an oper-

ating point are derived, and the transient responses with 
the analytical studies have been carried out. Comparison 
of ANFIS controller, without any controller and with PI 
controller under normal operation for a given load torque 
and reference speed perturbations has been presented. It 

 

Figure 9. Variation of speed deviation at 5% load change 
 

 
Figure 10. Variation of speed deviation at 10% load change 
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Figure 11. Variation of speed deviation at 15% load change 
 
has been demonstrated that the proposed method gives a 
good response, regardless of parameter variations or ex-
ternal force. Simulation results have shown the capabili-
ties of the proposed controller in tracking predetermined 
desired speed trajectory. 
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Appendix  

 

Various Gains and Time Constants used for Perturbation Study (Motor Speed 'N = 1050 rpm) 

K1 = 0.032 

K2 = 0.25 

K3 = –60  

K4 = –0.0363  

K5 = 40.0  

 

T1 = 0.009 

T2 = 0.22 

T3 = 0.01111 

K5 = –0.095 

TG = 15.6 
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