

J. Software Engineering & Applications, 2010, 3: 303-418
Published Online April 2010 in SciRes (http://www.SciRP.org/journal/jsea/).

Copyright © 2010 SciRes. JSEA

TABLE OF CONTENTS

Volume 3 Number 4 April 2010

Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation

K. Hameed, R. Williams, J. Smith………………………………………………………………………………………………303

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a

Supporting Tool

D. Akoumianakis………312

Test Effort Estimation Using Neural Network

C. Abhishek, V. P. Kumar, H. Vitta, P. R. Srivastava……………………………………………………………………………331

Sudden Noise Reduction Based on GMM with Noise Power Estimation

N. Miyake, T. Takiguchi, Y. Ariki………………………………………………………………………………………………341

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

P. Chutima, P. Olanviwatchai……………………………………………………………………………………………………347

Study and Analysis of Defect Amplification Index in Technology Variant Business Application

Development through Fault Injection Patterns

P. M. Shareef, M. V. Srinath, S. Balasubramanian………………………………………………………………………………364

Time Series Forecasting of Hourly PM10 Using Localized Linear Models

A. Sfetsos, D. Vlachogiannis……………………………………………………………………………………………………374

Exploring Design Level Class Cohesion Metrics

K. Kaur, H. Singh……384

DSPs/FPGAs Comparative Study for Power Consumption, Noise Cancellation, and Real Time High

Speed Applications

A. Hayim, M. Knieser, M. Rizkalla………………………………………………………………………………………………391

Intelligent Supply Chain Management

M. Z. Khan, O. Al-Mushayt, J. Alam, J. Ahmad…………………………………………………………………………………404

Designing a Fuzzy Expert System to Evaluate Alternatives in Fuzzy Analytic Hierarchy Process

H. Fazlollahtabar, H. Eslami, H. Salmani…………………………………………………………………………………………409

Journal of Software Engineering and Applications (JSEA)

Journal Information

SUBSCRIPTIONS

The Journal of Software Engineering and Applications (Online at Scientific Research Publishing, www.SciRP.org) is published

monthly by Scientific Research Publishing, Inc., USA.

Subscription rates:

Print: $50 per issue.

To subscribe, please contact Journals Subscriptions Department, E-mail: sub@scirp.org

SERVICES

Advertisements

Advertisement Sales Department, E-mail: service@scirp.org

Reprints (minimum quantity 100 copies)

Reprints Co-ordinator, Scientific Research Publishing, Inc., USA.

E-mail: sub@scirp.org

COPYRIGHT

Copyright©2010 Scientific Research Publishing, Inc.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as described below, without the

permission in writing of the Publisher.

Copying of articles is not permitted except for personal and internal use, to the extent permitted by national copyright law, or under

the terms of a license issued by the national Reproduction Rights Organization.

Requests for permission for other kinds of copying, such as copying for general distribution, for advertising or promotional purposes,

for creating new collective works or for resale, and other enquiries should be addressed to the Publisher.

Statements and opinions expressed in the articles and communications are those of the individual contributors and not the statements

and opinion of Scientific Research Publishing, Inc. We assumes no responsibility or liability for any damage or injury to persons or

property arising out of the use of any materials, instructions, methods or ideas contained herein. We expressly disclaim any implied

warranties of merchantability or fitness for a particular purpose. If expert assistance is required, the services of a competent

professional person should be sought.

PRODUCTION INFORMATION

For manuscripts that have been accepted for publication, please contact:

E-mail: jsea@scirp.org

J. Software Engineering & Applications, 2010, 3: 303-311
doi:10.4236/jsea.2010.34036 Published Online April 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

303

Separation of Fault Tolerance and Non-Functional
Concerns: Aspect Oriented Patterns and
Evaluation

Kashif Hameed, Rob Williams, Jim Smith

University of the West of England, Bristol Institute of Technology, Bristol, UK.
Email: {Kashif3.Hameed, Rob.Williams, James.Smith}@uwe.ac.uk

Received January 1st, 2010; revised January 30th, 2010; accepted February 1st, 2010.

ABSTRACT

Dependable computer based systems employing fault tolerance and robust software development techniques demand
additional error detection and recovery related tasks. This results in tangling of core functionality with these cross cut-
ting non-functional concerns. In this regard current work identifies these dependability related non-functional and
cross-cutting concerns and proposes design and implementation solutions in an aspect oriented framework that modu-
larizes and separates them from core functionality. The degree of separation has been quantified using software metrics.
A Lego NXT Robot based case study has been completed to evaluate the proposed design framework.

Keywords: Aspect Oriented Design and Programming, Separation of Concerns, Executable Assertions, Exception

Handling, Fault Tolerance, Software Metrics

1. Introduction

Adding fault tolerance (FT) measures and other non-
functional requirements to safety critical and mission
critical applications introduces additional complexity to
the core application. By incorporating handler code, for
error detection, checkpointing, exception handling, and
redundancy/diversity management, the additional com-
plexity may adversely affect the dependability of a safety
critical or mission critical system.

One of the solutions to reduce this complexity is to
separate and modularize the extra, cross-cutting concerns
from the true functionality.

Although Rate of Change (ROC) based plausibility
checks for error detection and recovery have been ad-
dressed by [1,2], unfortunately none of the previous stu-
dies propose the separation of these error handling con-
cerns from true functionality to avoid complexity.

At the level of design and programming, several ap-
proaches have been utilized that aim at separating func-
tional and non-functional aspects. Component level ap-
proach like IFTC [3], computational reflection and me-
ta-object protocol based MOP [4] have shown that de-
pendability issues can be implemented independently of
functional requirements.

The evolving area of Aspect-Oriented Programming &
Design (AOP&D) presents the same level of independ-

ence by supporting the modularized implementation of
crosscutting concerns.

Aspect-oriented language extensions, like AspectJ [5]
and AspectC++ [6] provide mechanisms like Advice (be-
havioural and structural changes) that may be applied by
a pre-processor at specific locations in the program
called join point. These are designated by pointcut ex-
pressions. In addition to that, static and dynamic modifi-
cations to a program are incorporated by slices which can
affect the static structure of classes and functions.

The current work thus proposes some generalized as-
pect oriented design patterns representing fault tolerance
error detection and recovery mechanisms like ROC plau-
sibility checks, exception handling, checkpointing and
watchdog. Moreover some additional design patterns for
developing robust mission/safety critical software are also
presented. Software metrics like coupling, cohesion and
size have been applied quite successfully to access and
evaluate the quality attributes of OO software systems [7,
8]. However separation of concerns (SOC) especially
cross cutting ones in the light of new abstraction ad-
dressed by AO software development demands some ad-
ditional metrics. The current work reviews these addi-
tional metrics like concern diffusion over the components
(CDC), concern diffusion over the operations (CDO) and
concern diffusion over the lines of code (CDLOC). The

Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation 304

SOC metric suite is later applied on the proposed AO
patterns in an empirical case study. This helps evaluating
the degree to which AOSD modularizes the FT concerns
and its impact on other quality attributes.

The validation and dependability assessment of pro-
posed AOFT patterns has already been done in an earlier
work by the author [9].

2. Aspect Oriented Exception Handling
Patterns

Exception handling has been deployed as a key mecha-
nism in implementing software fault tolerance through
forward and backward error recovery mechanisms. It
provides a convenient means of structuring software that
has to deal with erroneous conditions [10].

In [11], the authors addresses the weaknesses of ex-
ception handling mechanisms provided by mainstream
programming languages like Java, Ada, C++, C#. In their
experience exception handling code is inter-twined with
the normal code. This hinders maintenance and reuse of
both normal and exception handling code.

Moreover as argued by [12], exception handling is
difficult to develop and has not been well understood.
This is due to the fact that it introduces additional com-
plexity and has been misused when applied to a novel
application domain. This has further increased the ratio
of system failures due to poorly designed fault tolerance
strategies.

Thus fault tolerance measures using exception han-
dling should make it possible to produce software where
1) error handling code and normal code are separated
logically and physically; 2) the impact of complexity on
the overall system is minimized; and 3) the fault toler-
ance strategy may be maintainable and evolvable with
increasing demands of dependability.

In this respect, [4] has proposed an architectural pattern
for exception handling. They address the issues like spe-
cification and signaling of exceptions, specification and
invocation of handlers and searching of handlers. These
architectural and design patterns have been influenced by
computational reflection and meta-object protocol.

However, most meta-programming languages suffer
performance penalties due to the increase in meta-level
computation at run-time. This is because most of the de-
cisions about semantics are made at run-time by the me-
ta-objects, and the overhead to invoke the meta-objects
reduces the system performance [13].

Therefore we propose generalized aspect based pat-
terns for monitoring, error detection, exception raising
and exception handling using a static aspect weaver.
These patterns would lead to integration towards a robust
and dependable aspect based software fault tolerance.
The following design notations have been used to ex-
press aspect-oriented design patterns shown in Figure 1.

2.1 Error Detection and Exception Throwing
Aspect

Error detection and throwing exceptions has been an an-
chor in implementing any fault tolerance strategy. This
aspect detects faults and throws range, input and output
type of exceptions. The overall structure of this aspect is
shown in Figure 2. The GenThrowErrExcept join points
the NormalClass via three pointcut expressions for each
type of fault tolerance case.

RangeErrPc: this join points the contexMethod() only.
It initiates a before advice to check the range type errors
before executing the contextMethod(). In case the asser-
tions don’t remain valid or acceptable behavior con-
straints are not met, RaneErrExc exception is raised.

InputErrPc: this join points the contextMethod() fur-
ther scoped down with input arguments of the con-
textMethod(). It initiates a before advice to check the
valid input before the execution of the context method.
Incase the input is not valid it raises InputErrExc.

OutputErrPc: this join points the contextMethod()

Figure 1. Aspect oriented design notations

Figure 2. Error detection, exception throwing

Copyright © 2010 SciRes JSEA

Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation 305

further scoped down with results as output of the con-
textMethod(). It initiates an after advice to check the va-
lid output after the execution of the context method. In-
case the output is not valid it raises OutputErrExc.

2.2 Rate of Change Plausibility Check Aspect

This aspect as shown in Figures 3 and 4 is responsible for
checking the erroneous state of the system based on the
rate of change in critical signal/data values. Once an er-
roneous state is detected, the respective exception is
raised. Various exceptions are also defined and initial-
ized in this aspect. The pointcut GetSensorData defines
the location where error checking plausibility checks are
weaved whenever a critical data/sensor reading function
is called. The light weight ROC-based plausibility asser-
tions are executed in the advice part of this aspect.

2.3 Catcher Handler Aspect

The CatcherHandler aspect as shown shown in Figure
5(a) is responsible for identifying and invoking the ap-
propriate handler. This pattern addresses two run-time
handling strategies.
 The first strategy is designated by an exit_main point-

Figure 3. Rate of change aspect pattern structure

Figure 4. Rate of change aspect pattern dynamics

cut expression. It checks the run-time main() function for
various fatal error exceptions and finally aborts or exits
the main program upon error detection. This aspect may
be used to implement safe shut-down or restart mecha-
nisms in safety critical systems to ensure safety, if a fatal
error occurs or safety is breached.

The second strategy returns from the called function as
soon as the error is detected. The raised exception is
caught after giving warning or doing some effective ac-
tion in the catch block. This can help in preventing error
propagation. Using this aspect, every call to critical func-
tions is secured under a try/catch block to ensure effec-
tive fault tolerance against an erroneous state.

It can be seen in the Figure 5(a) below that exit_main
pointcut expression join points the main() run-time func-
tion. Whereas caller_return pointcut expression join
points every call to the contextMethod(). Moreover ex-
it_main and caller_return pointcut expressions are asso-
ciated with an around advice to implement error handling.
The tjpproceed() allows the execution run-time main()
and called functions in the try block.

The advice block of the catcher handler identifies the
exception raised as a result of in-appropriate changes in
the rate of signal or data. Once the exception is identified,
the recovery mechanism is initiated that assign new val-
ues to signal or data variables based on previous trends
or history of the variable.

2.4 Dynamics of Exception Handling Aspect

This scenario shown in Figure 5(b) represents a typical
error handling case. It simulates two error handling
strategies. In the first case, control is returned from the
caller to stop the propagation of errors along with a sys-
tem warning. In the second case the program exits due to
a fatal error. This may be used to implement shutdown or
restart scenarios. Moreover the extension of a class
member function with a try block is also explained. A
client object invokes the contextMethod() on an instance
of NormalClass. The control is transferred to Catcher-
Handler aspect that extends the contextMethod() by
wrapping it in a try block and executes the normal code.
In case an exception is raised by previous aspect, the
exception is caught by the CatcherHandler aspect. This
is shown by the catch message. The condition shows the
type of exception e to be handled by the handler aspect.
CatcherHandler aspect handles the exception e. the call-
er_return strategy warns or signals the client about the
exception and returns from the caller. The client may
invoke the contextMethod2() as appropriate. In exit_main
strategy, the control is retuned to client that exits the
current instances as shown by the life line end status.

3. Watch Dog Aspect

A watchdog is a common concept used in real time sys-
tems for detecting and handling errors in real time sys

Copyright © 2010 SciRes JSEA

Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation 306

(a)

(b)

Figure 5. Catcher handler aspect. (a) Structure; (b) Dy-
namics

tems. It is a component that detects error by receiving a
delayed or null service response. Based on such timing
faults, it initiates a corrective action, such as reset, shut-
down, alarm to notify attending personnel, or signaling
more elaborate error-recovery mechanisms. Sometimes
software watchdogs are more active by performing peri-
odic built-in-tests (BIT). Synchronous tasks are more
prone to such timing based faults resulting in mission
failures.

In this regard we present a watchdog aspect (Figure 6)
to make such tasks fault tolerant by weaving an advice
code. Thus every synchronous mission critical task is
monitored against a deadline that is derived from the
worst case execution time of the overall task. As the dead
line is expired, the mission is aborted. The watchdog
aspect is presented below. It can be seen that every call

to a contextMethod() of a NormalClass is weaved with
a timing check to see whether time delay between current
and previous call exceeds the dead line or not. The
watchdog aspect communicates with an external clock
interface to receive time stamps. Thus the watch dog
aspect separates timing concerns from the true function-
ality. It also localizes the definition and signaling of ex-
ceptions.

4. Save Data and Checkpointing Aspect

Some tasks require context related critical data to be
stored for post analysis and executing recovery mecha-
nisms. Every call to these tasks is weaved with a data
saving advice. SaveData aspect (Figure 7) provides
checkpointed stable recovery data to be used in ROC
based error detection and recovery mechanisms.

Whenever a critical function is called, SaveData as-
pect stores the contextual state information with the help
of MemoryInterface.

5. System Configuration & Initialization Aspect

Most real time systems rely on sensors in-order to attain

Figure 6. Watchdog aspect

Figure 7. Save data & checkpointing aspect

Copyright © 2010 SciRes JSEA

Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation 307

physical information from external environment. These
sensors need to be configured and initialized depending
upon the modes of operation. For example a Lego NXT
robot (Tribot) used in our case study uses light, ultra-
sonic and rotation sensors to carry out tasks. These sen-
sors are mapped on respective ports of the NXT brick.
Moreover they must be initialized before starting actual
tasks. It has also been observed that rotation sensors are
reinitialized as the direction of rotation changes (when
Tribot start traversing backward). All such requirements
either cut-across true functional concern or emerges as
additional non-functional requirement. Such require-
ments have been implemented in an aspect thus separat-
ing them from true functional concern. This aspect is
weaved as a startup advice in the control flow of main
program.

6. Mission Pre-Conditions Aspect

Mission critical real time systems require some pre-con-
ditions or constraints to be met before starting the core
task. For example Tribot check the voltage level of bat-
teries and ambient light before staring its mission so that
it could fulfill its tasks reliably. If the above constraints
are not met, mission is aborted. Such constraints are
cross cutting to core functional requirements and thus
implemented as a separate aspect as shown as shown in
Figure 8.

As soon as the software finishes system initialization,
the said aspect acquires environmental data from the
SensorInteface and checks against the pre-conditions or
constraints. If the constraints are not met, an exception is
thrown and mission is aborted.

7. Case Study

In order to evaluate proposed AO design patterns, a case
study has been carried out using a LEGO NXT Robot
(Tribot). This uses an Atmel 32-bit ARM processor run-
ning at 48 MHz. Our development environment utilizes
AspectC++ 1.0pre3 as aspect weaver [6].

The Tribot has been built consisting of two front
wheels driven by servo motors, a small rear wheel and an
arm holding a hockey stick with the help of some stan-
dard Lego parts. Ultrasonic and light sensors are also
available for navigation and guidance purposes.

An interesting task has been chosen to validate our de-
sign. In this example Tribot hits a red ball with its hock-
ey stick avoiding the blue ball placed on the same ball
stand. It makes use of the ultrasonic and light sensors to
complete this task. This task is mapped on a goal-tree
diagram as shown in Figure 9.

Any deviation in full-filling the OR goals and corre-
sponding AND sub-goals is considered as a mission
failure.

8. Aspects Evaluation via Software Metrics

Although software metrics like coupling, cohesion and
size has been used to access the software quality for quite
some time, yet the separation of concerns especially
cross cutting ones with the aid of aspect oriented soft-
ware development demands some additional metrics
suite for its assessment. In this regard [14-16] have pro-
posed additional metric suite for separation of concerns.
This metric suite has been utilized in [17] to access the
quality of some large scale software systems.

These additional metrics measure the degree to which
a single concern in the system maps to the design com-
ponents (classes and aspects), operations (methods and
advice), and lines of code. For all the employed metrics,
a lower value implies a better result. Some of these met-
rics used in our study are explained below.

8.1 Separation of Concerns Metrics

Separation of concerns (SoC) refers to the ability to iden-
tify, encapsulate and manipulate those parts of software
that are relevant to a particular concern. The metrics for

Figure 8. Mission pre-condition aspect

Lego NXT

Hockey Player

Hit Red Ball Miss Blue Ball

Move Forward & Stop

25 cm short of ball post

Differentiate Ball

Move Back

OR

AND AND

Figure 9. Lego NXT robot case study: Goal tree diagram

Copyright © 2010 SciRes JSEA

Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation

Copyright © 2010 SciRes JSEA

308

SoC measurement are:
Concern Diffusion over Components (CDC)
This metric measures the degree to which a single

concern in the system maps to the components in the
software design. The more direct a concern maps to the
components, the easier it is to understand. It is also easier
to modify and reuse the existing components.

Definition: CDC is measured by counting the number
of primary components whose main purpose is to con-
tribute to the implementation of a concern. Furthermore,
it counts the number of components that access the pri-
mary components by using them in attribute declarations,
formal parameters, return types, throws declarations and
local variables, or call their methods.

Concern Diffusion over Operations (CDO)
One way of measuring the code tangling is by count-

ing the number of operations affected by concern code. If
a concern is scattered around more operations, it be-
comes harder to understand, maintain and reuse.

Definition: CDO is measured by counting the number
of primary operations whose main purpose is to contrib-
ute to the implementation of a concern. In addition, it
counts the number of methods and advices that access
any primary component by calling their methods or using
them in formal parameters, return types, throws declara-
tions and local variables. Constructors also are counted
as operations.

Concern Diffusion over LOC (CDLOC)
The intuition behind this metric is to find concern

switching with in the lines of code. For each concern, the
program text is analyzed line by line in order to count
transition points. The higher the CDLOC, the more in-
termingled is the concern code within the implementation
of the components; the lower the CDLOC, the more lo-
calized is the concern code.

Definition: CDLOC counts the number of transition
points for each concern through the lines of code. The
use of this metric requires a shadowing process that par-
titions the code into shadowed areas and non-shadowed
areas. The shadowed areas are lines of code that imple-
ment a given concern. Transition points are the points in
the code where there is a transition from a non-shadowed
area to a shadowed area and vice-versa. An extensive set
of guidelines to assist the shadowing process is reported
in [15].

8.2 Coupling Metrics

Coupling is an indication of the strength of interconnec-
tions between the components in a system. Highly cou-
pled systems have strong interconnections, with program
units dependent on each other [14]. The larger the num-
ber of couples, the higher the sensitivity to changes in
other parts of the design and therefore maintenance is
more difficult. Excessive coupling between components
is detrimental to modular design and prevents reuse. The

more independent a component is, the easier it is to reuse
it in another application [14]. The metrics in this cate-
gory are Coupling between Components (CBC) and
Depth of Inheritance Tree (DIT).

Coupling between Components (CBC)
This counts the coupling between classes, classes and

aspects and between other aspects. It counts the classes
used in attribute declarations i.e. C2 and C3 depicted in
figure below. It also counts the number of components
declared in formal parameters, return types, throws dec-
larations and local variables. Moreover classes and as-
pects from which attribute and method selections are
made are also included.

New coupling dimension are also defined in [14] in
order to support aspect oriented software development
(AOSD). For e.g. access to aspect methods and attributes
defined by introduction (couplings C4, C5, C7, C8, C10),
and the relationships between aspects and classes or oth-
er aspects defined in the pointcut (couplings C6, C9) as
depicted in Figure 10. Thus overall this metric encom-
passes nine coupling dimensions (from C2 to C10). If a
component is coupled to another component in an arbi-
trary number of forms, CBC counts only once.

Depth of Inheritance Tree (DIT)
DIT is defined as the maximum length from a node to

the root of the tree. It counts how far down the inheri-
tance hierarchy a class or aspect is declared. This metric
encompasses the coupling dimensions C1 and C11 illus-
trated in Figure 10.

8.3 Lego NXT Software Measures Analysis

Software metrics are attained for the Lego NXT Robot
case study as shown in Figure 11. In this case study, a
C++ based true functionality has been made fault tolerant
by weaving various concerns in 30 places using 7 aspects
and 10 independent point cut expressions. These 7 as-
pects represent different concerns that otherwise may be
added to actual true concern making the code more tan-
gled, non maintainable and non reusable.

Separation of Concern Measures
Separation of concerns has been evaluated using CDC,

CDO and CDLOC figures attained in the above case
study.

The Concern Diffusion over the components (CDC)
metrics measures the mapping of a single concern on
various components. It can be inferred from Figure 12
below that there is 64% reduction in mapping of true
concern on the components present in the system due the
introduction of aspects. Moreover the individual aspects
implementing cross cutting concerns don’t present large
CDC figures that means, the aspects are loosely coupled
with the system and thus can be more powerful candi-
dates for reusability.

Same behavior has been observed in CDO measures as
shown in Figure 13. As argued in [15,16], the code tang-

Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation 309

Figure 10. Coupling dimensions on AOSD [14]

Figure 11. Lego NXT software metrics

ling may be visualized by observing the diffusion of a
concern in different operations. Again the true concern
seems more tangled in different operations as compared
to cross cutting concerns implemented as aspects.

Concern diffusion over the lines of code (CDOLC) is a
measure of how much tangled and inter-winded is the
code implemented for a component. The larger the value,
more tangled is the code with other concerns.

CDLOC for the core functionality (TCS) counts to 2
that seems a reasonable reduction as compared to non
aspect oriented implementation. The seven non-fun-
ctional/cross cutting concerns may add to present a larger
CDLOC (Figure 14).

It can also be observed from the CDLOC dispersion
that there are some indicators of bit code tangling with
the true functionality especially for the aspects responsi-

ble for error detection and exception handling. Upon
code reviewing it was observed that some critical con-
textual information is required that resulted in concern
switching. Apart from that, overall concern switching for
each component is reasonably small to be considered
better candidates for reusability and maintainability.
There were four concerns implemented with null concern
switching in this study.

Coupling Measures
As observed in the study by [17], the coupling be-

tween components for various concerns has not increased
a lot in our case as well. Coupling between components
seem to be uniformly distributed with an average value
of 2 as shown in Figure 15. Apart from core functional-
ity (TCS), the increased coupling has been observed in
the concerns implementing error detection and recovery

Copyright © 2010 SciRes JSEA

Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation 310

mechanisms. This is due to the fact that aspects imple-
menting these concerns are coupled with the core con-
cern for acquiring contextual information used in error
detection and recovery mechanisms.

Exception Throwing & Handling Measures
It can be seen from Figures 16(a) and 16(b) that ex-

ceptions definition and throwing have been localized in
the components responsible for error detection like ROC
plausibility Checks and Watch Dog. Moreover, exception
handling has also been localized in their respective as-
pects without diffusing any other component.

TCS
36%

EPC
16%

ECI
11%

SD
11%

WD
5%

ROC
5%

EMH
5%

RCH
11%

Figure 12. CDC dispersion

TCS
42%

EPC
7%

ECI
7%

SD
8%

WD
8%

ROC
3%

EMH
8%

RCH
17%

Figure 13. CDO dispersion

TCS, 2

EPC, 0

ECI, 0

SD, 0

WD, 0
ROC, 2

EMH, 1

RCH, 1

Figure 14. CDLOC dispersion

9. Conclusions & Future Work

The current work proposes AO design patterns for de-
veloping fault tolerant and robust software applications.

The aspect oriented design patterns under this frame-
work bring additional benefits like the localization of
error handling code in terms of definitions, initializations
and implementation. Thus error handling code is not du-
plicated as the same error detection and handling aspect
is responsible for all the calling contexts of a safety
critical function. Reusability has also been improved
because different error handling strategies can be plugged
in separately. In this way, aspect and functional code
may both be ported more easily to new systems.

Although a detailed analysis of concerns separation
through aspects by refactoring large scale software ap-

TCS, 3

EPC, 3

ECI, 2
SD, 3

WD, 1

ROC, 1

EMH, 1

RCH, 3

Figure 15. Coupling between components

EPC, 2

WD, 1

ROC, 4 OTHERS, 0

(a)

EMH, 1

RCH, 2

OTHERS, 0

(b)

Figure 16. (a) Exceptions define & throw; (b) Try/catch
blocks

Copyright © 2010 SciRes JSEA

Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation

Copyright © 2010 SciRes JSEA

311

plication has been provided in [17]. Our case study also
compliments some of the results. It has been observed
that localization of exception management (definition,
initialization and throwing) and exception handling im-
proves modularity. It has been observed that fault toler-
ance concerns when implemented as aspects have re-
sulted in considerable reduction in diffusion of concerns
over the core functionality. The concern diffusion in
terms of LOC does indicate clear separation and localiza-
tion of error management related issues. However some
code tangling has been observed with error detection
based aspects. This is due to the sharing of context in-
formation needed for detecting erroneous states. Apart
from that CDLOC measures too small in the true func-
tionality. Coupling has been increased in the components
responsible for error detection. Thus overall there has
been an improvement in separation of concerns at the
cost of slightly increased coupling.

This further probes the need for incorporating an error
masking strategy like Recovery Blocks and N-Version
Programming. An aspect oriented design version of these
strategies is also under consideration.

REFERENCES

[1] M. Hiller, et al., “Executable Assertions for Detecting
Data Errors in Embedded Control Systems,” Proceedings
of the International Conference on Dependable Systems
& Networks, New York, June 2000, pp. 24-33.

[2] M. Hiller, “Error Recovery Using Forced Validity As-
sisted by Executable Assertions for Error Detection: An
Experimental Evaluation,” Proceedings of the 25th EU-
ROMICRO Conference, Milan, Vol. 2, September 1999,
pp. 105-112.

[3] P. A. C. Guerra, et al., “Structuring Exception Handling
for Dependable Component-Based Software Systems,”
Proceedings of the 30th EUROMICRO Conference (EU-
ROMICRO’04), Rennes, 2004, pp. 575-582.

[4] A. F. Garcia, D. M. Beder and C. M. F. Rubira, “An Ex-
ception Handling Software Architecture for Developing
Fault-Tolerant Software,” Proceedings of the 5th IEEE
HASE, Albuquerque, November 2000, pp. 311-332.

[5] AspectJ Project Homepage. http://eclipse.org/aspectj/

[6] AspectC++ Project Homepage. http://www.aspectc.org

[7] S. Chidamber and C. Kemerer, “A Metrics Suite for Ob-
ject Oriented Design,” IEEE Transactions on Software
Engineering, Vol. 20, No. 6, June 1994, pp. 476-493.

[8] V. Basili, L. Briand and W. Melo, “A Validation of Ob-
ject-Oriented Design Metrics as Quality Indicators,”
IEEE Transactions on Software Engineering, Vol. 22, No.
10, October 1996, pp. 751-761.

[9] K. Hameed, R. Williams and J. Smith, “Aspect Oriented
Software Fault Tolerance,” Proceedings of 4th Interna-
tional Conference on Computer Science & Education
(WCE09), London, Vol. 1, 1-3 July 2009.

[10] L. L. Pullum, “Software Fault Tolerance Techniques and
Implementation,” Artech House Inc., Boston, London, 2001.

[11] F. C. Filho, et al., “Error Handling as an Aspect,” Work-
shop BPAOSD’07, Vancouver, 12-13 March 2007.

[12] A. Romanovsky, “A Looming Fault Tolerance Software
Crisis,” ACM SIGSOFT Software Engineering Notes, Vol.
32, No. 2, March 2007, p. 1.

[13] K. Murata, R. N. Horspool, E. G. Manning, Y. Yokote
and M. Tokoro, “Unification of Compile-Time and
Run-Time Metaobject Protocol,” ECOOP Workshop in
Advances in Meta Object Protocols and Reflection
(Meta’95), August 1995.

[14] C. Sant’Anna, et al., “On the Reuse and Maintenance of
Aspect-Oriented Software: An Assessment Framework,”
Proceedings of the 17th Brazilian Symposium on Soft-
ware Engineering, Salvador, October 2003, pp. 19-34.

[15] A. Garcia, et al., “Agents and Objects: An Empirical
Study on Software Engineering,” Technical Report 06-03,
Computer Science Department, PUC-Rio, February 2003.
ftp://ftp.inf.puc-rio.br/pub/docs/techreports/(file03_06_ga
rcia.pdf)

[16] A. Garcia, et al., “Agents and Objects: An Empirical
Study on the Design and Implementation of Multi-Agent
Systems,” Proceedings of the SELMAS’03 Workshop at
ICSE’03, Portland, May 2003, pp. 11-22.

[17] F. C. Filho, et al., “Exceptions and Aspects: The Devil in
Details,” Proceedings of the 14th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engi-
neering, Portland, 5 November 2006.

J. Software Engineering & Applications, 2010, 3: 312-330
doi:10.4236/jsea.2010.34037 Published Online April 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of
Computer-Mediated Tasks: A Visual Notation
and a Supporting Tool

Demosthenes Akoumianakis

Department of Applied Informatics & Multimedia, School of Applied Technologies, Advanced Technological Education Institution
of Crete, Crete, Greece.
Email: da@epp.teicrete.gr

Received August 4th, 2009; revised September 2nd, 2009; accepted September 14th, 2009.

ABSTRACT

This paper presents the notion of the global execution context of a task as a representational construct for analysing
complexity in software evolution. Based on this notion a visual notation and a supporting tool are presented to support
specification of a system’s global execution context. A system’s global execution context is conceived as an evolving
network of use scenarios depicted by nodes and links designating semantic relationships between scenarios. A node
represents either a base or a growth scenario. Directed links characterize the transition from one node to another by
means of semantic scenario relationships. Each growth scenario is generated following a critique (or screening) of one
or more base or reference scenarios. Subsequently, representative growth scenarios are compiled and consolidated in
the global execution context graph. The paper describes the stages of this process, presents the tool designed to facili-
tate the construction of the global execution context graph and elaborates on recent practice and experience.

Keywords: Non-Functional Requirements, Software Evolution Artifacts, Global Execution Context, Tools

1. Introduction

Over the years a plethora of techniques have been devel-
oped to manage functional requirements of a software
system. Some of these techniques focus on modeling and
implementing functional requirements using constructs
such as goals, scenarios, use cases, or notations such as
UML diagrams and dedicated UML profiles. More recent
efforts shift the focus to packaging and deploying func-
tional requirements as reusable components and Web
services for program-to-program interactions. In particu-
lar, service-oriented architectures (SOAs) appropriate the
benefits of Web services to make it easier to exploit soft-
ware assets from many types of components in sophisti-
cated new solutions, without complex integration projects.
Nevertheless, in all cases current thinking is dominated by
concerns focusing on the lower levels of an enterprise
infrastructure—how to create, manage and combine
business services providing data and logic. These efforts
and the supporting techniques to managing functional
requirements are characteristic of the prevailing paradigm
in software development, which can be broadly qualified
as construction-oriented. At the core of this paradigm is
the goal of designing what a software system is expected

to do, and to this end, the software design community has
faced a variety of challenges in an effort to provide in-
sights to the process of constructing reliable, robust and
useful interactive systems and services.

The advent and wide proliferation of the Internet and
the WWW have expanded an already over-populated
software design research agenda, bringing to the surface
the compelling need to account for a variety of
non-functional requirements such as portability, accessi-
bility, adaptability/adaptivity, security, scalability, ubiq-
uity etc. Some of them are well known to the software
engineering community, while others challenge estab-
lished engineering methods and work practices. For in-
stance, a long-standing premise of user-centered devel-
opment is that of ‘understanding users’; but users are no
longer sharply identifiable, homogeneous or easily stud-
ied [1]. Furthermore, the tasks users carry out keep
changing both in type and scope [2], with every new
generation of technology, from desktop systems to mo-
bile and wearable devices and the emergence of ubiqui-
tous environments. The radical pace of these technical
changes and the proliferation of myriad of network at-
tachable devices introduce novel contexts of use, requir-
ing insights, which are frequently beyond the grasp of

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 313

software designers.
Recognition of these challenges has motivated recent

calls for departing from construction-specific software
design techniques towards evolution-oriented methods
and tools. In this vein there have been proposals aiming
to provide creative interpretation of best practices (e.g.,
by devising new modeling constructs [3,4], building
dedicated UML profiles [5], specifying architectural pat-
tern languages [6], etc.) in an effort to establish mecha-
nisms for analyzing and/or abstracting from salient fea-
tures of software artifacts. Despite recent progress, de-
signing systems to cope with change and evolution re-
mains a challenge and poses serious questions regarding
the design processes needed, the appropriate methodol-
ogy and the respective instruments. One research path
aiming to establish the ground for such informed design
practices concentrates on non-functional requirements
(NFRs) as a means to shift the focus away from what a
software system is expected to do towards how it should
behave under specified conditions. NFRs or quality at-
tributes represent global constraints that must be satisfied
by the software. Such constraints include performance,
fault-tolerance, availability, portability, scalability, ab-
straction, security and so on. Despite their recognition by
the software engineering community, it is only recently
(i.e., in the early 90s) that researchers have embarked in
efforts aiming to assess their relevance to and implica-
tions for software development [3,4,7]. Nevertheless, in
contrast to functional requirements their non-functional
counterparts have proven hard to cope with for a variety
of reasons [8]. Firstly, most of them lack a standard con-
notation as they are being treated differently across en-
gineering communities and software development disci-
plines (i.e., the same or similar NFRs hold different
meaning for say, platform developers and usability ex-
perts). Secondly, they are abstract, stated only informally
and requiring substantial context-specific refinement to
be accounted for. Thirdly, their frequently conflicting
nature (e.g., scale of availability may conflict with per-
formance) makes step-by-step implementation or verifi-
cation of whether or not a specific NFR is satisfied by the
final product, extremely difficult. These are some of the
reasons why NFRs are not easily incorporated into stan-
dard software engineering tools and practice.

SOA provide a new context for revisiting several
NFRs and their management during software develop-
ment. Nevertheless, current efforts are almost exclusively
concentrated on qualities such as abstraction, messaging,
service discovery, data integration, security, service or-
chestration/composition, etc, to facilitate two key princi-
ples: 1) creation of business services with defined inter-
faces so that functionality can be built once and then
consumed as required and 2) separation of the provision
of the services from their consumption. In this endeavor,
the software design community continues to devise ab-

stractions (i.e., components, visual notation, models and
tools) which make construction-oriented artifacts first-
class objects, dismissing or undermining software evolu-
tion and the special value NFRs have in this context. On
the other hand it is increasingly recognized that software
evolution is steadily overtaking in importance software
construction. Indeed, Finger [9] argues that ‘…the ability
to change is now more important than the ability to cre-
ate systems in the first place’.

An alternative approach to address this challenge may
be grounded on establishing the appropriate level of ab-
stractions to make evolution (rather than construction)
artifacts explicit, traceable and manageable in the course
of software development. This implies devising abstrac-
tions that allow us to expose how change is brought
about, what it entails, how it is put into effect and how it
may be traced and managed. To meet this goal, there are
key milestones likely to catalyze future developments.
Our understanding of this challenge leads to the conclu-
sion that we need 1) modeling approaches directing
analysis towards early identification of components that
relate to the cause of change, the subject of change and
the effect of change and 2) tools for effecting change in a
compositional fashion, thus relating change to local
components which are assembled without requiring
global reconfiguration of the system. In this vein, the
present work considers change management at a new
level of abstraction by promoting a shift in the unit of
analysis from task- or activity-level to task execution
contexts. It is argued that managing change is synony-
mous to coping with complexity and entails a conscious
effort towards designing for the global execution context
of computer-mediated tasks. Our normative perspective
is that software designers should increasingly be required
to articulate the global execution context of a system’s
tasks, rather than being solely concerned with the devel-
opment of an abstract task model from which incremen-
tally, either through mappings or transformations, a plat-
form-aware version of the system is generated. Moreover,
designing for the global execution context is a goal to be
satisficed rather than fulfilled. To this end, a new method
and a supporting tool is described which allow designers
to reason proactively (i.e., from early concept formation
through to design, implementation and evaluation) about
the global execution context of designated tasks. Both the
method and the tool provide a step in the direction of
making change a first-class design object accounted for
explicitly by articulating the parameters likely to act as
‘drivers’ of change. This is facilitated by an analytical
approach aiming to unfold, identify, represent and im-
plement alternative computational embodiments of tasks
suitable for a range of distinct task execution contexts
considered relevant and appropriate.

The remainder of the paper is structured as follows.
The next section considers change management in in-

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 314

formation systems and frames the problem in two theo-
retical strands relevant to this work, namely change as
evolution and change as intertwining non-functional re-
quirements. This contrast offers useful insight to some of
the research challenges preventing the development of
methods for effectively coping with changes. Then, the
paper elaborates on and defines the notion of a system’s
global execution context, which forms an abstraction for
addressing complexity in software evolution rather than
software construction. The following section describes
the i-GeC tool, which allows incremental specification of
the global execution context by using scenarios. Our ref-
erence example is a light ftp application initially de-
signed for desktop use. The paper is concluded with a
discussion on the contributions of this work and a brief
note on implications and future work.

2. Motivation and Related Work

Change in interactive software is inherently linked with
the context in which a task is executed. Typical context
parameters include the target user, the platform providing
the computational host for the task and/or the physical or
social context in which the task is executed. Each may
give rise to a multitude of potential drivers for change.
Therefore, it stands to argue that change management is
about coping with complexity in construction as well as
in evolution. Managing complexity in construction has
been coined with the handling of functionality. Specifi-
cally, through the history of software design the primary
focus has been on accommodating functional require-
ments so as to develop systems that meet specific user
goals. The resulting systems could cope with minimal
and isolated changes, related primarily to the user, since
no other part of the system’s execution context (i.e.,
platform or context of use) was conceived as viable to
change. On the other hand, complexity in evolution is a
more recent challenge attributed to the adoption of the
Internet and the proliferation of Internet technologies and
protocols. These developments have brought about an
increasing recognition of the catalytic role of NFRs and
have necessitated a paradigm shift in the design of inter-
active software so as to explicitly account for quality
attributes such as abstraction, openness and platform
independence, interoperability, individualization, etc.
Despite the fact that complexity in construction and
complexity in evolution may seem as competing at first
glance (i.e., evolution frequently implies improvements
in the functional requirements), our intention is to argue
that they bring about complementary insights, which may
prove beneficial to the development of systems which are
easier to manage and use.

2.1 Change as Evolution

The term evolution generally refers to progressive change
in the properties or characteristics of the subject of evo-

lution (i.e., software). A common view to conceive soft-
ware evolution is to focus on mechanisms and tools
whereby progressive change in program characteristics
(e.g., functionality) and growth in functional power may
be achieved in systematic, planned and controlled man-
ner [10]. This may be conceived from various perspec-
tives and viewpoints. For instance, it may be viewed
from the perspective of software engineering processes
and thereby explain the proliferation of iterative software
development models such as agile programming [11] and
extreme programming [12], etc. It may also be related to
evolution in requirements and requirements management
[13], giving rise to methods for tracing evolving compo-
nents [14,15], localizing changes to components and de-
veloping component interoperation graphs [16], framing
change to scenarios and supporting scenario evolution
[17,18], etc. Whatever the perspective adopted, it is
widely accepted that the ability to change is now more
important than the ability to create systems in the first
place [9]. Change management becomes a first-class de-
sign goal and requires business and technology architec-
ture whose components can be added, modified, replaced
and reconfigured. The implication is that the complexity
of software has definitely shifted from construction to
evolution. As a result new methods and technologies are
required to address this new level of complexity.

In the past, the software design community addressed
complexity in construction by devising abstractions (i.e.,
components, visual notation, models and tools) to make
construction-oriented artifacts first-class objects of de-
sign. This paradigm has catalyzed developments and
facilitated breakthroughs in areas such as: 1) data man-
agement (leading from the early conception of the rela-
tional model to more recent proposals [19]), 2) software
design (progressively shifting from structured techniques
to object orientation [20], the development of com-
puter-aided software engineering tools [21,22], do-
main-specific design languages [23], architecture de-
scription languages [6] and software factories [24]), 3)
user interface development (facilitating richer interac-
tions with the advent of 2D and 3D graphical toolkits
[25-28]), etc. The common theme in these developments
is that complexity is addressed by establishing levels of
abstraction, allowing software construction artifacts (ex-
pressed as models of some sort, code, or processes) to
become first class objects. It can therefore be argued that
the problem of complexity in software evolution amounts
to establishing the appropriate level of abstraction to
make evolution artifacts explicit, traceable and manage-
able. That is to say, we need to find the abstractions that
allow us to expose how change is brought about, what it
entails, how it is put into effect and how it may be traced
and managed. As already stated, our understanding of
this challenge leads to the conclusion that we need 1)
modeling approaches directing analysis to the identifica-

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 315

tion of components that relate to the cause of change, the
subject of change and the effect of change and 2) tools
for effecting change in a compositional fashion, thus re-
lating change to local components which are assembled
without requiring global reconfiguration of the system.

2.2 Change and Non-Functional Requirements

Change as evolution of functional requirements is of
course valid but it can only explain partially why modern
information systems need to change. In fact, there is evi-
dence to suggest that most of the changes in modern in-
formation systems do not concern functional components
but their connections and interactions [9]. This explains
recent efforts aiming to frame change in relation to NFRs
[8] and architectural quality attributes [29,30] such as
such as adaptability [31], portability [32], run-time adap-
tive behavior [2,33], etc. Through these efforts, it be-
comes increasingly evident that NFRs concern primarily
environment builders rather than application program-
mers. Nevertheless, there is an equally strong line of re-
search aiming to make NFRs visible and accountable for
as early as possible in the software design lifecycle by
developing conceptual models and dedicated notations.
Specifically, there are techniques aiming to classify
NFRs through taxonomies [34], develop representational
notations for using NFRs [7], advance process-oriented
instruments for working with them [7,29] and study their
relationship to software architecture [30,35]. Although
these techniques have evolved in separate engineering
communities (each with its own point of view) and have
typically been performed in isolation, they share com-
mon ground. For instance, they recognize the important
role to be played by methodological concepts and sup-
porting technology that promote architectural insight
through suitable first-class objects. Phrased differently,
software architecture quality attributes promote a gross
decomposition of systems into components that perform
basic computations and connectors that ensure that they
interact in ways that make required global system prop-
erties to emerge. Thus establishing abstractions at the
level of software architecture may help manage com-
plexity in software evolution.

2.3 Framing Change to the Task’s Execution
Context

The present work focuses on treating change from the
early stages of information systems development where a
variety of critical decisions are taken regarding architec-
ture, platforms, tools to be used, expected and foreseen
behaviors. Our primary concern is to advance a proposal
rooted in the anticipation of change and its incremental
localization in components. To this end, we use the no-
tion of task execution context to define a particular type
of scenarios that are allowed to grow. Then the global

execution context of a task (or a piece of functionality) is
an instance in a continuum of revisions and extensions of
the designated task’s execution context. Consequently,
managing change amounts to a conscious effort towards
designing for the global execution context of com-
puter-mediated tasks.

The execution context of a task is understood in terms
of a triad <Users, Devices, Context>. Users represent the
end (target) users - individuals or communities of users -
who experience an interactive artifact through which the
task is carried out. Devices refer to the technological
platform used to provide the computational embodiment
of the interactive artifact. Finally, context is a reflection
on the (physical and social) context of use in which the
task is executed. It is worth noting that none of these
relate to functional properties of the task. Then, design-
ing for the global execution context of a particular task
with specified functional requirements is directly related
to unfolding the rationale for and the artifacts encoun-
tered in a range of plausible task execution contexts. In-
terpreting the above rather theoretical concept in terms of
practical design guidelines raises several issues with two
standing out very promptly. The first is the commitment
towards exploring and managing complex design spaces,
while the second is the shift of engineering practice to-
wards abstract and specification-based techniques. Al-
though neither is entirely new to the software design
community (e.g., see the works by MacLean [36] on de-
sign space analysis, the work on DRL by [37], etc, as
well as recent advances in device-independent mark-up
languages such as UIML (http://www.uiml.org/) and
model-based development tools such as Teresa [32]),
their meaning and exploitation is slightly different in the
context of the present work.

3. The Global Execution Context of Tasks

The premise of the present work is that software design
lacks a coherent and detailed macro-level method – in the
sense defined in [38] – for the management of change
during the early stages of development where critical
decisions on architecture, tools and platforms to be used,
are taken. Consequently, our interest is in establishing an
integrated frame of reference for identifying and propa-
gating change (i.e., new requirements or evolution in
requirements) across stages in the course of the design
and development processes so as to facilitate designing
for the global execution context (GeC) of tasks.

3.1 Motivating Example & Terminology

It is useful to conceive the global execution context of a
task as a space of transformations depicting possible
and/or desirable mappings of a task’s abstraction to al-
ternative non-functional contexts (i.e., interaction plat-
forms, contexts of use or user profiles). Figure 1 pro-
vides an illustrative example from the field of user inter-

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 316

MyFile: File

Name: String

fileSelected()

fileDelete()

fileRename()

del myfile

Delete Cancel

myfile

myOoldFile

myNewFile

Task abstraction

Concrete manifestation

Interactive icons Command line

Interactive directory tree

MyFile: File

Name: String

fileSelected()

fileDelete()

fileRename()

del myfile

Delete Cancel

myfile

myOoldFile

myNewFile

Task abstraction

Concrete manifestation

Interactive icons Command line

Interactive directory tree

Figure 1. Possible transformations to derive the global exe-
cution context of a task

face engineering. Specifically, the figure presents sche-
matically possible transformations for an abstract task
‘fileDelete’ of a hypothetical file management applica-
tion to distinct concrete manifestations (potentially)
suitable for different non-functional execution contexts.
It is worth noticing that the example presents a case that
challenges current conceptions of cross-platform or
portable software in the sense that concrete manifesta-
tions need not be bound to native platform-specific ele-
ments; instead, they may use customized facilities, do-
main-specific and/or expanded components.

Being able to explicitly foresee and design a system so
that it can cope with all possible changes in its execution
context is probably a utopia, given the current state of the
art in systems thinking and engineering. Nevertheless, if
we delimit the qualification ‘all possible changes in the
task’s execution context’ to all known, or foreseen and
explicitly modeled changes (within the scope of a ser-
vice-oriented architecture), then it is possible to define a
context-sensitive processing function which under certain
circumstances will deliver the maximally preferred
transformation of an abstract task to a concrete instance
[39]. Consequently, understanding and designing for the
global execution context of a system’s task (i.e., sup-
porting the task’s execution across all designated non-
functional contexts) entails some sort of mechanism or
service for linking to, rather than directly calling, differ-
ent implemented components complying to/supported by
a designated service-oriented architecture. Equally im-
portant is to consider how the service-oriented architec-
ture is to view and link to radically different execution
contexts and platforms. In recent wittings, both in re-
search and development communities, this dimension is
dismissed resulting in proposals for SOA that cannot
cope with radically different non-functional execution
contexts.

To provide further insight, let us abstract from the de-
tails of Figure 1 to describe a more general situation
where our abstract task T2 (i.e., delete a file) is assigned

to two distinct realizations as shown in Figure 2. The
first, denoted with the solid line, refers to task execution
on a desktop devise, which requires that the selection list
is presented (S1), the user makes a choice (S2) and sub-
sequently the command is issued (S3), followed by a con-
firmation dialogue (S4). The second realization is using a
mobile devise. Once again the selection list is presented
(S1), but this time in order for the user to make a choice
the system augments interaction initiating a scanning
interface S2'. Once the selection is made the command is
issued (S3) followed by a confirmation dialogue (S4).

()

It is worth pointing out that despite the simplicity of
the example, it poses several challenges. First of all, for
any given task one can easily identify several additional
realizations (execution contexts) depending on the plat-
form or toolkit, the context of use and/or the target user.
Thus, one issue is enumerating requirements and encod-
ing alternatives, but also allowing for incremental up-
dates and evolution to accommodate new realizations.
Secondly, irrespective of the task’s execution context the
functional requirement remains the same (i.e., delete a
file). The cause of change is therefore due to a designated
set of NFRs. It may also be argued that prevalent NFRs
such as portability or platform independence may not
suffice to capture the essence implied by some of these
changes. For instance, if scanning is implemented as a
reusable interaction library, it signifies an augmentation
of the target platform whereby the scanning functionality
is introduced as new interaction technique assigned to
designated interaction elements. This is totally different
from a hard-coded implementation of the scanning inter
face to suit a specific interaction scenario or system.
Similarly, one could envisage alternatives to augmenta-
tion such as platform expansion (i.e., to increase the
range of interaction elements of an existing platform) or
new platform development (i.e. for a designated modality)
and integration (i.e., mixing components from different
platforms). All these represent intertwining (and fre-
quently conflicting) goals to inscribing non-functional
qualities such as usability, portability, individualization,
etc. Moreover, they are not intuitively associated with or
assumed by prevalent NFRs. It stands to argue therefore
that designing for the global execution context of a task

Figure 2. Tasks and execution contexts

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 317

entails an account of ‘hidden’ quality goals such as plat-
form augmentation, expansion and integration, which are
not so established in the software engineering literature.
Furthermore, in many cases it is these ‘hidden’ quality
goals that determine the type and range of non-functional
contexts to be assigned to a task’s global execution con-
text.

3.2 Modelling the Global Execution Context

Conceptually, the GeC of an abstract task T can be con-
ceived as a five tuple relation <T, g, S, f, C> where g is
the task’s goal to be achieved by alternative scenarios si
 S, and a context-sensitive processing function f(si)
which defines the maximally preferred instance of S,
given a designated set of constraints C. Such a definition,
allows us to model change in interactive software in
terms of certain conditions or constraints which propa-
gate alternative interactive behaviours to achieve task-
oriented goals. Three types of constraints are relevant to
the present work, namely user constraints, platform con-
straints and context constraints. User constraints are
user-specific parameters designating alternative interac-
tion and use patterns. Platform constraints relate to prop-
erties of a target device-specific execution environment.
Context constraints designate external attributes of po-
tential relevance to the task’s execution. Then, change
in the execution context of a software system occurs if
and only if there is at least one constraint in C whose
parameter value has been modified so as to justify system
transformation. The result of recognizing and putting it
into effect causes the deactivation of si S, which was
the status prior to recognizing and the activation of a
new sj S, which becomes the new status.

3.2.1 Basic Vocabulary and Notation
In our recent work, we have been developing a sce-
nario-based approach in an attempt to formalize elements
of the global execution context of computer-mediated
tasks. In terms of basic vocabulary, the approach makes
use of three constructs namely base (or reference) sce-
narios, growth scenarios and scenario relationships. Base
scenarios depict situations in an existing system or a
prototype, which are defined in terms of functionality.
Growth scenarios extend reference scenarios in the sense
that they describe new execution contexts for the func-
tionality associated to the reference scenario.

Scenario relationships are used to capture semantic
properties of the reference and growth scenarios. Two
categories of relevant scenario relationships have been
identified, namely those describing internal structure of
scenarios in terms of components as well as those de-
scribing scenario realization. The former type of rela-
tionships is well documented in the literature (see [17])
and may be applied to any scenario independent of type
(reference or growth). For the purposes of the present

work we have found two such relationships as being
useful, namely subset-of and preference/indifference.
Subset-of is the relationship defining containment be-
tween two scenarios. It declares that the functions of a
scenario Si are physically or logically part of another
scenario Sj. Si is termed the subordinate scenario, and Sj
is termed the superior scenario. The subordinate scenario
always encapsulates part of the action in the superior
scenario. It should be noted that the subset-of relation-
ship does not entail inclusion in the sense that execution
of the superior scenario is suspended until the execution
of the subordinate scenario is complete. Instead, it im-
plies the set-theoretic notion of subset where the actions
of the subordinate scenario are contained within or are
the same as the set of actions of the superior scenario.
Preference designates the existence of a preference order
for two subordinate scenarios Si and Sj of a superior sce-
nario. Preference is specified by a preference condition
or rule. When executed, the preference condition should
place candidate subordinate scenarios in a preference
ranking (indifference classes), while the most preferred
scenario (first indifference class) is the one to be acti-
vated. The preference relationship is useful for specify-
ing the context-sensitive processing function which acti-
vates/deactivates scenarios at run-time.

Scenario realization relationships provide details of the
mapping (or transformation) between reference and
growth scenarios and are intended to capture evolution of
a reference scenario into growth scenarios. In general,
two properties dictate the evolution of a base scenario
into a growth scenario. The first relates to temporal as-
pects of growth scenario execution, while the second
depicts the resources demanded for realizing the growth
scenario. In terms of temporal aspects of execution these
can be modeled either by alternative or parallel execution.
The resources demanded can be modeled by relationships
such as (platform) augmentation, (platform) expansion
and (platform) integration. As the latter two are special
cases of the alternative relationship, platform augmenta-
tion is the third scenario realization relationship used to
complete the global execution context graph in the con-
text of the present work. The alternative relationship
links two scenarios when each serves exactly the same
goals and one and only one can be active at any time.
Alternative is the main operator for specifying adaptabil-
ity of a system with regards to a designated quality at-
tribute (e.g., platform independence). As already stated,
two scenarios designated as alternative may be realized
either by platform integration (typical case of multi-
platform capability) or by platform expansion which as-
sumes interoperability between the platform and another
platform or third-party libraries used to expand the initial
vocabulary of the platform. Moreover, two alternative
scenarios are considered as indifferent with regards to all
other quality attributes except the ones designated in the

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool

Copyright © 2010 SciRes JSEA

318

alternative declaration (see preference). Augmentation
captures the situation where one scenario in an indiffer-
ence class is used to support or facilitate the mostly pre-
ferred (active) scenario within the same indifference
class. For instance the scanning interface scenario in
Figure 2 augments file management when executed us-
ing a mobile devise. In general, two scenarios related
with an augmentation relationship serve precisely the
same goal through different (but complementary) inter-
action means. Finally, parallelism refers to concurrent
activation of scenarios serving the same goal. At any
time two parallel scenarios preserve full temporal overlap.
Parallelism may have two versions. The simplest version
is when the scenarios utilize resources of the same plat-
form. In this case the relationship is synonymous to con-
current execution of the scenarios (i.e. deleting a file us-
ing command line or an interactive directory tree) with
full temporal overlap. The second version of parallelism
is relevant when the scenarios utilize resources of differ-
ent interaction platforms (toolkits). In this case, it is as-
sumed that the two platforms are concurrently utilized
and an abstract user interface can link with each one to
make use of the respective interaction elements. This
type of parallelism does not require interoperability be-
tween the platforms, as platform-specific interaction
elements are not mixed. A typical example of this type of
parallelism is when two users (i.e. a blind and a sighted
user) are engaged in a collaborative application (i.e., file
management session) and the concrete user interface in
each case utilizes interaction resources of different tool-
kits (one graphical toolkit for the sighted user’s interface
and one non-visual toolkit realizing the blind user’s in-
terface). This type of parallelism is not common in inter-
active applications, but when properly supported, it can
serve a number of desirable features such as adaptivity to
suit individualized requirements, concurrent modal-
ity-specific interaction as well as multimodality.

It should be noticed that the relationships discussed
above are intended to serve the analysis of the global
execution context as described earlier. All of them except
the subset-of relationship are intended to address primar-
ily non-functional qualities of scenarios. Consequently,
these relationships are complementary to others proposed
in the relevant literature (see for example [17]) for cap-
turing semantic properties such as scenario complements,
specialization, temporal suspension of a scenario until
another scenario is completed (i.e. ‘includes’ relationship)
or exceptional scenario execution paths (i.e. ‘extends’
relationship).

3.2.2 The Global Execution Context Graph
Collectively, the notational constructs described earlier
are presented in Table 1 and constitute the basic vo-
cabulary of the global execution context notation (GeCn).
Using this notation, designers can specify the require-
ments of the global execution context of a task as a graph.

This graph is typically a visual construction consisting of
nodes representing scenarios and directed links repre-
senting scenario relationships. Figure 3 illustrates an
example of the global execution context graph of a task,
namely select files, of a simple ftp application. This ex-
ample will be further elaborated in the following section.
The figure depicts, one reference scenario, namely ‘Se-
lect files with desktop style’ which through the contain-
ment operator links to ‘Single file selection’ and ‘Multi-
ple file selection’. Single and multiple file selection are
parallel (i.e. weak notion of concurrency presented ear-
lier, making use of resources of the same platform). The
reference scenario as a whole (including the contain-
ments) is augmented with ‘Select with scan on’ which is
a growth scenario containing two alternative options,
namely ‘One button/auto’ and ‘One button/manual’
scanning. It is important to note that the designated
growth scenarios do not represent change or evolution of
the functional requirements of the application (either at
the client or the server side). Instead, they designate a
platform-specific non-functional requirement for sup-
porting augmentation of interaction through scanning of
interaction elements. On the other hand there is no
pre-requisite as to how this augmentation is supported
(i.e., through programming or by augmenting toolkit li-
braries to facilitate scanning). This simple example suf-
fices to make two claims regarding the global execution
context graph of a task. Firstly, the technique is intended
to represent ‘hidden’ requirements not commonly col-
lected using conventional requirements engineering
methods – thus it is complementary to rather than com-
peting against such methods. Secondly, the technique is
biased towards platform-oriented requirements leading to
an improved insight on existing NFRs such as platform
independence, portability, etc.

∥

Figure 3. Example of a global execution context graph

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 319

Table 1. Basic notation

Symbol Interpretation

AA

Reference or base scenarios depict situations in an existing system or a prototype, which are defined in terms of functionality. They
comprise at least one actor and one explicitly stated goal

BB

Growth scenarios are always linked to a base scenario which they extend in the sense that they describe new execution contexts for
the functionality associated to the reference scenario

‘Preference’ relationship designates the existence of a preference ranking between two or more scenarios; the preference ranking is
conditional upon the preference rule (or condition)

ii
‘Indifference’ relationship designates indifferent execution of two or more scenarios realized in the same design vocabulary (i.e.
development platform)

aa
‘Alternative’ relationship designates alternative realizations / embodiments of a scenario across distinct design vocabularies; at any
time one and only one of the scenarios can be active

++++
‘Augmentation’ relationship designates that a scenario is used to support or facilitate the mostly preferred (active) scenario within
the same indifference class

////
‘Parallel’ relationship designates the concurrent activation of scenarios of a designated design vocabulary; at any time parallel sce-
narios preserve full temporal overlap

‘Interchangeable’ execution designates parallel execution of scenarios in distinct design vocabularies; no requirement for interopera-
bility as scenarios are not mixed

ss
‘Subset_of’ defines containment of actions of one (subordinate) scenario into actions of another (superior) scenario; the subordinate
scenario appears on the left hand side of the relationship

3.3 Stages in the Construction of Global

Execution Context Graphs

Building the global execution context graph entails an
iterative process of continuous refinement. It is both
useful and important to be able to verify refinements of a
task’s global execution context graph so as to ensure
consistency and correctness. To facilitate these tasks, a
micro method and a supporting tool have been developed
to provide guidelines for building the global execution
context graph. The method and the tool serve two main
goals, namely 1) encoding reference and growth scenar-
ios in alternative representation forms and 2) incremental
and evolutionary construction of the system’s global
execution context graph so as to allow incorporation of
new requirements and requirements evolution (i.e., ver-
sioning). Figure 4 illustrates the conceptual stages in-
volved in compiling the global execution context graph

Figure 4. Process stages for building

using growth scenarios. As in the case of other sce-
nario-based methods, it involves interplay between re-
flection (analysis and screening) and envisioning. The
first step is usually a preparatory activity carried out by
the analyst in collaboration with domain experts, and
entails the formulation of reference scenarios. Once the
scenario is formulated, typically in a narrative form, the
screening process begins in an effort to compile the ra-
tionale for growth scenarios. To this end the choice of
screening filters is important. One option is to screen the
reference scenarios using designated NFRs so as to un-
fold breakdowns or deficiencies related to global system
qualities (i.e. system architecture, platform commitment,
interaction metaphor). In Table 2 we provide an example
of such NFRs-based screening of our reference ftp ap-
plication.

Alternatively, screening may focus on other aspects of
interactive software such as choice of interaction ele-
ments, dialogue styles, presentation, etc. In all cases,
scenario screening assumes the availability of artifacts
(e.g., narratives, pictures, user interface mock-ups, high
fidelity prototypes, etc) and it entails a structured process
whereby implicit or explicit assumptions embedded in an
artifact (and related to the intended users, the platform
used to implement the artifact and the context of use) are
identified and documented. The essence of screening is
in defining appropriate filters or adopting alternative
perspectives to critique a base scenario. It is therefore a
scenario inspection technique in the sense described in
[40], which can be realized through different instruments.

Whatever choice of the screening instrument, it is im-
perative that screening should motivate growth scenarios
so that the latter do not exist in vacuum. Instead, they
should be related to the design breakdowns identified
through screening and the designated new or evolving
requirements. Consequently, the ultimate goal of growth
scenarios is to capture evolution of requirements codified
in base scenarios. Such evolution should depict new

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 320

Table 2. Screening using NFRs and corresponding design breakdowns

NFR Example of design breakdown New or evolving requirement

Platform independence
“… file transfer is not available as WWW or WAP appli-
cation or service …”

Allow choice of delivery medium or interaction style
(i.e. HTML, WAP, Windows style)

Scalability
“… the system does not exhibit scalability to platform or
access terminal capabilities … “

Detect context of use and allow operation in text-only
style through a kiosk

Adaptability
“…the system cannot be customized to diverse require-
ments…”

Support manual or automatic customization of interac-
tion style (e.g., scanning)

A
da

pt
at

io
n

Adaptivity
“…when in operation the system does not monitor user’s
interactive behavior to adjust aspects of interaction…”

Provide auditory feedback upon completion of critical
tasks to inform users on task completion state

Context awareness
‘…the system takes no account of the context of use to
modify its interactive behavior…”

Allow context monitoring and switching between des-
ignated interaction styles

Localization “…the system can not be localized…” Allow choice of language

Accessibility
“…the system is not accessible by certain target user
groups…”

Interview user to determine motor, visual, cognitive
capabilities and define adaptation

execution contexts for the tasks in the base scenario. In
practice, growth scenarios result from relaxing the as-
sumptions identified in the course of screening. Once
agreed, growth scenarios may become more concrete
through prototypes, which specify details of the new task
execution contexts. It is important to note that our inten-
tion is to consider growth scenario management as an
engineering activity [41] rather than a craft, and to con-
tribute towards effective engineering practices for guid-
ing the creation and refinement of scenarios. Conse-
quently, our work links with recent proposals in sce-
nario-based requirements engineering aiming to offer
systematic scenario process guidance (see for example
[42,43]) as well as key concepts and techniques of the
Non-Functional Requirements Framework [8].

4. Designing for the Global Execution
Context

To support designers in gaining insights and analysing the
global execution context, a tool has been developed,
namely interactive Global execution Context (i-GeC).
i-GeC covers all three stages namely scenario recording,
screening and growth scenario compilation. It does not
however, embark into detailed design, which is beyond
the scope of the present work. Figure 5 depicts the logical
view of i-GeC, summarising our notion of reference (or
base) and growth scenarios as well as the scenario rela-
tionships relevant to this work. It should also be noted that
the class model of Figure 5 provides a scheme for inter-
preting the main components of the five tuple relation <T,
g, S, f, C> used to conceptualise the GeC of a task. The
only element not explicitly modelled is the context sensi-
tive processing function f. However, this relates to the
system’s implementation and architectural model for
processing (i.e. enabling/disabling) scenarios. As for the
constraints they are assumed to be parameters of the class
‘Artifact’. Another important consideration regarding the
scheme of Figure 5 is that, although there is a provision
for goals, this should not be confused with functional
requirements. In fact, this work is not concerned with this
type of requirement. Instead, our interest is on non-fun-

ctional requirements and how they are translated into
quality goals. As already mentioned earlier, some
non-functional requirements (i.e. adaptability, portability
and individualization) are well established in the relevant
literature both in terms of scope and techniques used to
cope with them (i.e. [3,8]. Others however are not so
well established (i.e. toolkit augmentation, expansion,
integration) but are considered very important to model-
ling the global execution context of a task. The latter type
of non-functional requirements, partly motivate the work
presented in this paper.

To illustrate the above, we will continue to make use of
our ftp application allowing authorised users to connect
to a server and subsequently manipulate local files (i.e.
transfer, delete). For the purposes of our discussion, we
will consider both the incorporation of new requirements
and requirements evolution. A new requirement is to
support ftp portability to a new platform (i.e., from desk-
top to PDA). As an example of requirements evolution
we will consider various enhancements of the file selec-
tion task so as to support multiple selection by file cate-
gory (i.e. select all files with an extension ‘.ppt’) and
selection through scanning on a PDA. Scanning is an
interaction technique, which entails automatic manipula-
tion of PDA interaction elements in a hierarchical fash-
ion to reduce keystroke level actions. It is therefore con-
ceived as a usability enhancement. Thus, in the remain-
ing of this section, our aim is to show how from a given
set of functional requirements we can progressively
compile a specification of the system’s new execution
context supporting a PDA client with the enhanced file
selection facilities.

4.1 Encoding/Recording Scenarios Using i-Gec

Encoding scenarios using a variety of media and repre-
sentational tools is important, as it allows the designer to
start with a high-level narrative description of a situation
of use (see Figure 6, left hand side dialogue) and pro-
gressively transform it into a bulleted sequence, state
diagram, use case model, etc., reflecting the designers’
incremental improvement of understanding of the situa-

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 321

Figure 5. Class model of the global execution context of a task

Figure 6. Encoding a reference scenario as use cases

tion. This transformation is user-driven in the sense that
the user can employee simple cut & paste techniques or
menu-driven dialogues to map textual elements in the
narrative description to graphical elements in a specific
visual notation (see for example Figure 6 for a transfor-
mation of a narrative to a use case model). Each refer-
ence scenario can be incrementally refined. Reference
scenario refinement involves detailed description of the
scenario and compilation of more analytic views of the
scenario codified as numbered sequence of activities,
partitioned narrative, exception steps, state transitions,
etc., as shown in Figure 7.

4.2 Scenario Screening with i-Gec

Following reference scenario recording, the screening
stage seeks to provide a structured critique of the re-

corded scenario so as to designate issues (in anticipation
of change) or shortcomings. These shortcomings provide
the rationale and the motives for subsequent compilation
of growth scenarios (see next section). In the current ver-
sion, screening a scenario follows the tradition of design
space analysis using Questions Options & Criteria [36].
The analyst can designate both issues and options (poten-
tial solutions) as shown in Figure 8. All designated is-
sues and options are codified per scenario and can be
explored through the memory tool. This type of screen-
ing is intended only to record and make persistent the
results of analysis.

4.3 Compiling Growth Scenarios and Building
Global Execution Context Graphs with i-GeC

In i-GeC, the compilation of growth scenarios entails

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 322

(a)

(b)

Figure 7. Manipulation of reference scenarios. (a) Describing the reference scenario; (b) Expanding the reference scenario

reformulation of a use case type representation of the
base scenarios. Specifically, to define a growth scenario,
the user should first declare the growth case and then
assign the appropriate relationships between the growth
case and the base or other growth scenarios. Figure 9.
depicts an example where a growth scenario is intro-
duced (Figure 9(a)) and subsequently elaborated (Figure
9(b)). In the example, ‘iPAQ connection’ is introduced
as ‘alternative to’ the reference scenario ‘connect to a

remote server’ which represents functionality already
supported by the ftp application. The growth scenario is
motivated by the screening criterion of ‘user adaptability’
and the issue ‘how does the user type IP address’ (see
Figure 9(b)). For the same growth scenario there may be
more issues assigned. As shown, reference and growth
scenarios are distinct elements represented as single-line
and double-line ellipses respectively. The semantic sce-
nario relationship is represented as an annotated link. The

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 323

Figure 8. The screening stage

(a)

(b)

Figure 9. Populating a reference scenario. (a) Introducing a growth scenario; (b) Populating a growth scenario

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 324

growth scenario elaboration dialogue groups the proper-
ties of a growth scenario into four categories. The gen-
eral properties of the growth scenario declare its name,
description and relationship with other scenarios. In a
similar fashion the user can assign the issues relevant to
(or addressed by) the growth scenario, the pre- and
post-conditions and supporting analysis (i.e. a state tran-
sition diagram, numbered sequence, partitioned narrative,
etc). This provides a kind of verification for each growth
scenario, since it ensures the minimum qualities required
(i.e., each scenario is assigned to a goal, each scenario is
realized through a set of actions, etc). This issue is fur-
ther elaborated later on in this paper.

Building the global execution context graph entails
three steps: 1) devising growth scenarios; 2) assigning
quality attributes to justify the derived growth diagram
and 3) commenting on the pseudo verification applied to
check the global execution context graph. Table 3 pro-
vides a summary of the growth scenarios highlighting
both the case of supporting ftp through PDA and the en-
hancement of the file selection task. These extensions are
typically expressed as new/evolving requirements to be
accommodated as growth cases of the initial base sce-
nario. From the descriptions in Table 3, we can deduce
that the global execution context of the new ftp applica-
tion should include one additional growth scenario
namely ‘Select with scanning’ and two parallel compo-
nents designating that selection is augmented by two
growth scenarios namely ‘One button/Auto’ or ‘One
button/Manual’. This is depicted in Figure 10. The rela-
tionships between the various growth scenarios define
the scale and scope of the system’s adaptable and/or
adaptive behaviour. This offers useful insight to the
range of anticipated changes and their implication on
architectural abstraction, the choice of interaction tech-
niques, as well as the conditions under which alternative
styles of interaction are to be initiated.

At any time, designers can justify their decisions by
rationalizing growth scenarios using non-functional qual-
ity models. Such models may be built in advance so as to
establish global constraints on software design or in the
course of building and rationalizing a task’s global exe-
cution context. Figure 11 presents an example decompo-
sition of the ‘accessibility’ quality in terms of alterna-
tives or claims softgoals in the vocabulary of the NFR
Framework [8]. Specifically, the model in Figure 11
details that accessibility can be satisficied either by aug-
menting interaction through scanning, or by expanding a
toolkit library with new interaction object classes or by
integrating another toolkit class library. The relationships
qualify the degree of satisficing a goal. Thus, augmenta-
tion and expansion support (i.e., have a positive influence)
on accessibility, while toolkit integration is indifferent.
Figure 11 on the left hand side represents the link be-
tween the non-functional quality model and the global

execution context graph. The rationale behind the com-
bined model is intended to convey the following meaning:
The iPAQ version of the ftp application should support a
scanning interface which should allow selection in two
alternative modes – one button with automatic scanning
or one button with manual scanning of the highlighter.

Figure 12 depicts an interactive instance of the aug-
mented ftp application with the scanning interface on and
the multiple file selection facility (see Table 3 and
Figure 10 for the rationale of the growth scenarios). As
shown, scanning is activated through explicit function
activation by pressing the button in the left bottom corner
(see Figure 12(a)). Once activated the scanner gives fo-
cus in round-robin fashion to each control in a hierarchi-
cal fashion. It is worth noting the difference in the inter-
active behaviour for each object of focus. Thus, when
scanning is activated and the object of focus is a text en-
try field the fill colour is changed (see Figure 12(b))
while when the object of focus is a button then the label
is underlined (see Figure 12(c)). In Figure 12(d) the
focus is on the Download Button (note the square around
it). By pressing a hardware button on the device the
scanner moves from one level to another (i.e. from scan-
ning selection sets to scanning items within a selection
set and vice versa). Figure 12(e) demonstrates the multi-
ple file selection by checking files in a category. For
example, when the “Remote Files” list has the focus,
pressing the PowerPoint icon on the taskbar, all files with
ppt extension in that list are selected. This multi-selection
task adds checkboxes to the left of all items in the list,
and files with ‘ppt’ extension are automatically checked.
It should be noted that this type of selection is very use-
ful as it reduces keystroke level interactions (i.e. avoids
using the slider to locate files and multiple file checking),
without changing the initial application in any other way.

4.4 Pseudo Verification of the Global Execution
Context Graph

In its current version, the tool consolidates the global
execution context graph in an XML document by im-
plementing a pseudo-verification to ensure that the global
execution context graph satisfies to some degree the cri-
teria of completeness and redundancy. The tests per-
formed aim to satisfy the following:

 Each scenario Si in the global execution context
graph GeCg(S) where S denotes the reference system
should be either a base scenario or a growth scenario

 Given a system S, for each base scenario SBi
GeCg(S) there is at least one growth scenario SGj
GeCg(S) related with SBi

 Given a system S, then a growth scenario SGi
GeCg(S) can be related with a base scenario SBi
GeCG(S) or another growth scenario SGj GeCg(S);

 All scenarios are assigned to goals – informally, this

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 325

Table 3. Elaboration of growth scenarios

 Base scenario (Desktop) Growth Scenario (PDA) Growth Scenario (PDA & scanning)

Initiator Professional user Professional user User at home

Context
of use

The user outside the office
The user enters the classroom and
wishes to ftp the file containing his
slideshow

The user is at home and wishes to review
his slideshow

User System User System User System

Flow of
events

o The user
connects to
the server and
logs-in

o The user

carries out
file selection

o The user

issues a
command (by
button press)

o The system

responds to no-
tify user’s login
and presents the
desktop em-
bodiment of the
user interface

o The system

notifies the user
of current se-
lection

o The system

executes the
command

o The system

updates the
display

o The user
connects to
the server and
logs-in

o The user

makes a se-
lection from
the list of pa-
tients

o The user

issues a
command
(using the
light pen)

o The system

responds to no-
tify user’s login
and presents the
PDA embodi-
ment of the
user interface

o The system list

the currently
selected file

o The system

executes the
command

o The user
connects to
the server and
logs-in

o The user

declares se-
lection mode

o The user

selects all
files with .ppt
extension

o The system re-

sponds to notify
user’s login and
presents the aug-
mented PDA em-
bodiment of the
user interface

o The system lists of
files in a default
style

o The system initiates

suitable style & in-
forms the user

o The system exe-

cutes the command

Excep-
tions

 Network problems
 Error in login procedure

 Network problems
 Error in login procedure

 Network problems
 Error in login procedure

Pre-
conditions

 User is authorized
 Desktop interface is available
 System has inferred the task’s

execution context resulting in
HTML style being automatically
initiated

 User is authorized
 User is in possession of the desig-

nated terminal
 System has inferred the task’s

execution context resulting in PDA
style being automatically initiated

 User is authorized
 User is in possession of the designated

terminal User is familiar with scanning
 System has inferred the task’s execu-

tion context resulting in PDA style be-
ing automatically initiated

Post-
conditions Designated files are successfully

transferred
 Designated files are successfully

transferred
 Designated files are successfully trans-

ferred

Relation-
ships

 Alternative to base scenario Alternative to base scenario
 Augments PDA style
 Parallel selection as separate growth

scenarios

ensures that a scenario is devised to facilitate a desig-
nated goal of the system. Thus, there are no scenarios
beyond the scope of the envisioned system;

 Each scenario can be satisfied by at least one goal –
informally, the proposition aims to assert that each sce-
nario is linked to at least one goal.

The above propositions are checked before the global
execution context graph is transformed into XML. This
allows a pseudo verification of the completeness, redun-
dancy and understandability of a global execution context
graph. Specifically, the propositions can be considered as
necessary but not sufficient conditions for ensuring com-
pleteness. Clearly, as the global execution context graph is
subject to refinement, no sufficient condition for com-

pleteness can hold. As for redundancy, the propositions
aim to support a weak notion of redundancy, which asserts
that no scenarios are included that would not be desig-
nated to goals. Obviously, the global execution context
graph could incorporate redundancy both at the level of
growth scenarios (i.e. alternative growth scenarios may
exist which satisfy the same goal) and at the level of ac-
tions (i.e. alternative action sets may be employed to sat-
isfy a user goal). Finally, regarding understandability, the
propositions aim to ensure that all scenarios included in
the global execution context graph are understandable by
tracing their designated goals, which are considered valid.
On the other hand, the propositions offer no guarantee that
the global execution context graph can be understood.

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 326

At any instance, the GeCg can be traversed by select-
ing and following a particular path from start to end and
understanding the system’s behaviour under certain con-
ditions. Path differentiation is always associated with a
scenario relationship of type alternative or augments.
Referring to our example, we can define possible tra-
versals of the global execution context graph, differenti-
ated by colour. Activating, the reference scenario results
in an iPAQ embodiment of the designated task, with sin-

gle and multiple selection. Activation of scanning would
augment the file selection process with scanning. As for
the type of scanning, two alternative manifestations are
available with only one being active at any point in time.
In terms of system implementation requirements, it is
important to note that the underlying intention is that
both paths should co-exist, while through context-sensi-
tive processing the system should decide on the choice of
optimal path.

Figure 10. Designating an augmentation of a growth scenario

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 327

Figure 11. Quality models and the global execution context graph

(d) Hierarchical scanning (e) Multiple selection

Textbox has scan
focus Button has scan

focus

(a) Initial screen (b) Scanning activated (c) Scanning activated (cont.)

Icon pressed results
in selection of files
with .ppt extension

Figure 12. Examples of the scanning interface

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 328

5. Discussion

The work presented in this paper differs from recent re-
lated efforts both in terms of orientation and underlying
perspective. In terms of orientation, our interest is to
frame the problem of software execution across different
non-functional contexts as an issue of software evolution.
To this end, change in functional requirements is of course
valid but it can only explain in part why modern infor-
mation systems need to change. In fact, there is evidence
to suggest that most of the changes in modern information
systems do not concern functional components but their
connections and interactions. This explains recent efforts
aiming to frame change in the context of non-functional
requirements and architectural quality attributes.

In terms of underlying perspective, the present work
pursues a line of research, which is motivated by the fact
that complexity of software is increasingly shifting from
construction to evolution. In the past, the software design
community addressed complexity in construction by de-
vising abstractions (i.e., components, visual notations,
models and tools), which make construction-oriented
artefacts first-class objects. In a similar vein, an approach
to addressing complexity in software evolution could be
focused on making the software evolution artefacts ex-
plicit through modelling them as first class objects. This is
especially relevant for service-oriented architectures
(SOA), aiming to appropriate the benefits of reusability
and maintainability to foster the design of applications in
an implementation independent manner using network
services and connections between network services.

The NfRn provides insights towards this end by pro-
moting a shift in the unit of analysis from task- or activ-
ity-level to task execution contexts. Then, designing
software systems for execution across different non-
functional contexts is conceived as specifying the sys-
tem’s global execution context. This requires an explicit
account of platform-oriented non-functional requirements
such as augmentation, expansion, integration and ab-
straction, which are considered as quality goals inscribed
in a SOA. Moreover as software designers will increas-
ingly be required to articulate the global execution context
of a system’s tasks, there is a compelling need for tools
supporting the management of designated software evo-
lution artefacts. In our work, this is facilitated by ex-
tending the use case notation widely employed for
documenting functional requirements in a manner facili-
tating the construction and refinement of the tasks’ global
execution context graph.

The global execution context notation and the sup-
porting tool have now been applied in a number of case
studies and applications (see [44-46]) in addition to the
initial validation in the Health Telematics domain [47],
providing useful insight to managing change in interactive
software. These experiences provide evidence to support

the claim that the basic vocabulary of the GeC and the
method presented in this paper offer useful insight to
modelling software design evolution necessitated either
by new requirements or evolving requirements. The pri-
mary benefit of the method results from the fact that
change becomes a first class design object modelled
through designated growth scenarios that evolve from
previously codified reference scenarios. Moreover, the
GeCg as an artefact provides designers with useful in-
formation regarding:

 The range of alternative execution contexts consid-
ered appropriate at a point in time.

 The conditions which characterize activation/deac-
tivation of growth scenarios; this entails an elaboration
and justification of each of the relationships appearing in
the graph.

 Guidance in the choice of what paths to traverse or
walk through under specific conditions.

 Choice of suitable system architecture; for example
relationships of the type alternative and augments desig-
nate the systems adaptable components, while the rela-
tionship type parallel points out adaptive features of the
target implementation.

Consequently, the main contributions of the presented
work are threefold. Firstly, we described a method for
modelling change early in the development lifecycle.
This is done by introducing a notation, which is simple
and intuitive while resembling the vocabulary used by
other popular notations such as UML. It is argued that
using this notation to specify the current and anticipated
contexts of use constitutes an improvement upon current
practices. Specifically, the burden of using textual de-
scriptions to codify goals (as in the case of RUP) is re-
moved. Instead, visual constructs are used to codify de-
sign logic and rationale in a manner similar to other re-
search proposals for visual goal-oriented requirements
modelling [3-5]. Secondly, the method offers a frame of
reference for considering scenarios as drivers for system
evolution. This departs from contemporary views of sce-
nario-based requirements engineering where scenarios
are considered as static resources appearing at the begin-
ning of a project and lasting until specifications or re-
quirements are documented. In our work, scenarios re-
main ‘live’ and persistent resources driving future system
evolution. Moreover, this is achieved in a systematic
manner and it is documented using appropriate com-
puter-based tools. Another contribution of the present
work is that it is particularly suited to dealing with non
functional requirements – such as adaptability, adaptivity,
scalability and portability – which in contrast to func-
tional requirements, are known to be hard to model and
account for. This offers a perspective on scenario evolu-
tion, which is complementary to existing conceptions
proposed in the relevant literature (e.g. [17]).

Copyright © 2010 SciRes JSEA

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool 329

6. Summary and Future Work

In this paper, we have presented a method and a sup-
porting tool for specifying the global execution context of
computer-mediated tasks. Our motivation has been to
make explicit the artefacts of evolution. Thus, our method
considers evolution as a transformation from the current
situation (codified through reference scenarios) to an
envisioned situation (represented by semantically related
growth scenarios). The links characterizing such trans-
formations are a small set of scenario relationships such as
alternate execution, concurrency, ordering, and set-oriented
relationships between two scenarios, devised to encapsu-
late evolution as change of functional requirements as well
as evolution as change in non-functional qualities. A sys-
tem’s global execution context can then be depicted as a
visual construction, referred to as the global execution
context graph, and can be populated by a supporting tool
suite and transformed to XML.

Future work seeks to address several extensions both in
the method and the i-GeC tool. In terms of methodological
extensions, we are studying the development of a scenario
specification language to formalize the description of
scenarios. On the other hand several refinements of the
tool suite are currently under development. Specifically,
an on going activity seeks to expand the (currently primi-
tive) user interface prototyping features supported by the
tool so as to establish a link between scenarios (either
reference or growth), their underlying rationale and their
(possible) interactive embodiments. In this context, we are
also exploring the possibility of linking the tool’s outcome
with existing task-based notations and model-based user
interface engineering methods such as Teresa [32].

REFERENCES

[1] D. R. Olsen, “Interacting in Chaos,” Interactions, Vol. 6,
No. 5, September-October 1999, pp. 42-54.

[2] S. S. Anand, P. Kearney and M. Shapcott, “Generating
Semantically Enriched User Profiles for Web Personal-
ization,” ACM Transactions on Internet Technology, Vol.
7, No. 4, October 2007.

[3] E. Yu, “Towards Modelling and Reasoning Support for
Early-Phase Requirements Engineering,” Proceedings of
the 3rd IEEE International Symposium on Requirements
Engineering (RE’97), IEEE Computer Society, New York,
1997, pp. 226-235.

[4] H. Solheim, F. Lillehagen, S. A. Petersen, H. Jorgensen
and M. Anastasiou, “Model-Driven Visual Requirements
Engineering,” The Proceedings of the 13th IEEE Interna-
tional Conference on Requirements Engineering, IEEE
Computer Society, New York, 2005, pp. 421-425.

[5] K. Cooper, S. P. Abraham, R. S. Unnithan, L. Chung and
S. Courtney, “Integrating Visual Goal Models into the
Rational Unified Process,” Journal of Visual Languages
and Computing, Vol. 17, 2006, pp. 551-583.

[6] M. E. Dashofy, A. Van der Hoek and N. R. Taylor, “A
Comprehensive Approach for the Development of Modu-
lar Software Architecture Description Languages,” ACM
Transactions on Software Engineering and Methodology,
Vol. 14, No. 2, 2005, pp. 199-245.

[7] J. Mylopoulos, L. Chung and B. Nixon, “Representing and
Using Non-Functional Requirements: A Process-Oriented
Approach,” ACM Transactions on Software Engineering,
Vol. 18, No. 6, 1992, pp. 483-497.

[8] L. Chung, B. Nixon, E. Yu and J. Mylopoulos, “Non-
Functional Requirements in Software Engineering,” Klu-
wer Academic Publishers, Boston, 1999.

[9] P. Finger, “Component-Based Frameworks for E-Com-
merce,” Communications of the ACM, Vol. 43, No. 10,
2000, pp. 61-66.

[10] M. M. Lehman and J. F. Ramil, “Software Evolution and
Software Evolution Processes,” Annals of Software En-
gineering, Vol. 14, No. 1-4, 2002, pp. 275-309.

[11] D. Thomas, “Agile Programming: Design to Accommo-
date Change,” IEEE Software, Vol. 22, No.3, 2005, pp.
14-16.

[12] K. Beck, “Embracing Change with Extreme Program-
ming,” IEEE Computer, Vol. 32, No. 10, 1999, pp. 70-77.

[13] E. M. Shina and H. Gomaab, “Software Requirements
and Architecture Modeling for Evolving Non-Secure Ap-
plications into Secure Applications,” Science of Computer
Programming, Vol. 66, No. 1, 2007, pp. 60-70.

[14] L. Naslavsky, A. T. Alspaugh, J. D. Richardson and H.
Ziv, “Using Scenarios to Support Traceability,” Proceed-
ings of the 3rd International Workshop on Traceability in
Emerging Forms of Software Engineering, ACM Press,
New York, 2005, pp. 25-30.

[15] J. Cleland-Huang and K. C. Chang, “Event-Based Trace-
ability for Managing Evolutionary Change,” IEEE Trans-
actions on Software Engineering, Vol. 29, No. 9, 2003,
pp. 796-810.

[16] V. Rajlich, “Modeling Software Evolution by Evolving
Interoperation Graphs,” Annals of Software Engineering,
Vol. 9, No. 1-4, May 2000, pp. 235-248.

[17] K. K. Breitman, J. C. S. P. Leite and M. D. Berry, “Sup-
porting Scenario Evolution,” Requirements Engineering,
Vol. 10, No. 2, May 2005, pp. 112-131.

[18] D. B. Petriu, D. Amyot, M. Woodside and B. Jiang,
“Traceability and Evaluation in Scenario Analysis by Use
Case Maps,” In: S. Leue and T. J. Systa, Ed., Scenarios:
Models, Transformations and Tools (Lecture Notes in
Computer Science), Springer-Verlag, Berlin/Heidelberg,
Vol. 3466, 2005, pp. 134-151.

[19] J. Hammer and M. Schneider, “The GenAlg Project: De-
veloping a New Integrating Data Model, Language, and
Tool for Managing and Querying Genomic Information,”
SIGMOD Record, Vol. 33, No. 2, 2004, pp. 45-50.

[20] I. Jacobson, M. Christeron, P. Jonsson and G. Overgaard,
“Object-Oriented Software Engineering – A Use Case
Driven Approach,” Addison-Wesley, White Plains, 1992.

[21] G. Avellis, “CASE Support for Software Evolution: A

Copyright © 2010 SciRes JSEA

http://www.sciencedirect.com/#aff1
http://www.sciencedirect.com/#aff2

Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool

Copyright © 2010 SciRes JSEA

330

Dependency Approach to Control the Change Process,”
Proceedings of the 5th International Workshop on Com-
puter-Aided Software Engineering, IEEE Computer Soci-
ety, New York, 1992, pp. 62-73.

[22] T. Mens and T. D’Hondt, “Automating Support for Soft-
ware Evolution in UML,” Automated Software Engineer-
ing, Vol. 7, No. 1, 2000, pp. 39-59.

[23] T. Kosar, E. P. M. Lopez, A. P. Barrientos and M. Mernik,
“A Preliminary Study on Various Implementation Ap-
proaches of Domain-Specific Language,” Information and
Software Technology, Vol. 50, No. 5, April 2008, pp. 390-
405.

[24] J. Greenfield and K. Short, “Software Factories – Assem-
bling Applications with Patterns, Frameworks, Models &
Tools,” John Wiley & Sons, New York, 2004.

[25] B. Myers, “User Interfaces Software Tools,” ACM Trans-
actions on Human-Computer Interaction, Vol. 12, No. 1,
1995, pp. 64-103.

[26] J. Heer, S. Card and J. Landay, “Prefuse: A Toolkit for
Interactive Information Visualization,” Proceedings of
ACM CHI, ACM Press, New York, 2005, pp. 421-430.

[27] B. B. Bederson, J. Grosjean and J. Meyer, “Toolkit De-
sign for Interactive Structured Graphics,” IEEE Transac-
tions on Software Engineering, Vol. 30, No. 8, 2004, pp.
535-546.

[28] E. Adar, “GUESS: A Language and Interface for Graph
Exploration,” Proceedings of the ACM Conference on
Human Factors in Computing Systems, ACM Press, New
York, 2006, pp. 791-800.

[29] M. Barbacci, R. Ellison, A. Lattanze, J. Stafford, C.
Weinstock and W. Wood, “Quality Attribute Workshops,”
2nd Edition, Carnegie Mellon Software Engineering
Institute, Pittsburgh, 2002. http://www.sei.cmu.edu/pub/
documents/02.reports/pdf/02tr019.pdf

[30] L. Bass, P. Clements and R. Kasman, “Software Archi-
tecture in Practice,” Addison-Wesley, White Plains, 1998.

[31] L. Chung and N. Subramanian, “Adaptable Architecture
Generation for Embedded Systems,” The Journal of Sys-
tems and Software, Vol. 71, No. 3, 2004, pp. 271-295.

[32] G. Mori, F. Paternò and C. Santoro, “Design and Devel-
opment of Multidevice User Interfaces through Multiple
Logical Descriptions,” IEEE Transactions on Software
Engineering, Vol. 30, No. 8, 2004, pp. 507-520.

[33] M. Salehie and L. Tahvildari, “Self-Adaptive Software:
Landscape and Research Challenges,” ACM Transactions
on Autonomous and Adaptive Systems, Vol. 4, No. 2,
2009.

[34] M. Barbacci, M. Klein, T. Longstaff, C. Weinstocket,
“Quality Attributes,” Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, 1995. http://
www.sei.cmu.edu/publications/documents/95.reports/95.
tr.021.html

[35] E. Folmer and J. Bosch, “Architecting for Usability: A
Survey,” Journal of Systems and Software, Vol. 70, No.
1-2, 2004, pp. 61-78.

[36] A. MacLean, V. Bellotti and S. Shum, “Developing the
Design Space with Design Space Analysis,” In: P. F.
Byerley, P. J. Barnard and J. May, Ed., Computers,
Communication and Usability: Design Issues, Research
and Methods for Integrated Services, Elsevier, Amster-
dam, pp. 197-219, 1993.

[37] J. Lee and K.-Y. Lai, “What’s in Design Rationale?” In: T.
P. Moran and J. M. Caroll, Ed., Design Rationale: Con-
cepts, Techniques and Use, Lawrence Erlbaum Associates,
Malham, 1996.

[38] J. S. Olson and T. P. Moran, “Mapping the Method Mud-
dle: Guidance in Using Methods for User Interface De-
sign,” In: M. Rudisill, C. Lewis, P. B. Polson and T. D.
McKay, Ed., Human-Computer Interface Design: Success
Stories, Emerging Methods, and Real-World Context,
Morgan Kaufmann Publishers, San Francisco, 1996, pp.
101-121.

[39] D. Akoumianakis, A. Savidis and C. Stephanidis, “En-
capsulating Intelligent Interactive Behavior in Unified
User Interface Artifacts,” Interacting with Computers,
Vol. 12, No. 4, 2000, pp. 383-408.

[40] J. C. S. P. Leite, J. H. Doorn, G. D. S. Hadad and G. N.
Kaplan, “Scenario Inspections,” Requirements Engineer-
ing, Vol. 10, 2005, pp. 1-21.

[41] K. Weidenhaupt, K. Pohl, M. Jarke and P. Haumer,
“Scenarios in System Development: Current Practice,”
IEEE Software, Vol. 15, No. 2, 1998, pp. 34-45.

[42] C. Potts, K. Takahashi and A. Anton, “Inquiry–Based
Requirements Analysis,” IEEE Software, Vol. 11, No. 2,
1994, pp. 21-32.

[43] C. Rolland and C. B. Achour, “Guiding the Construction
of Textual Use Case Specifications,” Data & Knowledge
Engineering, Vol. 25, No. 1-2, 1998, pp. 125-160.

[44] D. Akoumianakis and I. Pachoulakis, “Scenario networks:
Specifying User Interfaces with Extended Use Cases,” In:
P. Bozanis and E. N. Houstis, Ed., Advances in Informat-
ics (Lecture Notes in Computer Science), Springer-Verlag,
Berlin/Heidelberg, Vol. 3746, 2006, pp. 491-501.

[45] D. Akoumianakis, A. Katsis and N. Bidakis, “Non-func-
tional User Interface Requirements Notation (NfRn) for
Modeling the Global Execution Context of Tasks,” In: K.
Coninx, K. Luyten and K. A. Schneider, Ed., Task Models
and Diagrams for Users Interface Design (Lecture Notes
in Computer Science), Springer-Verlag, Berlin/Heidel-
berg, Vol. 4385, 2006, pp. 259-274.

[46] D. Akoumianakis, G. Vellis, D. Kotsalis, G. Milolidakis
and N. Vidakis, “Experience-Based Social and collabora-
tive Performance in an ‘Electronic Village’ of Local In-
terest: The eKoNΕΣ Framework,” In: J. Cardoso, J. Cor-
deiro and J. Filipe, Ed., ICEIS’2007 – 9th International
Conference on Enterprise Information Systems, Volume
HCI, INSTICC, Funchal, 2007, pp. 117-122,

[47] D. Akoumianakis and C. Stephanidis, “Blending Scenar-
ios and Informal Argumentation to Facilitate Universal
Access: Experience with the Universal Access Assess-
ment Workshop Method,” Behaviour & Information
Technology, Vol. 22, No. 4, 2003, pp. 227-244.

http://www.hcirn.com/res/publish/mkp.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/f/Filipe:Joaquim.html

J. Software Engineering & Applications, 2010, 3: 331-340
doi:10.4236/jsea.2010.34038 Published Online April 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

331

Test Effort Estimation Using Neural Network

Chintala Abhishek*, Veginati Pavan Kumar, Harish Vitta, Praveen Ranjan Srivastava

Department of Computer Science and Information System, Birla Institute of Technology and Science, Pilani, India.

Email: {*chabhishek123, pavanon9, harishvitta, praveenrsrivastava}@gmail.com

Received January 5th, 2010; revised February 21st, 2010; accepted February 25th, 2010.

ABSTRACT

In software industry the major problem encountered during project scheduling is in deciding what proportion of the
resources has allocated to the testing phase. In general it has been observed that about 40%-50% of the resources need
to be allocated to the testing phase. However it is very difficult to predict the exact amount of effort required to be allo-
cated to testing phase. As a result the project planning goes haywire. The project which has not been tested sufficiently
can cause huge losses to the organization. This research paper focuses on finding a method which gives a measure of
the effort to be spent on the testing phase. This paper provides effort estimates during pre-coding and post-coding
phases using neural network to predict more accurately.

Keywords: Test Effort Estimation, Neural Network, Use Case Points, Halstead Model

1. Introduction

Software engineering [1] is a field that provides stan-
dardized approaches for the development, operation, and
maintenance of software. Software Engineering as a
discipline the need arose when there was software crisis
[1]. The need for producing software of high quality and
to have a control on the effort both in terms of the money
and the person-hours gave software Engineering a higher
prominence. It defines a process which helps for project
management [1].

A crucial aspect of software Engineering is software
testing [1]. Software testing is a phase of software
development which deals with testing the developed
product or project. A project /product which have been
developed without sufficient testing might contain major
bugs which can render the entire project useless and also
cause losses of critical data.

Software testing [1] by definition is the process of
validating and verifying a software product or a project
or an application. It should be tested on the aspects of:
meeting the requirements of the user, functionality, and
characteristics of the developed software.

Generally software test life cycle involves several
stages and it can be classified into three major phases.

Initial phase: This phase involves with identifying
which aspects of the designed are to be tested followed
by the creation of a test phase strategy.

Intermediate phase: This phase involves the deve-
lopment step in which the procedures and the scenarios

all are defined. This is followed by the execution step
which deals with implementing the developed plan and
reporting any error found.

Termination phase: This is longest phase involves
several activities, once the testing is finished a report
indicating the fitness of the project/product to be released
is created. Then the analysis is carried out with the client
to deal with the problems faced during its real time
implementation. Then the detection of any further exi-
sting defects is carried out. If there are any modifi-
cations done then the entire component is retested to
determine any side effects that could have occurred
because of changes in previous step (Regression testing).
If the system meets the exit criteria the testing phase is
terminated.

In the ideal scenario it is desirable to have exhaustive
testing as this ensures that there are no bugs or errors.
This is not possible even with a project of very less
complexity. Thus the need for having an efficient testing
strategy arises. Software testing phase needs to be
planned to be carried out efficiently.

Artificial neural network [2-4] is a soft computing
technique that tries to achieve the functionality of
biological neural network. It consists of group of
artificial neurons that work on mathematical model to
process the information and to solve highly complex
problems. It involves a network of simple processing
elements called as neurons that are connected. The
connections between the neurons help in realizing a
complex functionality. As mentioned above Software

Test Effort Estimation Using Neural Network 332

testing is a challenging field and this paper proposes and
efficient methodology to estimate test effort estimation
with more accuracy using artificial neural network.

The paper is written with the general introduction of
the Software testing in Introduction, followed by the
description about the background work (Section 2).
Section 3 deals with actual problem while section four is
fully devoted on proposed approach of the paper. Section
4 deals with the application of the proposed model and
finally in Section 6, the results obtained are discussed.

2. Background Work

Estimation accuracy can be achieved by choosing an
accurate model for measuring. This section provides with
the information that has been gathered, on which the
work is based upon.

2.1 Use Case Point [5]

The effort to be estimated for the pre-coding phase is
based on the use case point analysis [5]. Nageswaran [5]
proposes a strategy which calculates effort based on the
unadjusted use case weight (UUCW), unadjusted actor
weight (UAW) and the technical and environmental
factors (TEF). Those factors are calculated based on the
classification of actors and usecases into simple, average,
complex and very complex classes. The obtained
unadjusted use case point (AUCP) is multiplied by a
factor to obtain the effort. The effort obtained in this is
not accurate with the expected level of accuracy in
estimation. Our proposed model is totally inspired by
Nageswarn work. This paper provides an improvement
over the method proposed by Nageswaran [5]. Nages-
waran [5] model can be stated as:

During this phase the project manager has the design
document based on which he can make an estimate of the
effort that needs to be allocated to the testing phase.

The proposed method suggest the usage of adjusted
unadjusted usecase weight, unadjusted actor weight
(UCW), technical and environmental factor (TEF) as a
measure for the test effort estimation. Back propagation
in neural network is used for training the network.

The inputs are taken for a particular project based on
the design document. The UUCW is calculated as

Usecase component:
UUCW = (No. of usecases of type simple*1 + No. of
usecases type average*2 + No. of usecases of type
complex*3 + No. of usecases of type very complex*4)

The usecase information Table 1 is used for distin-
guishing and assigning the values.

Actor components:
The actor information is obtained from the Table 2.
TEF components:
The technical and environmental factors are assigned

as indicated by the Table 3.

Table 1. Usecase weight assignment table [5]

Usecase type Description Weight

Simple <=3 1

Average 4-7 2

Complex >7 3

Table 2. Actor weight assignment table [5]

Actor type Description Weight

Simple GUI 1

Average Interactive 2

Complex Low interaction 3

Table 3. TEF weight assignment factors [5]

Factor Description Assigned
value

F1 Test tools 5
F2 Documented inputs 5
F3 Development

environment
2

F4 Test environment 3
F5 Test ware reuse 3
F6 Distributed system 4
F7 Performance

objectives
2

F8 Security 4
F9 Complex interface 5

UAW and TEF are calculated as:
UAW = Actor weight*number of actors

TEF = Assigned Weight*assigned value

2.2 Halstead Model [6]

The background study involved studying Halstead model
[6]. A brief explanation of it is given here. It makes use
of some primitive measures to determine the length and
the volume of the program [6]. It makes use of the
factors such as total number of operators (n1), total
number of operands (n2), total number of their operator
occurrences (N1) and the total number of operand
occurrences (N2). He also proposes a formula for
measuring the development effort and development time
using such measures.

The length N is estimated according to Halstead as:
 N = n1log2 n1 + n2 log2 n2

The program volume is given by the formula

V = N*log2(n1+n2)
A volume ratio is defined by him, represented by L, its

value should not be more than one. It is represented by
the formula

L = 2/n1*n2/N2

The effort is given by the formula
Effort = ((n1 * N2)/ (float (2 * n2)) * N *log(n, 2)
This is the effort as estimated by the Halstead model

Copyright © 2010 SciRes JSEA

Test Effort Estimation Using Neural Network 333

and is obtained in elementary mental discriminations.

2.3 Cognitive Complexity [7]

Kushwaha [7] suggests that effort can estimated based on
the total weighted information count of line of code and
software and basic control structures. This method
involves a complex estimation function. The effectiveness
of which has not been established for large projects.

2.4 Effort Estimation Using Soft Computing
Techniques [8]

Sandhu [8] shows that soft computing technique–neu-
ronfuzzy can be applied for effort estimation by esta-
blishing its accuracy by comparing it with various other
models. The estimation was done on NASA project data.

Neurofuzzy was able to estimate the nonlinear func-
tion with more accuracy. This paper helps in suggesting
that effort estimation based on soft computing is indeed a
right direction of accurate estimation.

Introduction to neural network:

2.5 Neural Network [2-4]

The neural network structure is used for solving complex
problems [2-4]. The Backpropagation methodology is
used for training the neural network. A set of input
training data and the expected output is created and the
network is trained with the training set. The network is
trained over multiple iterations. Over the multiple
iterations the network tries to converge towards the
expected output and thus training itself with the required
training function. The trained network is provided with
the inputs from a test set and it gives the output which is
the estimated output.

2.6 Neural Network Structure [9]

The neural network structure is realized using the
freeware Neuroph neural network framework [9]. Easy-
Neurons [9] is the GUI application for it. It is a java
library. The multilayer perceptron model is used for
creating a neural network, as this would be the appro-
priate network structure which would help in realizing
the problem. In a multilayer network there will be one
input layer, atleast one hidden layer and one output layer.
Backpropagation is used as the training methodology i.e.,
the learning rule. It is a supervised learning algorithm. It
is a learning methodology through which the network
trains itself through multiple iterations over the test data.
It does so by reducing an error function. The network
eventually converges towards accurate values as it is
trained with more and more training data.

The activation function used here is the Tanh function.
The activation function is an abstraction of the action
potential. It represents whether the cell should fire or not.
The Tanh function is normalized .It is real valued differ-
ential curve, as represented in the Figure 1.

hyperbolic tangent function

Figure 1. Tanh function

A brief description of the conventional pre and post

coding effort estimation models is given here:

2.7 Conventional Methods for Pre Coding Effort
Estimation [9]

1) The testing phase effort is not generally calculated.
Once the product is designed the rest of the resources in
terms of the budget and time are allocated to the testing
phase. This methodology can be applied for mission
critical system testing, as any compromise in the quality
of the product would lead to huge losses [1].

2) Another method which is used for planning the
testing phase effort is the percentage of the total
development effort to be spent on testing. This also
doesn’t provide with efficient planning of resources.

2.8 Conventional Methods for Post Coding
Effort Estimation [9]

1) Based on Software size:
The software size is available from the code and a

productivity figure is applied to it. It involves the
multiplication of number of function points and effort per
function point. This approach is too simplistic, it
involves estimations based on other project data which
can lead to errors and it includes rigorous data main-
tenance [1].

2) Delphi Technique:
This technique involves a group of experts answering

a questionnaire and arriving at a converging solution to
the problem. The technique is time and resource con-
suming and generally doesn’t lead to accurate predictions
[1].

3) Test case enumeration based estimation:
It involves the enumeration of the entire test cases and

the effort for each test case is estimated and beta
distribution is applied over it. It is time consuming
process.

3. Actual Problem

The test effort estimation is a big challenge in project

Copyright © 2010 SciRes JSEA

Test Effort Estimation Using Neural Network

Copyright © 2010 SciRes JSEA

334

actors involved in the system. planning. There are no models presently available that can
estimate the test effort accurately. The effort that needs to
be spent on the testing phase needs to calculate precisely.
The effort needs to be estimated both before the coding
phase and after the coding phase. A comparison of the
observed efforts should not be large, which is an indication
of effective model. The problem is to propose a model
which estimates the effort accurately. The proposed model
should not be dependent on the type of project.

Usecase component: This takes information about the
usecase involved in the design document.

TEF component: This takes the information regarding
the technical and environmental factors involved in the
system.

Further description about these components is given
ahead in the paper.

The post coding effort estimation takes input from the
code document and it has three components. They are:

Variables component: This takes the information
regarding the variables involved in the system.

4. Proposed Approach

4.1 Architecture Complexity component: This takes the information
regarding the complexity of the system.

The architecture involves two components: pre and post
effort estimation components and learning rule used here
is Back propagation algorithm as shown in the Figure 2.

Criticalness component: This takes information reg-
arding the criticalness of the system.

These are further discussed ahead in the research paper.
The activation function used is tanh. ‘I’ represent the
inputs given to the system. ‘X’ represents the values after
the application of activation function and ‘w’ represents
the weights assigned.

The pre coding effort estimation consists of the three
inputs components which get inputs from the design
document. The three components are:

Actor components: This takes information about the

Figure 2. Architecture of the proposed system

Test Effort Estimation Using Neural Network 335

4.2 Pre Coding Phase Effort Estimation

The proposed Pre coding effort estimation is based on the
model proposed by Nageswaran [5].

Upon which this paper proposes a new improvement i.e.
The obtained values of UAW, UUCW, TEF and

estimated test effort are trained to the network. The
network trains itself to predict the values of weights and
threshold values for the activation levels. The network is
trained through test data over multiple iterations.

Then the network is provided with the information for
the project for which an estimate needs to obtain. The
information is derived from the design document. The
network provides with the effort in terms of the
person-months.

4.3 Neural Network Structure for Pre Coding
Effort Estimation

1) Designing the network:
The network structure chosen for this phase involves

three layers. One input layer through which the UAW,
UUCW, TEF are given as the inputs to the network. The
hidden layer consists of three nodes which are used for
realizing the effort estimation function. The output layer
consists of one node. The output of which gives the effort
for the phase.

2) Training the network:
The network is trained with the test data that has been

obtained from various sources. The test data is taken
from Estimator Pal [9] and Use case Point [5] both of
which contain the test data taken from a real time project,
also we are using some of the real data for training
purpose. This data would be helpful in training the neural
network. UUCW, UAW, TEF are calculated for various
projects and their test effort is provided as the training
data. The network is trained for the data with maximum
error rate of 0.2. The network gets trained with the
provided test data over few thousands of iterations.

3) Testing the network:
The use case, actor, technical and environmental fac-

tors for the project whose test effort needs to be evalu-
ated is taken as the input and is provided to the network
which in turn provides the users with effort in per-
son-months.

The Figure 3 shows the neural network structure for
the pre coding phase effort estimation model. It is
developed in the easyneurons environment. It shows the
thresholds, activation values for input, hidden, output
nodes for the structure.

4.4 Post Coding Phase Effort Estimation

During this phase the project manager uses the coding
document to make an estimation of the test effort.

The proposed method is based on the fact that the test
effort is based on the number of inputs, number of
outputs, and the complexity of the code and the criti-

calness of the code.
Different weightage factors are given a value each.
Variables component: As the number of inputs in-

creases the number of test cases also increases. Different
measures are given for different types of inputs. It can be
observed from the Table 4. The method proposed makes
use of the fact that a character data type doesn’t need
more than single test data, while an integer data would
require more test cases and array variable would require
even more test cases for testing [1]. Thus the assigned
weights increase proportionately. var[i] takes the values
of number of occurrences of each variable in the order
mentioned in the Table 4. Var_comp[i] is the assigned
weights which are taken from the Table 4. Thus the va-
riable var_val is the summation of product of the number
of occurrences of variables and their assigned weights.

Complexity component:
The complexity of the code is a measure of the number

of test cases required for testing. Thus Table 5 giving a
measure for the complexity of the code is used. The as-
signed weight increases proportionately as the complex-
ity of the code increases.

Criticalness component:
The number of test cases increases proportionately

with increase in the criticalness of the system, the meas-
ure can be obtained from Table 6. The criticalness of the
code is an indication of the importance of the code. If it
is a general purpose code it is assigned a very less value
(most of the project classifies under it). However if it is
an essential mission critical code then the test effort in-
creases proportionately as the number of test cases in-
creases rapidly and thus the criticalness factor is assigned
a very high value. As illustrated in the Table 6 below.

A variable has been defined as an intermediate
variable in measuring the effort. It is the product of
var_val value, complexity value and the criticalness value.

Table 4. Complexity assignment table for variables

Input type Assigned weight

Integer 3

Array variable 4

Character 1

Table 5. Complexity weight assignment for code

Complexity of the code Assigned weight

O(n) 1
O(log n) 2
O(nlog n) 3
O(n2) 4
O(n3) 5

O(n4) 6

Copyright © 2010 SciRes JSEA

Test Effort Estimation Using Neural Network 336

Figure 3. Neural network structure

Table 6. Criticalness assignment table

Criticalness of the code Assigned weight

General purpose code 1

Higher critical code 2

Mission critical code 3

Var_val = (var[i]*var_comp[i])
 = var_val*complexity*criticalness

Effort = (+ 13.5)*10/3 (1)
The equation is arrived based on the halstead effort

estimation model. The effort is estimated on a large
number of test cases (the test cases here being the source
codes of quick sort, bubble sort, gcd program etc.,) the
halstead effort is estimated for the test cases, the effort is
obtained in elementary mental discriminations. For the
same test cases the value of is computed and a large
pool of values for the comparison of the proposed
variable 　and the halstead estimated effort is obtained.
The constant 13.5 and the multiplying factor 10/3 have
been arrived from this large pool of values and their
comparisons.

A relation is obtained for the obtained values and
the estimated values. Thus Equation (1) has been derived.

The obtained values var_val and and estimated test
effort according to the proposed model passed as training

set to the network. The network trains itself to predict the
values of weights and threshold values for the activation
levels. The network is trained through test data over
multiple iterations.

Then the network is provided with the information for
the project for which an estimate needs to be obtained.
The information is derived from the source code
document. The various parameters are estimated from the
source code like the variable occurrences, complexity of
the code etc. The network provides with the effort in
terms of the elementary mental discriminations (as the
formula was derived using the Halstead model). The
network gets trained with the proposed effort estimation
function for the post coding phase.

4.5 Neural Network Structure for Post Coding
Effort Estimation

1) Designing the network:
The designing of the network involves the selection of

the network architecture. The architecture is chosen in
such a way that it is in accordance with the proposed
effort estimation function. The proposed effort estimation
function for the post coding phase implies the design of
the network structure with two input nodes, two hidden
nodes and one output node. The two input nodes are
provided with the values of var_val and at input

Copyright © 2010 SciRes JSEA

Test Effort Estimation Using Neural Network 337

layer. The network gives effort in terms of the EMDs on
the output layer which consists of only one node, the
output node.

2) Training the network:
Training the network involves the compilation of the

test data: the test data has been obtained by manually
calculating the proposed model effort, var_val, ,
halstead effort for a substantial number of program codes.
The training set is provided to the network designed as
above. The acceptable error rate is set to 0.1. The
network is trained with the compiled test data and the
network converges over a period of thousands of
iterations.

3) Testing the network:
The proposed model accepts the number of variables

and their occurrences, complexity of the code, critical-
ness of the code as the input and it computes the values
of var_val, and provides it to the network. The net-
work calculates the estimated effort according to the
proposed evolved model and produces an output in terms
of elementary mental discriminations (EMD).

Figure 4 shows the neural network structure which
has been obtained using the easyneurons freeware
application. The figure shows the network structure, the
thresholds, and the activation levels on various nodes.

The model developed takes the inputs from the users
(project managers) estimates the intermediate values,
passes it to neural network structure which was realized
and retrieves the information from it and passes it to the
model which then evolves the data to provide with the
estimated effort as the final output.

5. Application of Proposed Model to Test
Cases

The proposed model which has the effort estimation in
pre coding phase in person-months and in post coding
phase in elementary mental discriminations has been
applied to various project data. The data has been
obtained from Estimator Pal, Usecase point [14] which
has a detailed design report. It has also been applied to
other minor projects.

The post estimation model is very cumbersome. It has
been applied to obtain the proposed estimated value as
well as the value that is obtained from Halstead model.

6. Results and Discussion

The model has been applied to various projects as men-
tioned above. The following are the results obtained.

Figure 5 gives the comparison of pre code effort esti-

Figure 4. Neural network structure

Copyright © 2010 SciRes JSEA

Test Effort Estimation Using Neural Network 338

ef
fo

rt
s

Figure 5. Comparison of pre code effort estimation
Project number

ef
fo

rt
s

Project number

Figure 6. Comparison of post code effort estimations

mations. The X-axis represents the number of the test
case and the Y-axis represents the effort interms of
person-months. Series1 represents the test effort for pre-
coding effort estimation based on the proposed model,
while the Series2 represents the pre code effort estimation
based on a traditional method. The method to which the
proposed method is being compared to is [5] effort
estimation based on usecase.

Careful analysis of the results obtained provides the
information that the proposed estimation has a deviation
of about 8% over the traditional method that has been
chosen. This deviation is not much considering the fact
that the effort estimated by the traditional method has
also not being found to be accurate when applied to real
time projects. The method based on usecase points [5]
and several other traditional methods haven’t produced
an accurate estimate of the test effort. The proposed
method has been applied on real time data from few of
the projects that have been specified above and it has
been found to produce an estimate of about 8% deviation
from the mentioned effort.

The interpretation of the results obtained and men-
tioned in the above graph indicate another fact, that the
estimated effort has been found to be always on the

higher side of traditional method. The deviation found
here is found to be on the positive side.

When the results were analyzed with the real time data
the proposed model has been found to be more accurate
than the traditional method that has been chosen. The
proposed model estimated the effort more accurately.

Figure 6 shows the comparison of effort estimation
for post coding phase. The X-axis represents the number
of the project and the Y-axis gives the effort estimation
in terms of elementary mental discriminations. Series1
represents the test effort estimation based on the
proposed model which was evolved from the halstead
model, cyclomatic model [7] and the application of
neural network. Series represents the test effort esti-
mation based on the Halstead model [6].

It can be observed from the graph and the analysis of
the results which were obtained by applying the proposed
model over several projects that there is about 10%
deviation in the test effort estimation for halstead model.
The model has been applied to various projects men-
tioned as above for post effort estimation.

The deviation has also been found to be varying and it
has been seen that it is both on the positive side and neg-
ative side of the halstead effort. It can be observed

Copyright © 2010 SciRes JSEA

Test Effort Estimation Using Neural Network 339

ef
fo

rt
s

Figure 7. Comparison of pre and post code effort estimations, along with the conventional estimates
Project number

that the cyclomatic complexity model [7] and the
halstead model [6] haven’t been able to estimate the
effort accurately. In general there has not been any model
that could estimate the effort estimation accurately.

There is no accurate effort estimation for post coding
phase. The proposed model has produced results which
are in synchronization with the actual effort estimations
and found to be more accurate.

In Figure 7 the comparison of pre and post code effort
estimations is given. The model developed has been
applied to some student projects and the graph is plotted.
In the figure the X axis represents the project number and
Y-axis represents the effort. Series1 indicates the pre
coding test effort for the proposed model and Series2
represents traditional method pre coding effort estimation,
Series3 represents the post coding test effort for the pro-
posed model and Series4 represents the traditional me-
thod post coding test effort estimation. It is showing a
variation of about 8% over large number of projects.
Thus it confirms the fact the estimated efforts both in pre
and post coding phase have higher accuracy than the
conventional models which as shown earlier show large
deviation.

7. Conclusions

The models used for the traditional pre coding effort
estimations use the usecase point or the function point.

The paper has covered brief details of the various
traditional methods for effort estimations both in pre
coding phase and in post coding phase. It then had the
introduction of various keywords which are a part of the
proposed model.

The proposed effort estimation models for pre coding
phase based on usecase point and soft computing
technique- neural network has been applied to improve
upon the accuracy. The method that has been followed
and the metric proposed have an advantage that it
produces accurate results. For the post coding effort
estimation the proposed model estimated the effort based

on and used neural network to improve upon accuracy
and the results have been found to show that the
proposed estimation is in synchronization with the
traditional effort estimation models.

 The future scope for the proposed model is based in
the direction that the model developed needs to be ap-
plied to large number of test cases i.e., real time projects
as the proposed model has a unique feature of learning
through usage. The model converges towards more ac-
curate values as it used over time. The model developed
can be evolved even further in the view that more num-
ber of parameters which have a minor effect on the effort
estimation be also considered for effort estimation and
the model can be evolved.

REFERENCES

[1] R. S. Pressman, “Software Engineering – A Practitioner’s
Approach,” 5th Edition, McGraw Hill, New York, 2002.

[2] B. T. Rao and B. Sameet, “A Novel Neural Network
Approach for Software Cost Estimation Using Functional
Link Artificial Neural Network,” International Journal of
Computer Science and Network Security, Vol. 9, No. 6,
June 2009, pp. 126-131.

[3] H. Zeng and D. Rine, “Estimation of Software Defects
Fix Effort Using Neural Network,” IEEE 28th Annual
International Computer Software and Applications Con-
ference (COMPSAC’04), Los Alamitos, 28-30 September
2004, Vol. 2, pp. 20-21.

[4] K. K. Agarwal, P. Chandra, et al., “Evaluation of Various
Training Algorithms in a Neural Network Model for
Software Engineering Applications,” ACM SIGSOFT
Software Engineering Notes, Vol. 30, No. 4, July 2005,
pp. 1-4.

[5] S. Nageswaran, “Test Effort Estimation Using Use Case
Points (UCP),” 14th International Software/Internet Qua-
lity Week, San Francisco, 29 May-1 June 2001.

[6] T. E. Hastings and A. S. M. Sajeev, “A Vector-Based
Approach to Software Size Measurement and Effort
Estimation,” IEEE Transactions on Software Engineering,

Copyright © 2010 SciRes JSEA

Test Effort Estimation Using Neural Network 340

Vol. 27, No. 4, April 2001, pp. 337-350.

[7] D. S. Kushwaha and A. K. Misra, “Software Test Effort
Estimation,” ACM SIGSOFT Software Engineering Notes,
Vol. 33, No. 3, May 2008.

[8] P. S. Sandhu, P. Bassi and A. S. Brar, “Software Effort
Estimation Using Soft Computing Techniques,” World
Academy of Science, Engineering and Technology, 2008,
pp. 488-491.

[9] M. Chemuturi, “Software Estimation Best Practices,
Tools & Techniques: A Complete Guide for Software
Project Estimators,” J. Ross Publishing, Lauderdale, July
2009.

[10] Free Software Foundation, “Neuroph Framework,” Version
3, June 2007.

[11] M. Braz and S Vergilio, “Software Effort Estimation
Based on Use Cases,” 30th Annual International Com-
puter Software and Applications Conference (COMP-
SAC’06), Chicago, 17-21 September 2006, Vol. 1, pp.
221-228.

[12] G. Banerjee, “Use Case Points – An Estimation Approach,”
Unpublished, August 2001.

[13] J. Kaur, S. Singh and K. S. Kahlon, “Comparative
Analysis of the Software Effort Estimation Models,”
World Academy of Science, Engineering and Technology,
Vol. 46, 2008, pp. 485-487.

[14] N. Nagappan, “Toward a Software Testing and Reliability
Early Warning Metric Suite,” 26th International Con-
ference on Software Engineering (ICSE’04), Shanghai,
2004, pp. 60-62.

[15] C. Huang, J. Lo, S. Kuo, et al., “Software Reliability
Modeling and Cost Estimation Incorporating Test-Effort
and Efficiency,” 10th International Symposium on
Software Reliability Engineering, Boca Raton, 1-4 Nov-
ember 1999, pp. 62-72.

[16] O. Mizuno, E. Shigematsu, Y. Takagi, et al., “On Esti-
mating Testing Effort Needed to Assure Field Quality in
Software Development,” 13th International Symposium
on Software Reliability Engineering (ISSRE’02), Annapo-
lis, 12-15 November 2002, p. 139.

Copyright © 2010 SciRes JSEA

J. Software Engineering & Applications, 2010, 3: 341-346
doi:10.4236/jsea.2010.34039 Published Online April 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

341

Sudden Noise Reduction Based on GMM with
Noise Power Estimation

Nobuyuki Miyake, Tetsuya Takiguchi, Yasuo Ariki

Graduate School of Engineering, Kobe University, Kobe, Japan.
Email: takigu@kobe-u.ac.jp

Received January 5th, 2010; revised February 27th, 2010; accepted March 2nd, 2010.

ABSTRACT

This paper describes a method for reducing sudden noise using noise detection and classification methods, and noise
power estimation. Sudden noise detection and classification have been dealt with in our previous study. In this paper,
GMM-based noise reduction is performed using the detection and classification results. As a result of classification, we
can determine the kind of noise we are dealing with, but the power is unknown. In this paper, this problem is solved by
combining an estimation of noise power with the noise reduction method. In our experiments, the proposed method
achieved good performance for recognition of utterances overlapped by sudden noises.

Keywords: Sudden Noise, Model-Based Noise Reduction, Speech Recognition

1. Introduction

Sudden and short-term noises often affect the perform-
ance of a speech recognition system. To recognize the
speech data correctly, noise reduction or model adapta-
tion to the sudden noise is required. However, it is diffi-
cult to remove such noises because we do not know
where the noise overlapped and what the noise was.

There have been many studies conducted on non-sta-
tionary noise reduction in a single channel [1-4]. The
target of our study is mostly sudden noise from among
these non-stationary noises. There have been many stud-
ies on model-based noise reduction [5-7]. These methods
are effective for additive noises. However, these reduc-
tion methods are difficult to apply for sudden noise re-
duction directly since these methods require the noise
information in order to be carried out.

In our previous study [8], we proposed detecting and
classifying these noises before removing them. But there
is a problem with this because the noise power is un-
known from the classification results, although the kind
of noise can be estimated. In this paper, we propose a
noise reduction method that uses the results of noise de-
tection and classification to accomplish the noise reduc-
tion. The proposed method integrates noise power esti-
mation with the noise reduction based on GMM to solve
the aforementioned problem.

2. System Overview

Figure 1 shows the overview of the noise reduction sys-

tem. The speech waveform is split into small segments
using a window function. Each segment is converted to a
feature vector, which is a log Mel-filter bank. Next, the
system identifies whether or not the feature vector is
noisy speech overlapped by sudden noises using a
non-linear classifier based on AdaBoost. The system
clarifies the sudden noise type only from the detected
noisy frame using a multi-class classifier. Then a noise
reduction method based on GMM is applied. Even
though we apply the proposed technique to the output
from AdaBoost, it can be successfully applied to that
from a binary identification technique such as SVM.

3. Clustering Noise

There are many kinds of noises in a real environment.

Figure 1. System overview of sudden noise reduction

Sudden Noise Reduction Based on GMM with Noise Power Estimation 342

The smaller the difference between the noise in training
and the overlapped noise in the test, the better the per-
formance of the noise reduction method in Section 5 is.
But there are many kinds of noises, and potential noises
need to be grouped by noise type in some way. Therefore,
we made a tree of noise types based on the k-means me-
thod, where we used the log Mel-filter bank as the noise
feature.

3.1 K-Means Clustering Limited by Distance to
Center

K-means clustering usually sets the number of classes. In
our method, the number of classes is decided automati-
cally by increasing class so that distance d between the
data and the center of a class must be smaller than an
upper limit decided beforehand.

First, all data are clustered using the k-means cluster-
ing method. Next, we calculate the distance d between
the data and the center of the class to which the data be-
longs. If the distance d is bigger than (d >), this
class is divided into two classes and k-means clustering
is performed. This step is repeated until all the distances
are less than .

The noise data for noise reduction is given as the mean
value of each class data. So, the smaller the upper limit
 is, the higher the noise reduction performance is ex-
pected to be because the variance of the class becomes
smaller.

3.2 Tree of Noise Types

One problem with the above k-means algorithm is that
too many classes may be created when is set small.
This problem is solved by making a tree using the above
k-means clustering, while is set at a larger value and
all the data are clustered. The bigger the level is, the less
distance there is. In this paper, is set to be reduced by
half with each level increment change on the noise tree.

Figure 2 shows an example of one such tree. In this
paper, the clustering is performed using the mean vectors
of each type of noise.

Figure 2. An example of a tree of noise types

4. Noise Detection and Classification

4.1 Noise Detection

Noise detection and classification are described in [8]. A
non-linear classifier H(x), which divides clean speech
features and noisy speech features, is learned using
AdaBoost. Boosting is a voting method using weighted
weak classifiers and AdaBoost is one method of boosting
[9]. The AdaBoost algorithm is as follows.

Input: n examples where

means a label of and it is {-1,1}

)},(),...,,{(11 nn yxyxZ iy

ix

Initialize:

1,
2

1

1,
2

1

)(1

i

i

i
yif

l

yif
mzw

where, m is the number of positive data, and l is the
number of negative data.

Do for t = 1,…,T
1) Train a base learner with respect to weighted exam-

ple distribution and obtain hypothesis tw }1.1{: xht

2) Calculate the training error of th

n

i

iti
itt

xhy
zwe

1
2

1)(
)(

3) Set

t

t
t e

e

1
log

4) Update example distribution tw

n

j

ititit

ititit
it

xhyzw

xhyzw
zw

1

1

)}(exp{)(

)}(exp{)(
)(

Output: final hypothesis

t

tt xhxf)()(

AdaBoost algorithm uses a set of training data,
{(,), . . ., (,)}, where is the i-th feature

vector of the observed signal, and y is a set of possible
labels. For noise detection, we consider just two possible
labels, Y = {−1, 1}, where label 1 means noisy speech
and label −1, means speech only. In this paper, sin-
gle-level decision trees (also known as decision stumps)
are used as weak classifiers, and the threshold of f(x) is 0.

1x 1y Nx Ny ix

0)(,

0)(,
)(

xfifspeechclean

xfifspeechnoisy
xH (1)

Using this classifier, we determine whether the frame
is noisy or not.

4.2 Noise Classification

Noise classification is performed for the frame detected

Copyright © 2010 SciRes JSEA

Sudden Noise Reduction Based on GMM with Noise Power Estimation 343

as noisy speech. If the frame is noise only, it may be
classified by calculating the distance from templates. But
it is supposed that the frame contains speech, too. In this
paper, we use AdaBoost for noise classification. Ada-
Boost is extended and used to carry out multi-class clas-
sification utilizing the one-vs-rest method, and a mul-
ti-class classifier is created. The following shows this
algorithm.

Input: m examples {(),…,()} 11, yx mm yx ,

},...,1{ Kyi

Do for k = 1,…,K
1) Set labels

otherwise

kyif
y ik

i ,1

,1

2) Learn k-th classifier using AdaBoost for

data set

)(xf k

), k
my(),...,,(11 m

kk xyxZ

Final classifier:

)(maxargˆ xfk k

k

This classifier is made at each node in tree. K is the
total number of the noise classes in a node. In this paper,
each node has from 2 to 5 classes.

5. Noise Reduction Method

5.1 Noisy Speech

The observed signal feature , which is the energy

of filter b of the Mel-filter bank at frame t, can be written
as the follows using clean speech and additive

noise

)(tXb

)(tSb

)(tNb

)()()(tNtStX bbb (2)

In this paper, we suppose that noises are detected and
classified but the SNR is unknown. In other words, the
kind of the additive noise is estimated but the power is
unknown. Therefore, the parameter , which is used to
adjust the power is used as follows.

)()()(tNtStX bbb (3)

In this case, the log Mel-filter bank feature

(=) is

)(txb

)(log tX b

)),(),(()(

))}()(exp(1log{)(

))}(exp())(log{exp()(

tntsGts

tstnts

tntstx

bb

bbb

bbb

 (4)

The clean speech feature can be obtained by es-

timating

)(tsb

)),(),((tntsGb and subtracting it from .)(txb

5.2 Speech Feature Estimation Based on GMM

The GMM-based noise reduction method is performed to
estimate s(t) [5,6]. (In [5,6], the noise power parameter
 is not considered.) The algorithm estimates the value

of the noise using the clean speech GMM in the log
Mel-filter bank domain. A statistical model of clean
speech is given as an M-Gaussian mixture model.

M

m

msmssNmsp),;()Pr()(,, (5)

Here, N(*) denotes the normal distribution, and ms,

and ms, are the mean vector and the variance matrix of

the clean speech s(t) at the mixture m. The noisy speech
model is assumed using this model as follows:

M

m

mxmxxNmxp),;()Pr()(,, (6)

),,(,,, nmsmsmx G (7)

msmx ,, (8)

where n is the mean vector for one of the noise

classes, which is decided by the result of the noise classi-
fication. At this time, the estimated v),,(alue of nsG is
given as follows:

m

nmsGxmPnsG),,()|(),,(ˆ
, (9)

where,

m

mxmx

mxmx

xNm

xNm
xmp

),;()Pr(

),;()Pr(
)|(

,,

,,

 (10)

The clean speech feature s is estimated by subtracting

 from feature x of the observed signal.),,(ˆ nsG

),,(ˆ nsGxs (11)

5.3 Noise Power Estimation Based on EM
Algorithm

The parameter , which is used to adjust the noise
power, is unknown. Therefore, (9) cannot be used be-
cause mx, and p(m|x) depend on . In this paper, this

parameter is calculated by the EM algorithm. The EM
algorithm is used for estimation of noise power for
maximizing p(x) which is the likelihood of a noisy
speech feature. p(x) is written as (6), in which mx,

depends on . So, we replace p(x) with p(x|), and the
noise power parameter is calculated by maximizing
likelihood p(x|) using the EM algorithm.

E-step:

m

kk mxpmxpQ)|,(log)|,(),()()((12)

M-step:

),(maxarg)()1(

kk Q (13)

where k is the iteration index. The above two steps are

calculated repeatedly until converges to optimum)(k

Copyright © 2010 SciRes JSEA

Sudden Noise Reduction Based on GMM with Noise Power Estimation 344

solution. In M-step, the solution is found by calculating
the following equation.

0
),()(

 kQ

 (14)

This equation can be expanded as follows.

b bmsbnbb

bmsbnbmsb

m

k

m

k

k

x
mxp

mxpmxp

Q

))exp(1(

))exp(1log(
)|,(

)|,(log)|,(

),(

,,,
2
,

,,,,,)(

)(

)(

(15)

However, it is difficult to find a solution of this equa-
tion analytically. So, Newton’s method is used for this
equation. An approximation of the optimum solution is
calculated repeatedly as follows using Newton’s method.

),()()(
1

lkQ
f

),()()(
2

2

2
lkQ

f

2

1)()1(

f

fll (16)

Equation (16) is calculated repeatedly until con-
verges. The initial value of Newton’s method was set at 0.

6. Experiments

In order to evaluate the proposed method, we carried out
isolated word recognition experiments using the ATR
database for speech data and the RWCP corpus for noise
data [10].

6.1 Experimental Conditions

The experimental conditions are shown in Table 1. All
features were gotten in a 20 ms window by 10 ms frame
shift. The word utterances of ten different people are
recorded in the ATR database. There were 105 types of
noises in the RWCP corpus [10]. The kinds of noises, for
example, are telephone sounds, beating woods, tearing
paper and so on. One kind of noise consists of 100 data
samples, which are divided into 50 samples for testing
and 50 samples for training. The noise tree was made
using the mean vectors of the training samples, and these
vectors were divided into 37 classes (which is the total
number of leaves). Learning classifiers for detection and
classification were performed using the noisy speech
features. So, we made noisy utterances in each class,
adding noises to 2,000 × 10 clean utterances of 10 per-
sons (five men, five women) for training data. Clean ut-
terances were in ATR database which were Japanese
word utterances of 10 persons. In this case, SNR is ad-
justed between –5 dB and 5 dB. One model of GMM for

Table 1. Experimental conditions

Making tree.

Feature parameters 24-log Mel-filter bank
Tree depth 5

Upper limit
(in order of depth level)

50, 25, 12, 6

Detection and classification

Feature parameters 24-log Mel-filter bank
Number of weak learners 200

Noise reduction

Feature parameters 24-log Mel-filter bank

Number of components of GMM

16, 32, 64

Speech recognition

Feature parameters 12-MFCC+ +
Acoustic models Phoneme HMM

5 states, 12 mixtures
Lexicon 500 words

×

Figure 3. An example of noisy speech

noise reduction and HMM for recognition were learned
using the same 2,000 × 10 clean utterances of 10 persons.
In order to make test data, we used 500 × 10 different
word utterances by the same 10 persons. Some noises
overlapped one test utterance with adjusting SNR to
–5, 0 and 5 dB and duration time of each noise to 10 ~
200 ms. Figure 3 shows an example of noisy speech.

6.2 Experimental Results

Table 2 shows the results of detection and classification.
“Recall” is the ratio of detected true noisy frames among
all the noisy frames, “Precision” is the ratio of detected
true noisy frames among all the detected frames and
“Classification” is the rate of true classification frames
among the detected noisy frames. In this table, Recall
rate and Precision rate are higher value, which mean
noise is well detected. The classification rate was low,
however. Even if the classification results are different

Copyright © 2010 SciRes JSEA

Sudden Noise Reduction Based on GMM with Noise Power Estimation 345

from the real noise label, though, if the noises are classi-
fied near to the real noise, the negative effect on noise
reduction may be negligible.

Figure 4 shows the recognition rate for each SNR. In
Figure 4, the baseline means noise reduction is not ap-
plied and “No estimation of noise power” means that
power estimation was not performed in GMM-based
noise reduction (calculated in (11) as = 1). “EM al-
gorithm” means that noise power is estimated using the

Table 2. Results of detection and classification

 5 dB 0 dB -5 dB
Recall 0.850 0.908 0.942
Precision 0.861 0.868 0.871
Classification 0.290 0.382 0.406

64.3 65.8 65.8 64.1 67.1

82.7 83.5 84.3 88.3

40
50
60
70
80
90

100

Baseline 16 32 64 Oracle
label

R
ec

og
ni

tio
n

ra
te

 [
%

]

No estimation of power

EM algorithm

53.3
62.8

57.6
63 67.3

77.4 78.2 79.5 82.5

40
50
60
70
80
90

100

Baseline 16 32 64 Oracle
label

R
ec

og
ni

tio
n

ra
te

 [
%

]

No estimation of power

EM algorithm

43.1

60.6 56.7 56.3
67.570.6 71.9 72.4 74.9

40
50
60
70
80
90

100

Baseline 16 32 64 Oracle
label

R
ec

og
ni

tio
n

ra
te

 [
%

]

No estimation of power

EM algorithm

Figure 4. Recognition results at SNRs of –5 dB, 0 dB and
5 dB

method written in section 5.3. “Oracle label” means that
correct detection and classification results were given. In
this case (Oracle-label), 64 Gaussian components were
used. In cases where there were no noises, the recogni-
tion rate is 97.4%. As shown in Figure 4, the recognition
rate was improved by using the proposed method. Fur-
thermore, the proposed method has higher performance
than no estimation.

6.3. Experiments for Unknown Noise

We examined the effectiveness of the proposed method
for dealing with unknown noises using 10-fold cross
validation of noise type. 105 types of noise were divided
into 10 sets, with 9 sets for training and 1 set for testing.
The noise tree and classifiers were created using training
sets and test data were made using test sets. Experimental
conditions were similar to those in Table 1, but we ex-
amined only 64 Gaussian mixture components for noise
reduction. Table 3 shows the detection results. Classifi-
cation rate cannot be evaluated because the classes of the
noises that overlapped utterances are not defined. Figure
5 shows recognition rate for unknown noises for test sets.
As shown in this Figure 5, the proposed method im-
proved the word recognition rate for unknown noises.
But, in comparison with the “Oracle label”, the perform-
ance of speech recognition degraded due to differences
between the training and test noise data.

Number of components of
GMM used for noise reduction 7. Conclusions

In this paper, we have described a sudden noise reduction
method. Noise detection and classification are performed
using AdaBoost, and GMM-based noise reduction is
performed using the detection and classification results.
Combining an estimation of noise power with the noise
reduction method, we solved the problem of word recog-

Table 3. Results of detection for unknown noises.

 5 dB 0 dB -5 dB
Recall 0.831 0.886 0.926
Precision 0.849 0.856 0.860

Number of components of
GMM used for noise reduction

69

57

45.3

77.7
73.8

67.1

40
50
60
70

80
90

100

5 dB 0 dB -5 dB

R
ec

og
ni

ti
on

 ra
te

 [%
]

Baseline

EM algorithm

Figure 5. Recognition results for words utterances mixed
unknown noises

Number of components of
GMM used for noise reduction

Copyright © 2010 SciRes JSEA

Sudden Noise Reduction Based on GMM with Noise Power Estimation

Copyright © 2010 SciRes JSEA

346

nition when that noise power was unknown. Our pro-
posed method improved the word recognition rate, al-
though admittedly, the classification accuracy was not
high. Furthermore, although this method was effective
for unknown noises, it will need combination of a noise
adaptation, tracking technique and so on. In future re-
search, we will attempt to verify effectiveness of this
new method in dealing with sudden noise when a large
vocabulary is used.

REFERENCES

[1] M. Fujimoto, et al., “Particle Filter Based Non-Stationary
Noise Tracking for Robust Speech Recognition,”
Proceedings of International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2005, pp.
257-260.

[2] M. Kotta, et al., “Speech Enhancement in Non-Stationary
Noise Environments Using Noise Properties,” Speech
Communication, Vol. 48, No. 11, 2006, pp. 96-109.

[3] T. Jitsuhiro, et al., “Robust Speech Recognition Using
Noise Suppression Based on Multiple Composite Models
and Multi-Pass Search,” Proceedings of Automatic Speech
Recognition and Understanding (ASRU), 2007, pp. 53-58.

[4] T. Hirai, S. Kuroiwa, S. Tsuge, F. Ren, M. A. Fattah, “A
Speech Emphasis Method for Noise-Robust Speech
Recognition by Using Repetitive Phrase,” Proceedings of
International Conference on Chemical Thermodynamics

(ICCT), 2006, pp. 1-4.

[5] P. J. Moreno, B. Raj and R. M. Stern, “A Vector Taylor
Series Approach for Environment Independent Speech
Recognition,” Proceedings of International Conference
on Acoustics, Speech, and Signal Processing (ICASSP),
1996, pp. 733-736.

[6] J. C. Segura, et al., “Model-Based Compensation of the
Additive Noise for Continuous Speech Recognition.
Experiments Using the AURORA II Database and
Tasks,” Proceedings of Eurospeech, 2001, pp. 221-224.

[7] L. Deng, et al., “Enhancement of Log Mel Power Spectra
of Speech Using a Phase-Sensitive Model of the Acoustic
Environment and Sequential Estimation of the Corrupting
Noise,” IEEE Transactions on Speech and Audio Pro-
cessing, Vol. 12, 2004, pp. 133-143.

[8] N. Miyake, T. Takiguchi and Y. Ariki, “Noise Detection
and Classification in Speech Signals with Boosting,”
IEEE Workshop on Statistical Signal Processing (SSP),
2007, pp. 778-782.

[9] Y. Freund, et al., “A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting,”
Journal of Computer and System Sciences, Vol. 55, 1997,
pp. 119-139.

[10] S. Nakamura, et al., “Acoustical Sound Database in Real
Environments for Sound Scene Understanding and
Hands-Free Speech Recognition,” Proceedings of 2nd
ICLRE, 2000, pp. 965-968.

J. Software Engineering & Applications, 2010, 3: 347-363
doi:10.4236/jsea.2010.34040 Published Online April 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

347

Mixed-Model U-Shaped Assembly Line Balancing
Problems with Coincidence Memetic Algorithm
Parames Chutima, Panuwat Olanviwatchai

Department of Industrial Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
Email: parames.c@chula.ac.th

Received December 15th, 2009; revised January 8th, 2010; accepted January 25th, 2010.

ABSTRACT
Mixed-model U-shaped assembly line balancing problems (MMUALBP) is known to be NP-hard resulting in it being
nearly impossible to obtain an optimal solution for practical problems with deterministic algorithms. This paper pre-
sents a new evolutionary method called combinatorial optimisation with coincidence algorithm (COIN) being applied
to Type I problems of MMUALBP in a just-in-time production system. Three objectives are simultaneously considered;
minimum number workstations, minimum work relatedness, and minimum workload smoothness. The variances of
COIN are also proposed, i.e. CNSGA II, and COIN-MA. COIN and its variances are tested against a well-known algo-
rithm namely non-dominated sorting genetic algorithm II (NSGA II) and MNSGA II (a memetic version of NSGA II).
Experimental results showed that COIN outperformed NSGA II. In addition, although COIN-MA uses a marginal CPU
time than CNSGA II, its other performances are dominated.

Keywords: Assembly Line Balancing, Mixed-Model U-Line, JIT, COIN

1. Introduction
An assembly l ine comprises a s equence of workstations
through w hich a p redefined set of t asks are p erformed
repeatedly on product units while they are moving along
the l ine. I t w as or iginally de veloped t o support m ass
production of s ingle homogeneous s tandardised c om-
modity t o g ain a c ompetitive unit c ost. F ierce c ompeti-
tion in the current market as well as ever-changing cus-
tomer r equirements f orces t he m ass pr oduction c oncept
to b ecome n o l onger at tractive. M anufacturers need t o
redesign t heir production l ines t o a ccommodate m ixed-
model production known as mixed model assembly lines
(MMALs). In M MALs, a ll models w ith t he s ame s tan-
dardised platform but di fferent c ustomisable p roduct
attributes a re classified i n t he s ame f amily [1]. G en-
eral-propose machines with a utomated t ool c hanging
equipment and highly flexible operators are necessary to
realise an a rbitrarily i ntermixed s equence of va rious
models of a s tandardised p roduct w ith s imilar pr ocess
requirements to be assembled on the same l ine at negli-
gible setup costs.

Typically, w orkstations on t he a ssembly l ine a re
aligned s traight a long a c onveyer be lt. Mo notone a nd
boring types of work in the straight l ine layout may not
challenge the working enthusiasm of operators, as well as
being inflexible to manage changes in external environ-

ments. A s a consequence of j ust-in-time (JIT) i mple-
mentation, m anufacturers a im to a chieve c ontinuously
improved p roductivity, c ost, a nd product q uality by
eliminating a ll w astes i n t heir p roduction systems [2].
However, the straight line cannot fully support the adop-
tion of JIT principles to manufacturing especially in the
utilisation of m ulti-skilled o perators. H ence, s uch c om-
panies as Allen-Bradley and GE have replaced their tra-
ditional straight lines w ith U -shaped pr oduction lines,
called U-lines hereafter [3]. Figure 1 shows the configu-
ration of the U-line.

In the U-line, the entrance and the exit a re placed on
the same position. A rather narrow U-shape is normally
formed s ince b oth en ds of t he l ine ar e l ocated cl osely

S1
S2
S4

S3

1 2 3
4

5

6
789

A C

A

B

C

Start
of line

End
of line

Front of the line

Back of the line

Side of the line

Figure 1. Configuration of a U-shaped assembly line

A C

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

348

together. T asks ar e a rranged ar ound t he U-line and a re
organised i nto w orkstations. A part of t he U -line c om-
prising a set of tasks with the same directional alignment
as the entrance is called front zone. The opposite side of
the f ront z one w here t he e xit-side i s l ocated i s c alled
back zone. The set of tasks joining front and back zones
and being the base of the U-line is located in side zone.
Two kinds of workstations can be formed in the U-line.
A regular workstation c omprises t asks l ocated s equen-
tially along the front (S2), back (S4), or side (S3) of the
U-line; w hereas, a crossover wo rkstation (S1) includes
tasks located on both the front and back of the line.

Multi-skilled o perators a re l ocated i nside o f t he l ine.
Since s ome c ertain m odels ha ve t o visit a c rossover
workstation t wice, t he operator i n charge of t hat cr oss-
over workstation m ay ha ve t o process t wo di fferent
models in the same cycle. For example, operator S1 per-
forms t ask 1 of m odel A on t he f ront s ide o f t he l ine,
travels to the back s ide o f the l ine to perform task 9 of
model C, and then returns to the front side of the line to
begin the next cycle. The salient characteristic o f cross-
over w orkstations of the U-line p oses a dditional c hal-
lenges for improved performances.

Compared to the straight-line, the U-line gains popular-
ity from its benefit offerings including improving visibil-
ity a nd c ommunication, o perator flexibility, r otatable
multi-skilled operators, kn ow-how s haring, e nhancing
teamwork, better quality control, prompt problem solving,
faster corrective action on rework, higher product quality,
easily adjustable output rate, volume flexibility, eliminat-
ing t he ne ed f or s pecial material ha ndling e quipment,
fewer workstations, higher machine utilisation, and higher
line effectiveness for breakdown prone systems [4-7].

The U -line i s a n i nevitable e lement a nd becomes a
cornerstone to obtain the main benefits of JIT production
principles, i.e. one-piece f low m anufacturing, s mooth-
ened workload, and multi-skilled workforce. The U-line
is expected to gain much more popularity in industries in
the future. The survey found that nearly 75% of available
U-lines are configured to produce a product with differ-
ent models or more than one type of product on the same
line [8]. This type of production is called a mixed-model
U-line (MUL). MUL has gradually superseded traditional
mixed-model s traight l ine due t o i ts g reater e fficiency
offerings, e .g. productivity, flexibility, c ost, a daptability
to demand changes, machine utilisation, and quality [9].

Successful u tilisation o f M UL n eeds e ffective s olu-
tions t o m ixed-model U -line ba lancing (MULB) a nd
mixed-model U -line s equencing (MUS). MULB, a long
to medium-term decision with a typical planning horizon
of several months, is a problem of determining the num-
ber and sequence of workstations on the line or the cycle
time of the l ine to accommodate the different models of
products; whereas MUS, a s hort-term decision normally
revising on a daily basis, i s a p roblem of determining a

production sequence o f mixed models introduced to the
line t o a chieve g iven o bjectives. A lthough t hese t wo
problems a re heavily interrelated, t hey a re normally a d-
dressed i ndependently an d hierarchically d ue t o t heir
own c omputational complexities i nvolved. T his pa per
will focus on the MULB problem.

A g reat d eal of research has b een co nducted o n t he
line b alancing p roblem s ince i t w as f irst published i n
mathematical f orm b y S alveson [10]. C omprehensive
literature reviews p resented b y [3,11-14]. B oysen et al.
[15] indicated that v ery l ittle h as been d one c oncerning
the U-line balancing problem. Since Monden [4] brought
U-lines to the attention of research community, the f irst
pioneer study of the U-line balancing problems was pub-
lished by Miltenburg and Wijngaard [5]. They developed
a dy namic pr ogramming (DP) procedure f or a s in-
gle-model U -line to d etermine the o ptimal balance f or
Type I of U-line balancing problems (minimum number
of workstations) wi th up to 11 tasks. However, DP was
reported i mpractical f or obtaining o ptimal b alances for
large-sized problems. They then developed a single-pass
heuristic n amely U-line maximum ranked positional
weight to use for larger p roblems (111 tasks) where the
priority of each task is given to either the time required to
complete b oth t hat t ask and all t he t asks that must s uc-
ceed or must precede it, whichever is larger. The heuris-
tics s howed satisfactory performance f or l arge-sized
problems. S parling a nd M iltenburg [16] proposed a n
approximate s olution a lgorithm t o s olve t he M MUALB
problem up t o 2 5 t asks. T he a lgorithm t ransformed t he
multi-model p roblem i nto a n e quivalent single-model
problem. The optimal balance was solved by branch and
bound a lgorithm w ith e xponential c omputational re-
quirement t o f ind m inimum n umber o f workstations.
Smoothing a lgorithm w as used t o a djust t he i nitial b al-
ance to reduce the level of model imbalance. Miltenburg
[17] presented a r eaching dynamic algorithm to balance
and rebalance a U-line facility that consists of numerous
U-lines c onnected by m ultiline s tations. T he objective
when ba lancing s uch a f acility i s t o a ssign t asks t o a
minimum number of stations while satisfying cycle time,
precedence, l ocation, a nd station-type c onstraints. A
secondary objective is to concentrated idle time in a sin-
gle s tation. T he proposed a lgorithm c an solve U-line
balancing problem w ith no more t han 2 2 tasks w ithout
wide, sparse precedence graphs.

Urban [18] presented an integer programming formu-
lation for determining the optimal balance for the U-line
balancing (ULB) problem. By eliminating some variables
through the use of bounds, the size of the model was re-
duced. I t w as s hown that the proposed f ormulation can
optimally ba lance l arger p roblems (21 to 45 t asks) than
the DP pr ocedure of Miltenburg and W ijngaard [5].
Ajenblit and Wainwritght [19] were the first who applied
a genetic algorithm (GA) for Type I ULB problems with

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

349

the o bjectives o f m inimising t otal i dle t ime, b alancing
workload among stations, or a combination of both. Sev-
eral algorithms for assigning tasks to workstations were
proposed. The f itness value of a c hromosome i s de ter-
mined by applying all these algorithms to it and the one
with l owest f itness value i s s elected. T hey f ound t hat
these a ssignment a lgorithms pr oved t o have m erit a nd
GA proved to be c omputationally e fficient. S choll a nd
Klein [20] considered di fferent types o f the ULB p rob-
lem, i.e. Type I, Type II, and Type E. A new branch and
bound procedure c alled U LINO (U-line o ptimiser)
adapted from their previous algorithm developed for the
straight-shaped problem called SALOME was proposed.
Computational results of up to 29 7-task pr oblems
showed that the procedures y ielded promising results in
limited computation time.

Erel et al. [21] proposed an algorithm with a coupling
of a solution generator module and a simulated annealing
(SA) module. The generator a ssigned tasks sequentially
to s eparate s tations a nd c ombines t wo a djacent s tations
with m inimum t otal s tation t ime u ntil i nfeasibility i s
found. Then, SA reconstructed feasibility for such solu-
tions by reassigning the tasks in the combined station to
other s tations by minimizing the maximum station t ime.
The algorithm was tested on a variety of data sets with up
to 2 97 t asks a nd f ound quite ef fective. Aase et al. [22]
proposed a branch-and-bound (B&B) solution procedure
called U-OPT (U-line OPTimisation) for a ULB problem.
Four design elements of the B&B procedure are investi-
gated i ncluding branching s trategies, f athoming c riteria,
heuristics to obtain upper bounds at each node, and iden-
tification o f i nitial s etting s olutions. Paired-task l ower
bound was largely responsible for the dominance in the
efficacy of U-OPT over existing methods. Aase et al. [23]
conducted e mpirical e xperiments t o c onfirm t hat t he
U-shaped la yout c an s ignificantly im prove l abour pro-
ductivity over t he t raditional s traight-line one . I nterest-
ingly, t he i mprovement t ends t o be higher du ring hi gh
demand pe riods when operators a re a ssigned t hree or
fewer tasks on average, when the problem size is small,
and when assembly sequence is fairly well structured.

Martinez and Duff [24] applied heuristic rules adapted
from t he s imple l ine ba lancing problem t o t he T ype I
UALB problems up t o 21 t asks. S ome he uristics were
found t o p roduce optimal r esults. T o a chieve i mproved
solutions, each gene in a chromosome of GA represent-
ing t he heuristic r ule wa s used t o break t ies d uring t he
task a ssignment process. B alakrishnan et al. [25] modi-
fied 13 single-pass heuristics to balance U-lines with the
existent o f t ravelling t ime a nd i nvestigated t heir effec-
tiveness u nder va rious problem c onditions. G okcen a nd
Agpak [26] developed a goal programming model for the
ULB p roblems up t o 3 0 t asks. T his approach o ffers i n-
creased flexibility to the decision maker since conflicting
goals can b e dealt w ith at the s ame t ime. U rban and

Chiang [27] considered the ULB problem with stochastic
task times and developed a linear, integer program using
a piecewise approximation for the chance constraints to
find the o ptimal solution. T he pr oposed m ethod effec-
tively solved practical-sized problems optimally up to 28
tasks. Chiang and Urban [28] developed a hybrid heuris-
tics comprising an initial feasible solution module and a
solution i mprovement module f or t he s tochastic UL B
problem. The he uristic c an i dentify o ptimal o r near-op-
timal solutions for up to 111-task p roblems. Kara et al.
[29] developed a binary f uzzy goa l programming f or
8-task ULB with fuzzy goals that allow decision makers
to consider the number of workstations and cycle time as
imprecise values.

Baykasoglu [30] proposed m ulti-objective S A f or
ULB p roblems wi th the a im of maximising s moothness
index and minimising the number of workstations. Task
assignment rules were used in constructing feasible solu-
tions. The optimal solutions for each problem were found
in short computation times. Hwang et al. [31] developed
a priority-based genetic algorithm (PGA) for ULB prob-
lems for up to 111 tasks. A weighted-sum objective func-
tion c omprising t he number o f workstations a nd t he
workload variation was considered. The proposed model
obtained i mproved w orkload variation, e specially f or
large size problems. Hwang and Katayama [32] proposed
an e xtension version o f P GA namely a n a melioration
structure with g enetic a lgorithm (ASGA) t o deal w ith
workload balancing problems in mixed-model U-shaped
lines for up to 111 tasks. ASGA was able to f ind better
solutions than PGA in terms of workload variation. Boy-
sen and Fliedner [33] proposed a general solution proce-
dure for U-shaped assembly line balancing using an ant
colony o ptimisation (ACO) a pproach. T heir pr ocedure
was versatile in the sense that various line balancing fea-
tures f ound i n practice c an be i ncorporated i nto t he
model. B aykasoglu a nd De reli [33] proposed A CO that
integrates COMSOAL and ranked positional weight heu-
ristics f or s olving ULB problems. T he p roposed a lgo-
rithm f ound optimum s olutions i n s hort c omputational
times.

The existent of crossover workstations in MUL opens
a c hance for MUS, a part f rom M ULB, to s moothen
workload di stribution among workstations s ince the
crossover workstation a llows a m odel mix t o be p roc-
essed in a cycle. As a result, MULB and MUS can play
significant roles i n w orkload s moothening of M UL.
Since t hese problems ar e highly c orrelated, es pecially
when t he w orkload s moothening ob jective needs to be
achieved, s everal r esearchers h ave at tempted t o s olve
these tw o problems s imultaneously in a n a ggregated
manner. Miltenburg [34] modelled the joint problems of
line balancing a nd m odel-sequencing for m ixed-model
U-lines operated under a JIT environment and proposed a
solution a lgorithm for solving both problems s imultane-

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

350

ously. Kim et al. [35] developed a symbiotic evolution-
ary al gorithm cal led co -evolutionary a lgorithm (PCoA),
which i mitates t he b iological c o-evolution pr ocess
through s ymbiotic i nteraction, t o h andle t he i ntegration
of balancing and sequencing problem in MUL for up to
111 tasks. Later, Kim et al. [36] proposed an endosymbi-
otic e volutionary a lgorithm (EEA), an extended version
of t he s ymbiotic e volutionary a lgorithm, t o s imultane-
ously solve line balancing and sequencing in MUL. The
proposed a lgorithm obt ained m uch better quality s olu-
tions than PCoA and a traditional hierarchical approach.
Agrawal and Tiwari [37] demonstrated the superiority of
the c ollaborative ant c olony optimisation i n simultane-
ously t ackling di sassembly l ine ba lancing and s equenc-
ing problem in MUL for up to 80 tasks. Sabuncuoglu et
al. [38] developed a family of ant colony algorithms that
make b oth s equencing a nd t ask a ssignment de cisions
simultaneously for ULB problems up to 111 tasks.

Kara et al. [9] proposed SA t o de al wi th a multi-ob-
jective approach for balancing and sequencing MULs in
JIT production systems f or up to 30 ta sks to s imultane-
ously minimise the weighted sum of the absolute devia-
tions of wo rkloads across w orkstations, pa rt usage rate,
and co st o f s etups. Kara et al. [39] proposed S A based
heuristic approach for solving balancing and sequencing
problems of mixed-model U-lines simultaneously for up
to 30 tasks. SA was capable of minimising the number of
workstations a nd m inimising t he a bsolute de viation of
the workloads among workstations. Kara [40] presented
a mixed, zer o-one i nteger, nonlinear p rogramming f or
mixed-model U-line balancing and sequencing problems
for up to 111 tasks with the objective of minimising ab-
solute deviation of workloads. An efficient SA was also
proposed a nd its pe rformance o utperformed P CoA a nd
EEA.

Literature has demonstrated that the MULB is an im-
portant problem f or m odern a ssembly s ystems ope rated
under JIT environment. Although several exact methods
for their solutions were proposed, only small sized prob-
lems c an be o ptimally s olved due t o t he c omplexity of
the p roblem. H ence, a c omputational m ore ef fective a l-
gorithm i s ne eded for l arger s ized problem. A lso, t he
algorithm has to be able to easily handle multiple objec-
tives s imultaneously. I n t his pa per, s uch an a lgorithm
that u tilises the c oncept of evolutionary a lgorithm
namely combinatorial optimization with coincidence
algorithm (COIN) is proposed for multi-objective MULB
problems. T hree objectives i ncluding m inimum num ber
workstations, minimum work relatedness, and minimum
workload s moothness a re considered s imultaneously.
The performances of C OIN a re c ompared w ith a
well-known a lgorithm na mely n on-dominated s orting
genetic a lgorithm II (NS GA II) a nd t heir memetic v er-
sions The purpose of t his s tudy i s t o s ee t he feasibility
and effectiveness of the COIN approach which is one of

the most recent meta-heuristics to solve this well-known
problem and compare it against others in terms of quality
of solutions and solution time.

The organisation of this paper is as follows. In the next
section, t he detailed de scription of t he m ulti-objective
optimisation p roblem i s pr esented, followed by a n e x-
planation of the m ulti-objective MU LB problems. T he
proposed a lgorithm t o s olve MULB problems i s e labo-
rated next, a nd t he e xperimental de sign a nd results a re
explained respectively. Finally, the concluding remark of
the research is given.

2. Multi-Objective Evolutionary Algorithms
A multi-objective optimisation problem (MOP) is related
to the problem where two or more objectives have to be
optimised simultaneously. Generally, such objectives are
conflicting an d represented i n d ifferent measurement
units, preventing simultaneous optimisations of each one.
MOP can be formulated, w ithout loss of g enerality, as
follows:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥𝑥𝑥Ω {𝑓𝑓1(𝑥𝑥),𝑓𝑓2(𝑥𝑥), … ,𝑓𝑓𝑘𝑘(𝑥𝑥)} (1)
where solution 𝑥𝑥 is a vector of decision variables for the
considered pr oblem; Ω is the f easible s olution space;
and 𝑓𝑓𝑀𝑀(𝑥𝑥) is t he ith objective f unction (𝑀𝑀 = 1, 2, … , 𝑘𝑘).
Two a pproaches o ften e mploy t o s olve M OP. T he first
approach i s t o c ombine e ach objective function i nto a
single c omposite f unction, e .g. weighted sum method,
utility t heory, etc. T he a dvantage of t his method i s
straightforward computation. H owever, t wo practical
problems ar e o ften ex perienced w ith this a pproach: 1)
selection o f t he s uitable w eights c an b e v ery difficult
even for those who are unfamiliar with the problem and 2)
small perturbations in the weights can sometimes lead to
totally d ifferent s olutions [41]. A s a r esult, t he s econd
approach, e. g. m ulti-objective e volutionary a lgorithms
(MOEAs), has come into play. This approach determines
a set o f a lternative solutions for (1) rather than a s ingle
optimal solution. These solutions are optimal in the wider
sense such that no other solutions in the search space are
superior t o t hem whe n a ll o bjectives a re c onsidered. A
decision vector 𝑥𝑥 is said to dominate a decision vector 𝑦𝑦
(also written as 𝑥𝑥 ≻ 𝑦𝑦) if:

𝑓𝑓𝑀𝑀(𝑥𝑥) ≤ 𝑓𝑓𝑀𝑀(𝑦𝑦), for all 𝑀𝑀 ∈ {1, 2, … , 𝑘𝑘} (2)
and 𝑓𝑓𝑀𝑀(𝑥𝑥) < 𝑓𝑓𝑀𝑀(𝑦𝑦), for at least one 𝑀𝑀 ∈ {1, 2, … , 𝑘𝑘} (3)

All s olutions t hat dom inate the ot hers but do not
dominate themselves ar e cal led non-dominated (supe-
rior) solutions. A Pareto-optimal solution is a global
optimal s olution which i s not dom inated by a ny other
solutions i n t he f easible s olution s pace. A s et t hat con-
tains all f easible P areto-optimal s olutions i s c alled a
Pareto-optimal set or efficient set. The collection of the
points of t he P areto-optimal s et (or t he corresponding
images o f t he P areto-optimal s et) along a c urve i n the

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

351

objective s pace t hat has a s et of at tributes collectively
dominating all other points not on the frontier are termed
the Pareto-optimal frontier (front) or efficient frontier
(front). An example of the Pareto-optimal solutions for a
two-objective minimisation p roblem is i llustrated i n
Figure 2. It is obvious that an amount of sacrifice in one
objective i s always incurred to ach ieve a cer tain amount
of gain i n t he ot her (inverse r elationship) whi le m oving
from o ne Pareto-optimal s olution to a nother. P roviding
Pareto-optimal s olutions t o t he decision m aker i s more
preferable t o a single s olution since p ractically, when
considering real-life p roblems, a f inal decision i s always
based on a t rade-off be tween conflicting objective f unc-
tions.

MOEAs have recently become popular and have been
applied to a wide range of problems from social to engi-
neering pr oblems [42]. I n g eneral, M OEAs ar e i deally
suited t o M OP b ecause t hey are capable of s earching a
whole set of multiple Pareto-optimal solutions in a single
run. In a ddition, t he s hape or c ontinuity of t he
Pareto-optimal f rontier has l ess e ffect t o MOEAs t han
traditional m athematical p rogramming. T he a pproxima-
tion of a true Pareto-optimal set involves two conflicting
objectives: 1.) the distance to the true Pareto frontier is to
be minimised, and 2.) the diversity of the evolved solu-
tions is to be maximised [43]. To achieve the first objec-
tive, a P areto-based f itness assignment i s n ormally d e-
signed to guide the search toward the true Pareto-optimal
frontier [44, 45].
 In t he view o f t he second objective, s ome MOEAs
successfully provide density e stimation methods t o p re-
serve the population diversity. Although several versions
of M OEAs ha ve be en developed [42], n on-dominated
sorting g enetic a lgorithms-II (N SGA II) [46] is a mong
the most promising one in terms of convergence speed to
Pareto-optimal solutions a nd even di stribution o f the

Figure 2. Pareto-optimal solutions

Pareto frontier. NSGA II is an elitist multi-objective ge-
netic algorithm being introduced by Deb et al. (2002). It
uses a fixed population size of N for both parent and off-
spring p opulations. O nce a new o ffspring p opulation i s
created, i t i s c ombined with i ts p arent population. The
size of t he combined p opulation b ecomes 2 N. A
non-dominated sorting method is used to identify Pareto
frontiers (F1, F2, ..., Fk) in the combined population. The
first frontier (F1) is the best in the combined population.
The n ext p opulation (archive) i s cr eated b y s electing
frontiers based on their rankings; the best Pareto frontier
being selected first. If the number of members in the ar-
chive i s s maller t han t he p opulation size (N), the ne xt
frontier will b e s elected a nd s o o n. If a dding a frontier
would increase the number of members in the archive to
exceed t he p opulation s ize, a t runcation operator i s a p-
plied t o t hat frontier ba sed on t he c rowded t ournament
selection by which the winner of two same rank solutions
is t he one t hat p ossesses t he g reater cr owding d istance
(farther apart from its neighbours). This is to maintain a
good spread of solutions in the obtained set of solutions.

Memetic algorithms (MAs), a type of evolutionary al-
gorithms (EAs), have been recognised as a powerful a l-
gorithmic paradigm on complex search spaces for evolu-
tionary computing]47[. MAs are inspired by models of
adaptation i n nature s ystems t hat c ombine e volutionary
adaptation o f p opulations o f individuals w ith individual
learning with a lifetime. A meme is a unit of information
that r eproduces i tself w hile pe ople e xchange i deas.
Memes ar e ad apted by t he people w ho t ransmit them
before being passed on to the next generation. MAs use
EAs to perform exploration and use local search to exer-
cise ex ploitation. A s eparate l ocal s earch a lgorithm can
be applied to improve the f itness of individuals by spe-
cial hill-climbing. Local search in MAs is similar to sim-
ple h ill-climbing w ith d ifferences in that 1) the n eigh-
bourhood of the current solutions is searched systemati-
cally instead of random searching in the space of all can-
didate s olutions, a nd 2) the ne ighborhood s earch is r e-
peated until a l ocally o ptimal s olution i s f ound. An a d-
vantage of l ocal s earch i n M As over other heuristics i s
that l ocal e xploitation a round i ndividual c an be per-
formed much more effectively; hence, good solutions in
a small region of the search space can be found quickly.

3. Multi-Objective MULB Problem
3.1 MULB Problem
To plan an a ssembly pr ocess f or any product o n an a s-
sembly line, its total amount of work is partitioned into a
set of elementary operations namely tasks. Assembly line
balancing i s t he a llocation o f a s et of t asks t o worksta-
tions without violating any constraints to optimize some
measure o f performance. T ypical co nstraints i nclude

Pareto-optimal solutions

Dominated solutions

Minimize f1(x)

Minimize f2(x)

Pareto-optimal frontier

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

352

each t ask i s a llocated t o one a nd only o ne w orkstation,
precedence r elationship t hat r eflects t echnological a nd
organisational constraints among the tasks is not violated,
and t otal t ask time of a ny workstation d oes n ot e xceed
the given cycle time [13].

To perform a t ask o n a workstation, n ot only t ools,
equipment, machinery, a nd l abour s kills h ave t o be s e-
lected pr operly, but a lso i ts pr ecedence r elationship has
to be followed s trictly. A precedence d iagram i s o ften
used t o visually de monstrate s uch r elationship. Nodes,
node we ights, a nd a rrows on the p recedence d iagram
represent t asks, t ask t imes, and precedence co nstraints
between t asks, r espectively. F or MMAL, a m erged
precedence diagram i s n eeded which can be cr eated as
follows [16].

1) Compute t he w eighted a verage t ask t ime f or eac h
task. Let M = the number of models to be produced during
a planning horizon, 𝐷𝐷𝑀𝑀 = the demand of product model
m (m=1,2,...,M) task i (i=1,2,...,N) of model 𝑀𝑀 has task
time = 𝑡𝑡𝑀𝑀𝑀𝑀 , The weighted average task time 𝑡𝑡𝑀𝑀 is

 𝑡𝑡𝑀𝑀 = ∑ {𝐷𝐷𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀 }𝑀𝑀
𝑀𝑀=1 ∑ 𝐷𝐷𝑀𝑀𝑀𝑀

𝑀𝑀=1⁄ (4)

2) Merge t he precedence diagram o f eac h m odel t o
form the merged precedence diagram. It is assumed that
the p recedence r elationship i s c onsistent f rom model t o
model. T he m erged precedence diagram (MPD) i s cr e-
ated by adding arrow 𝑥𝑥𝑦𝑦 to MPD if, for any model, task
𝑥𝑥 is an immediate predecessor of task 𝑦𝑦.

MULB i s more c omplex t han t he t raditional s traight
line since not only can the set of assignable tasks be con-
sidered f rom the s et o f t asks w hose p redecessors ha ve
already b een assigned (moving f orward through MPD
and allocating tasks on the front side of the U-line) as the
straight l ine, but a lso from the s et of t asks w hose s uc-
cessors ha ve a lready be en a ssigned (moving ba ckwards
through allocating tasks on the back side of the U-line).
This permission increases possibility on how to a llocate
tasks to workstations and often leads to a fewer number
of workstations t han t he s traight l ine. B ased o n M PD,
literature always assumes that each task type is assigned
to one and only one workstation regardless of the model
[32].

3.2 Objective Functions
Although s everal measures c an be used t o evaluate t he
performance o f l ine ba lancing i n M UL, i n t his p aper
three main objectives that support JIT implementation to
be s imultaneously o ptimised a re e valuated i ncluding
number of w orkstations, v ariation of workload, and
variation of work relatedness. Since the type I problem of
MULB i s considered, a fixed cy cle t ime, as sembly t ask
time, and precedence relationship are given and our first
objective i s to m inimize t he num ber of workstations.
Achieving this objective can result in low labour cost and
less s pace requirement. I f 𝑀𝑀 is t he n umber o f w ork-

station, the objective function is formulated as follows.
𝑓𝑓1(𝑥𝑥) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀 (5)

The second objective is to smooth (minimize variation
of) t he workloads distributed a cross w orkstations. S ev-
eral benefits can be gained when MUL is operated in this
manner including increased production rate, reduced line
congestion, but more importantly, mitigates the concerns
of inequity in task assignments among workers [35]. The
workload s moothness o bjective c an be f ormulated a s
follows.

𝑓𝑓2(𝑥𝑥) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�∑ (𝑆𝑆𝑀𝑀𝑚𝑚𝑥𝑥 − 𝑆𝑆𝑘𝑘)2𝑀𝑀
𝑘𝑘=1 𝑀𝑀⁄ (6)

where 𝑆𝑆𝑘𝑘 = t otal t ime o f w orkstation 𝑘𝑘, 𝑆𝑆𝑀𝑀𝑚𝑚𝑥𝑥 = m axi-
mum total time of all workstations = 𝑀𝑀𝑚𝑚𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑘𝑘 (𝑘𝑘 =
1, 2, … ,𝑀𝑀).

The t hird o bjective i s t o m inimize v ariation of work
relatedness in a workstation. The purpose of this objective
is to allocate interrelated tasks to the same workstation as
many as possible. Not only can such an assignment im-
prove w ork e fficiency, b ut i t i s a lso us eful t o a ssembly
line designers since they may have g reater f lexibility in
locating f acilities and w orkstations. T he f ormulation of
this objective is as follows.

𝑓𝑓3(𝑥𝑥) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀{𝑀𝑀−𝑀𝑀 ∑ 𝑆𝑆𝑆𝑆𝑘𝑘𝑀𝑀
𝑘𝑘=1⁄ } (7)

where 𝑆𝑆𝑆𝑆𝑘𝑘= number of r elatedness of tasks i n work-
station 𝑘𝑘.

Although t hree ob jectives a re c onsidered simultane-
ously in this paper, for type I problem, the first objective
dominates the others. As a result, if there are two candi-
date s olutions, t he o ne w ith l ower number o f w orksta-
tions w ill always selected r egardless o f h ow g ood the
other two objectives are.

4. Proposed Algorithm
4.1 COIN
Wattanapornprom et al. [48] developed a new e ffective
evolutionary algorithm called combinatorial optimisation
with coincidence (COIN) originally a iming f or s olving
travelling s alesman pr oblems. T he i dea i s t hat m ost
well-known algorithms such as GA search for good solu-
tions by sampling through crossover and mutation opera-
tions without much exploitation of the internal s tructure
of good s olution s trings. T his may not onl y ge nerate
large number of inefficient solutions dissipated over the
solution s pace but a lso c onsuming l ong CPU t ime. In
contrast, C OIN co nsiders t he i nternal s tructure of good
solution s trings a nd m emorises pa ths t hat c ould l ead t o
good s olutions. C OIN r eplaces c rossover a nd m utation
operations of GA and employs joint probability matrix as
a means to generate solutions. I t prioritises the selection
of the paths with higher chances of moving towards good
solutions.

Apart from t raditional l earning f rom go od s olutions,

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

353

COIN a llows l earning from be low a verage s olutions a s
well. Any coincidence found in a s ituation can be statis-
tically described whe ther the situation is go od or ba d.
Most traditional algorithms always discard the bad solu-
tions w ithout u tilising any information associated w ith
them. I n c ontrast, C OIN l earns from t he c oincidence
found i n t he bad s olutions a nd u ses t his i nformation t o
avoid s uch situations t o recurrent; m eanwhile, e xperi-
ences from good coincidences are also used to construct
better s olutions (Figure 3). Consequently, t he c hances
that the paths always being parts of the bad solutions are
used in the new generations are lessened. This lowers the
number of solutions to be considered and hence increases
the convergence speed.

COIN uses a j oin probability matrix (generator) t o
create the population. The generator is initialised so that
it can generate a r andom t ree with equal probability for
any c onfiguration. T he p opulation i s e valuated i n t he
same way as traditional EAs. However, COIN uses both
good and bad solutions to update the generator. Initially,
COIN searches from a f ully connected t ree and then in-
crementally strengthening or weakening the connections.
As generations p ass by, t he p robabilities o f s election
certain paths are increased or decreased depending on the
incidences found in the good or bad solutions. The algo-
rithm of COIN can be stated as follows.

1) Initialise the joint probability matrix (generator).
2) Generate the population using the generator.
3) Evaluate the population.
4) Diversity preservation.
5) Select the candidates according to two options: (a)

good solution s election (select t he s olutions i n t he f irst
rank of the current Pareto frontier), and (b) bad solution
selection (select the solutions in the last rank of the current
Pareto frontier).

6) For e ach joint p robability m atrix 𝐻𝐻(𝑥𝑥𝑀𝑀/𝑥𝑥𝑗𝑗), a djust
the ge nerator according t o t he r eward a nd pu nishment
scheme as (4).

Bad Solution

)(1 xf

)(2 xf

Good Solution

General Solution

Figure 3. Good and bad solutions

𝑥𝑥𝑀𝑀 ,𝑗𝑗 (𝑡𝑡 + 1) = 𝑥𝑥𝑀𝑀,𝑗𝑗 (𝑡𝑡) +
𝑘𝑘

(𝑀𝑀 − 1 − 𝑀𝑀𝑛𝑛𝑀𝑀)
{𝑟𝑟𝑀𝑀 ,𝑗𝑗 (𝑡𝑡 + 1) − 𝑛𝑛𝑀𝑀 ,𝑗𝑗 (𝑡𝑡 + 1)}

 + 𝑘𝑘
(𝑀𝑀−1−𝑀𝑀𝑛𝑛 𝑀𝑀)2 �∑ 𝑛𝑛𝑀𝑀,𝑗𝑗 (𝑡𝑡 + 1) −∑ 𝑟𝑟𝑀𝑀 ,𝑗𝑗 (𝑡𝑡 + 1)𝑀𝑀

𝑗𝑗=1
𝑀𝑀
𝑗𝑗=1 �

(8)
where 𝑥𝑥𝑀𝑀 ,𝑗𝑗 = t he e lement (𝑀𝑀, 𝑗𝑗) of j oint probability
matrix 𝐻𝐻(𝑥𝑥𝑀𝑀 𝑥𝑥𝑗𝑗)⁄ , 𝑘𝑘 = the learning coefficient, 𝑟𝑟𝑀𝑀 ,𝑗𝑗 = the
number of coincidences (𝑥𝑥𝑀𝑀 , 𝑥𝑥𝑗𝑗) found in the good solu-
tions, 𝑛𝑛𝑀𝑀,𝑗𝑗 = the number of coincidences (𝑥𝑥𝑀𝑀 , 𝑥𝑥𝑗𝑗) found in
the bad solutions, 𝑡𝑡 = generation number, 𝑀𝑀 = the size of
the problem, and 𝑀𝑀𝑛𝑛𝑀𝑀 = number of the direct predecessors
of task 𝑀𝑀.

7) Apply a strategy to maintain elitist solutions in the
population, a nd t hen repeat Step 2 u ntil t he t erminating
condition is met.

4.2 Numerical Example

The 11-task problem originated by Jackson [49] and later
extended to accommodate a product mix by Hwang and
Katayama [31] is us ed t o elaborate t he algorithm of
COIN. Three models (A, B , a nd C) of t he pr oduct mix
with a n e qual minimum pa rt set (M PS = [1 ,1,1]) a re
produced on MU L w ith 10-minute cy cle t ime. T heir
precedence diagrams are shown in Figure 4.

Joint Probability Matrix Initialization
The number of tasks to be considered is 11. Therefore,

the di mension of from-to joint p robability matrix
𝐻𝐻(𝑥𝑥𝑀𝑀/𝑥𝑥𝑗𝑗) is (11 × 11). The value of each element (𝑥𝑥𝑀𝑀 ,𝑗𝑗) in
the matrix i s the probability o f selecting product 𝑗𝑗 after
product 𝑀𝑀. In order to incorporate some precedence rela-
tionship into the matrix, in each row, the element which
belongs to the direct predecessor of the task is set to 0 to
prohibit producing such task before its direct predecessor.
For e xample, t he d irect predecessor of t ask 2 i s t ask 1;
hence, 𝑥𝑥2,1 = 0. Al so, 𝑥𝑥2,2 = 0 , s ince i t can not move
within itself. Initially, the value of the remaining elements
in the 2nd row of the matrix is equal to 1 (𝑀𝑀 − 1 − 𝑀𝑀𝑛𝑛2)⁄
= 1 (11 − 1 − 1)⁄ = 0. 111. C ontinue t his c omputation
for a ll the remaining tasks (rows), the initial joint prob-
ability matrix is shown in Table 1.

Population Generation
The order r epresentation s cheme i s u sed t o c reate

chromosomes. T he t ask o rder l ist i n a c hromosome i s
created by moving f orward t hrough M PD. I f t here i s
more t han o ne t ask can be s elected, t he probability o f
selecting a ny t ask w ill depend on i ts v alue o n t he join
probability matrix. For example, task 1 is selected for the
first p osition s ince i t i s t he only t ask t o be c onsidered.
After selecting task 1, the set of eligible tasks comprises
tasks 2, 3, 4 and 5. From row 1 of the joint probability
matrix, a job is randomly selected according to its prob-
ability of selection (𝑛𝑛1,𝑀𝑀 = 0.1000, for 𝑀𝑀 = 2, …, 11). If
the selected job is not in the set of eligible tasks, redo the

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

354

1

2

3

5

7

8

9

10

11

1

2

3

4

5

7

8

9

10

11

6

 (a) (b)

1

2

5

7 9

11

6

1

2

3

4

5

7

8

9

10

11

6

6

2

7

5

1

2 6

3 5

5

4

(c) (d)

Figure 4. Precedence diagrams. (a) Precedence diagram of model A; (b) Precedence diagram of model B; (c) Precedence dia-
gram of model C; (d) Merged precedence diagram of models A, B and C

Table 1. Initial joint probability matrix

 j
i

1 2 3 4 5 6 7 8 9 10 11

1 0 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
2 0 0 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
3 0 0.1111 0 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
4 0 0.1111 0.1111 0 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
5 0 0.1111 0.1111 0.1111 0 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
6 0.1111 0 0.1111 0.1111 0.1111 0 0.1111 0.1111 0.1111 0.1111 0.1111
7 0.1429 0.1429 0 0 0 0.1429 0 0.1429 0.1429 0.1429 0.1429
8 0.1111 0.1111 0.1111 0.1111 0.1111 0 0.1111 0 0.1111 0.1111 0.1111
9 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0 0.1111 0 0.1111 0.1111
10 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0 0.1111 0 0.1111
11 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0 0 0

selection. Suppose we select task 5, the new set of eligi-
ble tasks becomes tasks 2, 3 and 4. Continue this mecha-
nism until all positions in the task order list are filled and
we obtain t he t ask order l ist o f 𝐿𝐿1 ={1,5,3,4,7,2,6,9,
8,10,11}. A ssume t hat t he population s ize i s 5 a nd t he
four r emaining i nitial p opulation c onsists o f c hromo-
somes 𝐿𝐿2={1,4,5,3,7,9,2,6,8,10,11}; 𝐿𝐿3={1,3,2,6,8,5,10,
4,7,9,11}; 𝐿𝐿4={1,4,3,2,6,8,10,5,7,9,11}, a nd 𝐿𝐿5={1,5,4,
3,2,6,8,7,9,10,11}.

Population Evaluation
To f ind t entative t asks t o be a llocated on t he U -line,

we have to s earch through the task order list in bo th for-
ward and backward directions. The tentative task on for-
ward or backward searching is the first found task that has
its task t ime less t han o r e qual t o t he r emaining w ork-
station c ycle t ime a nd d oes not violated MPR. I f both
forward an d b ackward t entative t asks ar e f ound, e ither
one i s s elected r andomly. B ut i f no ne i s f ound a nd t he
task order list still has some task not yet being allocated, a
new workstation is opened. For example, for the task or-

der l ist of 𝐿𝐿1={1,5,3,4,7,2,6,9,8,10,11} and cycle time 𝑐𝑐
= 10, the forward and backward tentative tasks are tasks 1
and 11. If task 1 is randomly selected, the remaining cycle
time is 10 – 6 = 4, the new forward and backward tenta-
tive tasks are tasks 5 and 11 so on and so forth. Finally, a
feasible line balance with 𝑀𝑀 = 7 workstations and work-
station load distribution given by 𝑆𝑆1= {1,5}, 𝑆𝑆2= {10,11},
𝑆𝑆3= {8 }, 𝑆𝑆4= {9 }, 𝑆𝑆5= {3 }, 𝑆𝑆6= {4 ,6,7}, 𝑆𝑆7= {2 }. R e-
peat t his pr ocedure f or t he r emaining t ask order l ists t o
obtain t he n umber of wor kstations a nd w orkstation l oad
distribution f or e ach of t hem. Ha ving o btained f easible
line b alances, t hree o bjectives h ave t o b e e valuated f or
each ch romosome. Table 2 indicates t hat a ll c hromo-
somes gi ve t he s ame number of w orkstations; t herefore,
they are all eligible for Pareto ranking based on workload
smoothness an d w ork r elatedness o bjectives. T he P areto
ranking technique proposed by Goldberg [50] is u sed t o
classify the population into non-dominated frontiers and a
dummy fitness value (lower value is better) is assigned to
each chromosome (Figure 5).

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

355

Diversity Preservation
COIN employs a cr owding distance ap proach [46] to

generate a di versified p opulation with uniformly s pread
over t he Pareto f rontier a nd a void a genetic dr ift p he-
nomenon (a few clusters of populations being formed in
the solution space). The salient characteristic of this ap-
proach is that there is no need to define any parameter in
calculating a m easure o f p opulation d ensity around a
solution. The crowding distances computed for a ll solu-
tions are infinite since only one solution is found for each
frontier.

Solution Selection
Having defined the Pareto frontier, the good solutions

are the chromosomes located on the f irst Pareto frontier
(dummy fi tness = 1), i.e. 𝐿𝐿2={1,4,5,3,7,9, 2 ,6,8,10,11}.
The bad solutions are those located on the last Pareto fron-
tier (dummy fitness = 5), i.e. 𝐿𝐿4={1,4,3,2,6,8,10,5,7,9,11}.

Joint Probability Matrix Adjustment
The adjustment of joint probability matrix is crucial to

the performance of COIN. Reward will be given to 𝑥𝑥𝑀𝑀,𝑗𝑗 if
the order pair (𝑀𝑀, 𝑗𝑗) is in the good solution to increase the
chance o f s election i n t he next r ound. For ex ample, an
order pair (1,4) is in the good solution 𝐿𝐿2={1,4,5,3,7,9,2,6,
8,10,11}. A ssume t hat 𝑘𝑘 = 0 .3, he nce t he value of 𝑥𝑥𝑀𝑀,𝑗𝑗
where 𝑀𝑀 = 1 and 𝑗𝑗 = 4 is increased by 𝑘𝑘 (𝑀𝑀 − 1 − 𝑀𝑀𝑛𝑛1)⁄
= 0.3/(11 – 1 – 0) = 0.03. The updated value of 𝑥𝑥𝑀𝑀 ,𝑗𝑗 of the
order pair (1,4) becomes 0.1 + 0.03 = 0.13. The values of
the other order pairs located in the same row of the order
pair (1 ,4) is reduced b y 𝑘𝑘 (𝑀𝑀 − 1 − 𝑀𝑀𝑛𝑛1)2⁄ = 0. 3/100 =
0.003. For example, the value 𝑥𝑥𝑀𝑀 ,𝑗𝑗 where 𝑀𝑀 = 1 and 𝑗𝑗 = 4
is 0. 1 – 0.003 = 0.0970. C ontinue t his procedure t o a ll
order pairs located in the good solution; the revised joint
probability matrix is obtained (Table 3).

In contrast, if the order pair (𝑀𝑀, 𝑗𝑗) is in the bad solution,
𝑥𝑥𝑀𝑀 ,𝑗𝑗 will be penalised to reduce the chance of selection in
the next round. For example, an order pair (1,4) is in the
bad solution 𝐿𝐿4={1,4,3,2,6,8, 10,5,7,9,11}. Therefore, the
value of 𝑥𝑥𝑀𝑀 ,𝑗𝑗 where 𝑀𝑀 = 1 a nd 𝑗𝑗 = 4 i s d ecreased b y
𝑘𝑘 (𝑀𝑀 − 1 − 𝑀𝑀𝑛𝑛1)⁄ = 0.3/10 = 0.03. The updated value of
𝑥𝑥𝑀𝑀 ,𝑗𝑗 of the order pair (1,4) becomes 0.130 – 0.030 = 0.100.
The values of the other order pairs located in the same row
of the order pair (1,4) is increased by 𝑘𝑘 (𝑀𝑀 − 1 − 𝑀𝑀𝑛𝑛1)2⁄
= 0.3/100 = 0.003. For example, the value 𝑥𝑥𝑀𝑀 ,𝑗𝑗 where 𝑀𝑀 =
1 and 𝑗𝑗 = 2 i s 0.097 + 0.003 = 0.100. Continue this pro-

cedure to a ll or der pa irs l ocated in t he bad solution; t he
revised joint probability matrix is obtained (Table 4).

Elitism
To keep the best solutions found so far to be survived in

the next generation, COIN uses an external l ist with the
same size as the population size to store elitist solutions.
All non-dominated solutions created in the current popu-
lation a re combined with t he c urrent e litist s olutions.
Goldberg’s Pareto ranking t echnique i s us ed t o c lassify
the c ombined po pulation i nto s everal n on-dominated
frontiers. Onl y t he s olutions i n t he f irst non -dominated
frontier are filled in the new elitist list. If the number of
solutions in the first non-dominated frontier is less than or
equal to the size of the elitist list, the new elitist list will
contain all solutions o f the f irst non-dominated f rontier.
Otherwise, Pareto domination tournament s election [51]
is exercised. Two solutions from the first non-dominated
solutions are randomly selected and then the solution with
larger crowding distance measure and not being selected
before is added to the new elitist l ist. This approach not
only e nsures that a ll s olutions in t he elitist list a re
non-dominated solutions but also promoting diversity of
the solutions. According to our example, the current elitist
list i s e mpty a nd t he solutions i n t he c urrent f irst
non-dominated f rontier i s 𝐿𝐿2={1,4,5,3,7,9,2,6,8,10,
11}. When bo th s ets a re combined t he non -dominated
frontier i s s till t he s ame. A lso, t he number o f t he c om-
bined solutions is less than the size of the elitist list; hence,
both solutions are added to the new elitist.

Figure 5. Pareto frontier of each chromosome

Table 2. Objective functions of each chromosome

Chromosome
Number

Number of
Workstations

Workload
Smoothness

Work
Relatedness

Pareto Frontier Crowding
Distance

2 4 1.4142 4.4444 1 Infinite
3 4 2.0817 5.2500 2 Infinite
5 4 2.9439 5.3333 3 Infinite
1 4 4.2088 6.1250 4 Infinite
4 4 4.3425 6.2222 5 Infinite

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

356

Table 3. Revised joint probability matrix (good solution)

 j
i

1 2 3 4 5 6 7 8 9 10 11

1 0 0.0970 0.0970 0.1300 0.0970 0.0970 0.0970 0.0970 0.0970 0.0970 0.0970
2 0 0 0.1074 0.1074 0.1074 0.1444 0.1074 0.1074 0.1074 0.1074 0.1074
3 0 0.1074 0 0.1074 0.1074 0.1074 0.1444 0.1074 0.1074 0.1074 0.1074
4 0 0.1074 0.1074 0 0.1444 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074
5 0 0.1074 0.1444 0.1074 0 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074
6 0.1074 0 0.1074 0.1074 0.1074 0 0.1074 0.1444 0.1074 0.1074 0.1074
7 0.1367 0.1367 0 0 0 0.1367 0 0.1367 0.1858 0.1367 0.1367
8 0.1074 0.1074 0.1074 0.1074 0.1074 0 0.1074 0 0.1074 0.1444 0.1074
9 0.1074 0.1444 0.1074 0.1074 0.1074 0.1074 0 0.1074 0 0.1074 0.1074
10 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0 0.1074 0 0.1444
11 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0 0 0

Table 4. Revised joint probability matrix (bad solution)

 j
i

1 2 3 4 5 6 7 8 9 10 11

1 0 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
2 0 0 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
3 0 0.0741 0 0.1111 0.1111 0.1111 0.1481 0.1111 0.1111 0.1111 0.1111
4 0 0.1111 0.0741 0 0.1481 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
5 0 0.1111 0.1444 0.1111 0 0.1111 0.0778 0.1111 0.1111 0.1111 0.1111
6 0.1111 0 0.1111 0.1111 0.1111 0 0.1111 0.1111 0.1111 0.1111 0.1111
7 0.1429 0.1429 0 0 0 0.1429 0 0.1429 0.1429 0.1429 0.1429
8 0.1111 0.1111 0.1111 0.1111 0.1111 0 0.1111 0 0.1111 0.1111 0.1111
9 0.1111 0.1481 0.1111 0.1111 0.1111 0.1111 0 0.1111 0 0.1111 0.0741
10 0.1111 0.1111 0.1111 0.1111 0.0741 0.1111 0.1111 0 0.1111 0 0.1481
11 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0 0 0

5. Experimental Design
5.1 Problem Sets
In order t o compare t he pe rformances o f C OIN a gainst
several comparator s earch h euristics, t hree w ell-known
test problems were employed as shown in Table 5. The
problem s et 1, 2, a nd 3 represent s mall, medium, a nd
large-sized problems respectively

5.2 Comparison Heuristics

The p erformances of t he pr oposed C OIN a pplied to
MULB problems are compared against such a well-known
multi-objective evolutionary as NSGA II. In addition, the

Table 5. Test problems

Problem Set Number of
Products

Number
of Tasks

Cycle
Time (sec)

1. Thomopoulos[56] 3 19 120
2. Kim[36] 4 61 600
3. Arcus[57] 5 111 10,000

extended versions of COIN and NSGA II, i.e. MNSGA II
and COIN-MA, are also evaluated.

NSGA II
The algorithm of NSGA II [46] can be stated as follows.
1) Create a n i nitial p arent population of s ize 𝑆𝑆 ran-

domly.
2) Sort the population into several f rontiers b ased on

the fast non-dominated sorting algorithm.
3) Calculate a crowding distance measure for each so-

lution.
4) Select the parent population into a mating pool based

on the binary crowded tournament selection.
5) Apply crossover and mutation operators to create an

offspring population of size 𝑆𝑆.
6) Combine the pa rent p opulation with the of fspring

population a nd a pply a n e litist mechanism t o t he c om-
bined population o f s ize 2𝑆𝑆 obtain a new population of
size 𝑆𝑆.

7) Repeat Step 2 until the terminating condition is met.
MNSGA II
MNSGA II is a memetic version of NSGA II. Appro-

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

357

priate local searches can additionally embed into several
positions of t he N SGA I I’s a lgorithm, i.e. after i nitial
population, after crossover, and after mutation [52]. The
number of places to apply local search has a direct effect
on the quality of solution and computation time. Hence, if
computation time needs to be saved, local search should
be taken only at some specific s teps in the algorithm of
MA rather than at all possible steps. In this research, we
choose to take local search after obtaining initial solution
and a fter mutation s ince pilot e xperiments a nd o ur pre-
vious research [53] indicated that these two points were
enough to find significantly improved solutions, pull the
solutions out of the l ocal optimal, and reduce computa-
tional time. The algorithm of MNSGA II can be stated as
follows.

1) Create a n i nitial p arent population of s ize 𝑆𝑆 ran-
domly.

2) Apply a local search to the initial parent population.
3) Sort the population into several f rontiers b ased on

the fast non-dominated sorting algorithm.
4) Calculate a crowding distance measure for each so-

lution.
5) Select the parent population into a mating pool based

on the binary crowded tournament selection.
6) Apply crossover and mutation operators to create an

offspring population of size 𝑆𝑆.
7) Apply a local search to the offspring population.
8) Combine the pa rent p opulation with the of fspring

population a nd a pply a n e litist mechanism t o t he c om-
bined population of s ize 2𝑆𝑆 obtain a new population of
size 𝑆𝑆.

9) Repeat Step 3 until the terminating condition is met.
Four l ocal s earches m odified f rom Kum ar a nd Singh

[54] originally de veloped t o s olve t ravelling s alesman
problems by repeatedly exchanging edges of the tour until
no i mprovement i s attained a re examined i ncluding
Pairwise In terchange (P I), In sertion Procedures (IP),
2-Opt, and 3-Opt. Three criteria are used to test whether to
accept a m ove t hat a l ocal s earch h euristic cr eates a
neighbour solution from the current solution as follows: (1)
accept the new solution if 𝑓𝑓1(𝑥𝑥) is descendent, (2) accept
the ne w s olution i f 𝑓𝑓1(𝑥𝑥) is t he s ame an d 𝑓𝑓2(𝑥𝑥) is d e-
scendent; (2) accept the new solution if 𝑓𝑓1(𝑥𝑥) is the same
and 𝑓𝑓3(𝑥𝑥) is descendent; or (3) accept the new solution if
it dominates the current solution (𝑓𝑓1(𝑥𝑥) is the same, and
both 𝑓𝑓2(𝑥𝑥) and 𝑓𝑓3(𝑥𝑥) are descendent).

CNSGA II
In this heuristic, COIN is run for a certain number of

generations. NSGA II then accepts the final solutions of
COIN as its initial population and proceeds with its algo-
rithm.

COIN-MA
In t his heuristic, CO IN i s a ctivated f irst f or a c ertain

number of generations. The final solutions obtained from

COIN are then fed into MNSGA II as an initial population.

5.3 Comparison Metrics
Three metrics are measured to evaluate the achievement
of two common goals for comparison of multi-objective
optimisation m ethods as r ecommended by K umar a nd
Singh [54]: 1) convergence to the Pareto-optimal set, and
2) m aintenance of di versity i n t he s olutions of P areto-
optimal s et. I n addition, CPU t ime o f each heuristic for
achieving the final solutions is measured.

The convergence of the obtained Pareto-optimal solu-
tion t owards a t rue P areto-set (𝐴𝐴∗) i s t he difference b e-
tween t he obtained s olution set a nd t he t rue-Pareto s et.
Mathematically, it is defined as (9) and (10)

𝑐𝑐𝑐𝑐𝑀𝑀𝑐𝑐𝑀𝑀𝑟𝑟𝑐𝑐𝑀𝑀𝑀𝑀𝑐𝑐𝑀𝑀 (𝐴𝐴) =
∑ 𝑑𝑑𝑡𝑡𝑀𝑀

|𝐴𝐴∗|
𝑀𝑀=1
|𝐴𝐴∗|

 (9)

𝑑𝑑𝑡𝑡𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗=1
|𝐴𝐴∗|�∑ �𝑓𝑓𝑘𝑘(𝑥𝑥)−𝑓𝑓𝑘𝑘(𝑦𝑦)

𝑓𝑓𝑘𝑘
𝑀𝑀𝑚𝑚𝑥𝑥 −𝑓𝑓𝑘𝑘

𝑀𝑀𝑀𝑀𝑀𝑀 �
2

2
𝑘𝑘=1 (10)

where |𝐴𝐴∗| is the num ber o f elements in s et A , 𝑑𝑑𝑡𝑡𝑀𝑀 is
the Euclidean di stance between n on-dominated s olution
𝑀𝑀𝑡𝑡ℎ in t he t rue-Pareto fro ntier (𝑦𝑦) and t he obtained so-
lution (𝑥𝑥), 𝑓𝑓𝑘𝑘𝑀𝑀𝑚𝑚𝑥𝑥 and 𝑓𝑓𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 are m aximum a nd m ini-
mum values of 𝑘𝑘𝑡𝑡ℎ objective f unctions i n t he t rue-
Pareto s et respectively. For metric 𝐴𝐴, l ower v alue i ndi-
cates s uperiority o f t he s olution s et. When a ll s olutions
converge to P areto-optimal f rontier, t his metric i s z ero
indicating that the obtained solution set has all solutions
in the true P areto s et. S ince t he t rue P areto f rontier i s
unknown, its approximation is needed. The approximated
true Pareto-optimal frontier is the result of combining all
final non-dominated solutions obtained from of all algo-
rithms, applying Goldberg’s Pareto ranking technique to
the combined solutions, and the first frontier of the com-
bined s olutions i s t he a pproximated t rue P areto-optimal
frontier.

The second measure is a spread metric. This measure
computes the di stribution of the o btained Pareto-solu-
tions by calculating a relative distance between consecu-
tive solutions as shown in (11) and (12).

𝑠𝑠𝑛𝑛𝑟𝑟𝑀𝑀𝑚𝑚𝑑𝑑 (𝐴𝐴) =
𝑠𝑠𝑑𝑑𝑓𝑓+𝑠𝑠𝑑𝑑𝑙𝑙+∑ ‖𝑠𝑠𝑑𝑑𝑀𝑀−𝑠𝑠𝑑𝑑�‖

|𝐴𝐴 |−1
𝑀𝑀=1

𝑠𝑠𝑑𝑑𝑓𝑓+𝑠𝑠𝑑𝑑𝑀𝑀+(|𝐴𝐴|−1)𝑠𝑠𝑑𝑑�
 (11)

𝑠𝑠𝑑𝑑𝑀𝑀 = �∑ �𝑓𝑓𝑘𝑘(𝑥𝑥𝑀𝑀)−𝑓𝑓𝑘𝑘(𝑥𝑥𝑀𝑀+1)
𝑓𝑓𝑘𝑘
𝑀𝑀𝑚𝑚𝑥𝑥 −𝑓𝑓𝑘𝑘

𝑀𝑀𝑀𝑀𝑀𝑀 �
2

2
𝑘𝑘=1 (12)

where 𝑠𝑠𝑑𝑑𝑓𝑓 and 𝑠𝑠𝑑𝑑𝑙𝑙 are t he E uclidean distances b e-
tween the extreme solutions a nd b oundary s olutions of
the o btained P areto-optimal, |𝐴𝐴| is the n umber of ele-
ments i n t he o btained-Pareto s olutions, 𝑠𝑠𝑑𝑑𝑀𝑀 is t he
Euclidian di stance o f be tween consecutive solutions in
the o btained-Pareto solutions f or 𝑀𝑀 = 1, 2, … , |𝐴𝐴| − 1 ,

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

358

𝑠𝑠�̅�𝑑 is t he a verage E uclidean d istance o f 𝑠𝑠𝑑𝑑𝑀𝑀 , a nd t he
operator “|| ||” means an absolute value. The value of this
measure is zero for a uniform distribution, but i t can be
more than 1 when bad distribution is found.

The third measure is the ratio of non-dominated solu-
tions 𝑅𝑅𝑆𝑆𝐷𝐷𝑆𝑆�𝐴𝐴𝑗𝑗 � which i ndicates t he c overage o f one set
over another. Let 𝐴𝐴𝑗𝑗 be a solution s ets (𝑗𝑗 = 1, 2, … , 𝐽𝐽).
For c omparing e ach 𝐽𝐽 solution s et (𝐴𝐴 = 𝐴𝐴1 ∪ 𝐴𝐴2 …∪
𝐴𝐴𝐽𝐽) the r atio o f n on-dominated measure o f t he s olution
set 𝐴𝐴𝑗𝑗 to t he 𝐽𝐽 solution s ets i s t he r atio o f s olutions i n
𝐴𝐴𝑗𝑗 that a re n ot dominated by any ot her s olution i n 𝐴𝐴,
which i s defined a s (13), where 𝑦𝑦 ≺ 𝑥𝑥 means the o b-
tained s olution 𝑥𝑥 is dominated by the true-Pareto s olu-
tion 𝑦𝑦. The higher ratio indicates superiority of one solu-
tion set over another.

𝑅𝑅𝑆𝑆𝐷𝐷𝑆𝑆�𝐴𝐴𝑗𝑗 � =
�𝐴𝐴𝑗𝑗−�𝑥𝑥∈𝐴𝐴𝑗𝑗 | ∃𝑦𝑦∈𝐴𝐴:𝑦𝑦≺𝑥𝑥��

�𝐴𝐴𝑗𝑗 �
 (13)

All a lgorithms a re c oded i n M athlab 7.0. T he t est
platform is on I ntel C ore2 Duo 2. 00 GHz und er Win-
dows X P w ith 1.99 GB R AM. T he C PU time o f each
heuristic is kept after the program is terminated.

5.4 Parameter Settings
To tune MOEA for the MULB problems, an experimental
design [55] was employed to systematically conduct and
investigate the effect of each parameter to the responses

of e ach he uristic. R ecommendations from t he pa st re-
searches, e.g. Kim et al. [36], Chutima and P inkoompee
[53], etc. were used as a s tarting point for parameter set-
tings. E xtensive pi lot r uns we re c onducted a round t he
vicinities of the starting point. The selection for each pa-
rameter setting was based on quality and diversity of so-
lutions. I f ne ither q uality nor di versity of s olutions w as
significantly different for several settings of the parameter,
the one with lowest CPU time was selected. Having done
that, Table 6 shows t he pa rameter s ettings f ound t o be
effective for each problem.

The process of finding appropriate local searches (LSs)
for M NSGA II a nd COIN-MA f or each problem s et i s
worth m entioning. F our l ocal s earches t hat g ave g ood
performances from p revious r esearch [53] were i nvesti-
gated, i.e. Pairwise I nterchange (PI), I nsertion P roce-
dures (IP), 2-Opt, and 3-Opt. Although LS can be located
on 3 different places in MA, pilot runs indicated that put-
ting LS after crossover did not help MA improve its per-
formances. Therefore, LSs were placed only af ter initial
population a nd a fter m utation f or M NSGA I I a nd a fter
mutation for COIN-MA. Full factorial experiments were
conducted to t est the performances o f L Ss o n each
problem with 2 r eplicates. T he n umber o f experiment
runs for e ach problem o f M NSGA II a nd COIN-MA i s
4*4*2 = 32 and 4*2 = 8 respectively. In total the number
of runs is 120. ANOVA and Tukey’s multiple range test
were conducted to test significant different at 0.05 level.

Table 6. Parameter settings for each heuristic

Parameter settings COIN NSGA II MNSGA II CNSGA II COIN-MA
Population size 100 100 100 100 100

Number of genera-

tions

Small = 100
Medium = 150

Large = 300

Small = 100
Medium = 150

Large = 300

Small = 100
Medium = 150

Large = 300

Small = 100
Medium = 150

Large = 300

Small = 100
Medium = 150

Large = 300

Crossover - Weight mapping
crossover

Weight mapping
crossover

Weight mapping
crossover

Weight mapping
crossover

Mutation - Reciprocal exchange Reciprocal exchange Reciprocal exchange Reciprocal exchange
Probability of cross-

over - 0.7 0.7 0.7 0.7

Probability of muta-
tion - 0.1 0.1 0.1 0.1

Learning coefficient

(k)

Small = 0.1
Medium = 0.2

Large = 0.2

-

-

Small = 0.1
Medium = 0.2

Large = 0.2

Small = 0.1
Medium = 0.2

Large = 0.2
Percentage of gen-

erations
of COIN to NSGA II

-

-

-

Small = 80:20
Medium = 60:40

Large = 60:40

Small = 80:20
Medium = 60:40

Large = 60:40

Table 7. Appropriate local searches
Problem set MNSGA II COIN-MA

LS after
initial population

LS after
mutation

LS after mutation

1 IP PI IP
2 PI 3-Opt IP
3 IP PI PI

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

359

The L Ss a ppearing i n Table 7 were t hose t hat p er-

formed b est with r espect t o solution quality, d iversity,
and CPU time. It is apparent that best LS combination for
MNSGA II a nd COIN-MA depends on the problem set.
However, for MNSGA II the combination of IP (LS used
after initial population) and PI (LS used a fter mutation)
appear m ore often t han t he ot her. For C OIN-MA, IP
seems t o g ive b etter p erformances f or s mall- and m e-
dium-sized problems; whereas, PI performed better than
the ot hers f or l arge-sized p roblems. A s a r esult, t hese
settings were used for MNSGA II and COIN-MA in rela-
tive performance comparison.
6. Experimental Results
The be haviour o f C OIN was de monstrated w ith t he 61
tasks’ problem as shown in Figure 6. At the beginning
(generation 1), a number of rather poor feasible solutions
were cr eated. As t he n umber of generations i ncreased,
better solutions were found as observed from the moving
downward t rend t o t he l eft of t he P areto fronts. It was
noticeable that not much improvement was gained in the
first 20 generations. A leaped gain was noticeable from
generations 20 t o 30. H owever, t he i mprovement w as
less and less after that and the Pareto front remained the
same after generation 100.

The b ehaviour of CNSGA I I (COIN p lus N SGA II)
and C OIN-MA (C OIN p lus MNSGA II) we re demon-
strated i n Figure 7 and Figure 8. B oth a lgorithms a l-
lowed COIN to run for 150 generations and the final so-
lutions of CO IN w ere c onsidered a s i nitial s olutions of
NSGA II and MNSGA II. Significant improvement was
found af ter C OIN was t erminated an d marginal g ains
from i ts pr evious s olutions were o btained a t t he e nd of
both algorithms. In other words, NSGA II (in CNSGA II)
and MNSGA II (i n COIN-MA) c annot provide m uch
improvement to the final solutions of COIN.

For t he s mall-sized problem (19 t asks), T able 8
showed t hat a ll a lgorithms ga ve t he s ame n umber o f
workstations. NSGA II performed worst comparing with
the others. By adding appropriate local search to NSGA
II, i ts m emetic v ersion (M NSGA II) gained s ignificant
performance i mprovement. Although M NSGA II ob-
tained the best spread metric, it was dominated by COIN,
CNSGA II, and COIN-MA (Figure 9). These three algo-
rithms obtained the same best Pareto front which can be
seen from their ratio of non-dominated solution (𝑅𝑅𝑆𝑆𝐷𝐷𝑆𝑆 =
1) in Table 8.

For the medium-sized problem (61 tasks), COIN-MA
obtained highest 𝑅𝑅𝑆𝑆𝐷𝐷𝑆𝑆 , followed by CNSGA II, whereas
the other algorithms have 𝑅𝑅𝑆𝑆𝐷𝐷𝑆𝑆 = 0 (Table 8). This was
confirmed by Figure 10 meaning that some solutions of
COIN-MA and CNSGA II were located in the Pareto front.
MNSGA II outperformed NSGA II, but it was dominated
by COIN. A big gap between the front of NSGA II and the

Figure 6. Characteristic of COIN

Figure 7. Characteristic of CNSGA II.

Figure 8. Characteristic of COIN-MA

Workload Smoothing

R
el

at
ed

ne
ss

0.40.30.20.10.0

3.6

3.5

3.4

3.3

3.2

3.1

3.0

Variable

3 * COIN
4 * COIN plus NSGA-II
5 * COIN plus M-NSGA-II

1 * NSGA-II
2 * M-NSGA-II

Compare Algorithm (19 task's)

Figure 9. Pareto front of each algorithm (19 tasks)

fronts of three good performers (COIN, CNSGA II, and
COIN-MA) was noticed indicating significant gains from
using these three algorithms.

8.5

9.0

9.5

10.0

0 1 2 3

R
el

at
en

es
s

Workload Smoothing

Characteristic of COIN

Gen 1

Gen 10

Gen 20

Gen 30

Gen 40

Gen 50

8.0
8.5
9.0
9.5

10.0

0 1 2 3R
el

at
en

es
s

Workload Smoothing

Characteristic of CNSGA II

Gen 1

Gen 150

Gen 300

8.0
8.5
9.0
9.5

10.0

0 1 2 3

R
el

at
en

es
s

Workload Smoothing

Characteristic of COIN-MA

Gen 1

Gen 150

Gen 300

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

360

Table 8. Performance comparison

Problem set Performance Meas-
ure

NSGA II COIN MNSGA II CNSGA II COIN-MA

1

Number of work-
stations 4 4 4 4 4

Convergence 0.4381 0.1317 0.0603 0.1317 0.1317

Spread 0.6557 0.5390 0.4948 0.5390 0.5390

RNDS 0.0000 1.0000 0.4000 1.0000 1.0000

CPU Time (min) 6 3 13 4 7

2

Number of work-
stations 10 9 10 9 9

Convergence 0.9951 0.8966 0.4419 0.3058 0.0710

Spread 0.4504 0.4945 0.8038 0.5514 0.4271

RNDS 0.0000 0.0000 0.0000 0.5000 0.6250

CPU Time (min) 55 11 86 19 25

3

Number of work-
stations 16 16 16 15 15

Convergence 1.0000 0.9907 0.8645 0.4100 0.0000

Spread 0.7479 0.6951 0.4882 0.7211 0.6643

RNDS 0.0000 0.0000 0.0000 0.0000 1.0000

CPU Time (min) 478 20 1089 32 44

For t he l arge-sized pr oblem (111 tasks), onc e again,

COIN-MA performed best and NSGA II was ranked last
(Figure 11). COIN outperformed NSGA and NSGA II .
The pe rformance of COIN wa s improved significantly
with t he c ooperation of NSGA I I (C NSGA I I) a nd
MNSGA II (COIN-MA). COIN-MA dominated all algo-
rithms a nd, f rom Table 8, i ts s olutions w ere a ll i n t he
Pareto front (𝑅𝑅𝑆𝑆𝐷𝐷𝑆𝑆 = 1).

In terms of CPU time (Table 8), COIN used the lowest
time to achieve the final solutions followed by CNSGA II,

Workload Smoothing

R
e

la
te

d
n

e
ss

1.61.41.21.00.80.60.40.20.0

9.75

9.50

9.25

9.00

8.75

8.50

Variable

3 * COIN
4 * COIN plus NSGA-II
5 * COIN plus M-NSGA-II

1 * NSGA-II
2 * M-NSGA-II

Compare Algorithm (61 task's)

Figure 10. Pareto front of each algorithm (61 tasks)

COIN-MA, NSGA II, and MNSGA II. As a result, COIN
can be considered as a fast and smart algorithm s ince i t
can obtain good solutions very f ast. I t can be used as a
good benchmark for other algorithms. In addition, if the
good Pareto front needs to be discovered within a limited
CPU time, COIN-MA is recommended as an outstanding
alternative.

7. Conclusions
This pa per p resents a novel e volutionary a lgorithm

Workload Smoothing

R
el

at
ed

ne
ss

120010008006004002000

15.75

15.50

15.25

15.00

14.75

14.50

Variable

3 * COIN
4 * COIN plus NSGA-II
5 * COIN plus M-NSGA-II

1 * NSGA-II
2 * M-NSGA-II

Compare Algorithm (111 task's)

Figure 11. Pareto front of each algorithm (111 tasks)

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

361

namely c ombinatorial o ptimisation w ith c oincidence a l-
gorithm (COIN) a nd i ts v ariances. T he a lgorithms a re
applied t o s olve T ype I problems of M MUALBP i n a
just-in-time pr oduction e nvironment. C OIN recognises
the positive knowledge appearing in the order pairs of the
good s olution by gi ving a marginal r eward (increased
probability) to its related element of the joint probability
matrix. In contrast, the negative knowledge found in the
order pairs of the bad solution, which is often remiss in
most algorithms, is also utilised in COIN (reduced prob-
ability) t o pr event undesired s olutions coincidentally
found in th is generation to be recurring in t he next gen-
eration. The performances of COIN and its variances are
evaluated o n t hree o bjectives, i.e. minimum n umber
workstations, minimum work relatedness, and minimum
workload s moothness. Among t hese t hree, m inimum
number of workstations i s d ominated r esulting i n only
the solutions with t he s ame minimum number of work-
stations being considered and can be located on the first
Pareto f ront. Experimental r esults i ndicate c learly t hat
COIN out performs the we ll-known NS GA I I i n a ll a s-
pects. As a result, COIN can be considered as a new al-
ternative be nchmarking a lgorithm f or M MUALBP. The
COIN’s variances (C NSGA II a nd C OIN-MA) s how
significantly b etter p erformances t han C OIN, NSGA II,
and MNSGA II. Although COIN-MA marginally uses
more CPU time than CNSGA II, the other performances
of COIN-MA are better than CNSGA. As a result, if we
need to find an algorithm to search for an optimal Pareto
front for MMUALBP, COIN-MA is recommended.

REFERENCES
[1] N. Boysen, M. Fliedner and A. Scholl, “Assembly L ine

Balancing: W hich M odel t o U se W hen?” International
Journal of Production Economics, Vol. 111, No. 2, 2008,
pp. 509-528.

[2] R. J. Schonberger, “Japanese M anufacturing T echniques:
Nine H idden Lessons i n Simplicity,” Free P ress, New
York, 1982, pp. 140-141.

[3] J. Miltenburg, “U-Shaped Production Lines: A Review of
Theory and Practice,” International Journal of Production
Economics, Vol. 70, No. 3, 2001, pp. 201-214.

[4] Y. Monden, “Toyota Production S ystem,” 2nd Edition,
Industrial Engineering P ress, Ins titute of Indus trial E ngi-
neering, Norcross, 1993.

[5] G. J. Miltenburg and J. Wijngaard, “The U-Line Balancing
Problem,” Management Science, Vol. 40, No. 10, 1994,
pp. 1378-1388.

[6] C. H. Cheng, G. J. Miltenburg and J . Motwani, “The Ef-
fect of Straight- and U -Shaped L ines on Q uality,” IEEE
Transactions on Engineering Management, Vol. 47, No. 3,
2000, pp. 321-334.

[7] G. J. Miltenburg, “The Effect of Breakdowns on U-Shaped

Production L ines,” International Journal of Production
Research, Vol. 38, No. 2, 2000, pp. 353-364.

[8] J. Miltenburg, “One-Piece Fl ow Manufacturing on U -
Shaped P roduction Lines: A T utorial,” IIE Transactions,
Vol. 33, No. 4, 2001, pp. 303-321.

[9] Y. Kara, U . Ozcan and A. Peker, “Balancing a nd S e-
quencing Mixed-Model just-in-Time U-Lines with Multi-
ple O bjectives,” Applied Mathematics and Computation,
Vol. 184, No. 2, 2007, pp. 566-588.

[10] M. E. Salveson, “The Assembly Line Balancing Problem,”
The Journal of Industrial Engineering, Vol. 6, N o. 3,
1955, pp. 18-25.

[11] I. Baybars, “A Survey of Exact Algorithms for the Simple
Assembly L ine Ba lancing P roblem,” Management Sci-
ence, Vol. 32, No. 8, 1986, pp. 909-932.

[12] S. Ghosh and R. J. Gagnon, “A Comprehensive Literature
Review and Analysis of the Design, Balancing and Sched-
uling of Assembly S ystems,” International Journal of
Production Research, Vol. 27, No. 4, 1989, pp. 637-670.

[13] E. Erel and S. C. Sarin, “A Survey of t he Assembly Line
Balancing Procedures,” Production Planning and Control,
Vol. 9, No. 5, 1998, pp. 414-434.

[14] C. Be cker a nd A . Scholl, “A S urvey on Problems a nd
Methods i n Generalized Assembly L ine B alancing,”
European Journal of Operational Research, Vol. 168, No.
3, 2006, pp. 694-715.

[15] N. Boy sen a nd M. Fliedner, “A V ersatile Algorithm for
Assembly L ine Balancing,” European Journal of Opera-
tional Research, Vol. 184, No. 1, 2008, pp. 39-56.

[16] D. Sparling and J. Miltenburg, “The Mixed-Model U-Line
Balancing Problem,” International Journal of Production
Research, Vol. 36, No. 2, 1998, pp. 485-501.

[17] G. J. Miltenburg, “Balancing U -Lines in a M ultiple U -
Line F acility,” European Journal of Operational Re-
search, Vol. 109, No. 1, 1998, pp. 1-23.

[18] T. L. Urban, “Optimal Ba lancing of U-Shaped Assembly
Lines,” Management Science, Vol. 44, N o. 5, 1998, pp.
738-741.

[19] D. A. Ajenblit and R. L. Wainwright, “Applying Genetic
Algorithms to t he U -Shaped Assembly L ine Ba lancing
Problem,” Proceedings of the 1998 IEEE International
Conference on Evolutionary Computation, A laska, 1998,
pp. 96-101.

[20] A. School and R. Klein, “ULINO: O ptimally Balancing
U-Shaped J IT Assembly Lines,” International Journal of
Production Research, Vol. 37, No. 4, 1999, pp. 721-736.

[21] E. Erel, I. Sabuncuoglu a nd B. A. Aksu, “Balancing of
U-Type Asse mbly Systems Using Simulated Annealing,”
International Journal of Production Research, Vol. 39,
No. 13, 2001, pp. 3003-3015.

[22] G. R. Aase, M. J. Schniederjans and J. R. Olson, “U-OPT:
An Analysis of Exact U -Shaped L ine Balancing P roce-
dures,” International Journal of Production Research,
Vol. 41, No. 17, 2003, pp. 4185-4210.

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

362

[23] G. R. Aase, J. R. Olson and M . J. Schniederjans, “U-
Shaped Assembly Line Layouts and their Impact on Labor
Productivity: An Experimental Study,” European Journal
of Operational Research, Vol. 156, No. 3, 2004, pp. 698-
711.

[24] U. Martinez and W . S. Duff, “Heuristic A pproaches to
Solve the U-Shaped L ine Ba lancing Problem Augmented
by Genetic Algorithms,” Proceedings of the 2004 Systems
and Information Engineering Design Symposium, Char-
lottesville, 16 April 2004, pp. 287-293.

[25] J. Balakrishnan, C.-H. Cheng, K.-C. Ho and K. K. Yang,
“The A pplication of S ingle-Pass He uristics f or U-Lines,”
Journal of Manufacturing Systems, Vol. 28 , N o. 1 , 2009,
pp. 28-40.

[26] H. Gokcen and K . Agpak, “A G oal Programming A p-
proach t o Simple U -Line Ba lancing P roblem,” European
Journal of Operational Research, Vol. 171, No. 2, 2006,
pp. 577-585.

[27] T. L. Urban and W .-C. Chiang, “An Optimal P iece-
wise-Linear P rogram for the U -Line Ba lancing Problem
with Stochastic Task Times,” European Journal of Opera-
tional Research, Vol. 168, No. 3, 2006, pp. 771-782.

[28] W.-C. Chiang and T . L. Urban, “The S tochastic U-Line
Balancing Problem: A H euristic P rocedure,” European
Journal of Operational Research, Vol. 175, No. 3, 2006,
pp. 1767-1781.

[29] Y. Kara, T. Paksoy and C. T. Chang, “Binary Fuzzy Goal
Programming A pproach t o S ingle M odel S traight and
U-Shaped A ssembly Line Ba lancing,” European Journal
of Operational Research, Vol. 195, No. 2, 2009, pp. 335-
347. A. L. Arcus, “COMSOAL: A Com puter M ethod of
Sequencing O perations for Assembly L ines,” Interna-
tional Journal of Production Research, Vol. 4, No. 4,
1965, pp. 259-277.

[30] A. Baykasoglu, “Multi-Rule M ulti-Objective Simulated
Annealing Algorithm for Straight a nd U T ype A ssembly
Line Ba lancing Problems,” Journal of Intelligent Manu-
facturing, Vol. 17, No. 2, 2006, pp. 217-232.

[31] R. K. Hwang, H. Katayama and M. Gen, “U-Shaped As-
sembly Line Balancing Problem with Genetic Algorithm,”
International Journal of Production Research, Vol. 46,
No. 16, 2008, pp. 4637-4649.

[32] R. K. Hwang and H . Katayama, “A Mul ti-Decision Ge-
netic Approach for Workload Balancing of Mixed-Model
U-Shaped Assembly Line Systems,” International Journal
of Production Research, Vol. 47, No. 14, 2009, pp. 3797-
3822.

[33] A. Baykasoglu and T . Dereli, “Simple and U -Type A s-
sembly Line Ba lancing by U sing an A nt Col ony Ba sed
Algorithm,” Mathematical and Computational Applica-
tions, Vol. 14, No. 1, 2009, pp. 1-12.

[34] G. J. Miltenburg, “Balancing and Scheduling Mixed-Model
U-Shaped P roduction L ines,” International Journal of
Flexible Manufacturing Systems, Vol. 14, No. 2, 2002, pp.
119-151.

[35] Y. K. Kim, S. J. Kim and J. Y. Kim, “Balancing and Se-
quencing M ixed-Model U -Lines wi th a Co -Evolutionary
Algorithm,” Production Planning and Control, Vol. 11,
No. 8, 2000, pp. 754-764.

[36] Y. K. Kim, J. Y. Kim and Y . Kim, “An E ndosymbiotic
Evolutionary A lgorithm for t he Int egration of Balancing
and S equencing in M ixed-Model U -Lines,” European
Journal of Operational Research, Vol. 168, No. 3, 2006,
pp. 838-852.

[37] S. Agrawal and M. K. Tiwari, “A Collaborative Ant Col-
ony Algorithm to Stochastic Mixed-Model U-Shaped Dis-
assembly L ine B alancing a nd S equencing P roblem,” In-
ternational Journal of Production Research, Vol. 46, No.
6, 2008, pp. 1405-1429.

[38] I. Sabuncuoglu, E. Erel and A. Alp, “Ant Colony Optimi-
zation for t he Single Model U-Type Assembly L ine Bal-
ancing P roblem,” International Journal of Production
Economics, Vol. 120, No. 2, 2009, pp. 287-300.

[39] Y. Kara, U. Ozcan and A. Peker, “An Approach for Ba l-
ancing a nd S equencing M ixed-Model J IT U -Lines,” In-
ternational Journal of Advanced Manufacturing Technol-
ogy, Vol. 32, No. 11-12, 2007, pp. 1218-1231.

[40] Y. Kara, “Line Ba lancing a nd M odel S equencing t o R e-
duce Work Overload in Mixed-Model U-Line Production
Environments,” Engineering Optimization, Vol. 40, No. 7,
2008, pp. 669-684.

[41] A. Konak, D. W. Coit and A. E. Smith, “Multi-Objective
Optimization Using Genetic Algorithms: A Tutorial,” Re-
liability Engineering & System Safety, Vol. 91, No. 9,
2006, pp. 992-1007.

[42] C. A. C. Coe llo, D. A. Veldhuizen a nd G . B. Lamont,
“Evolutionary A lgorithms for S olving M ulti-Objective
Problems,” Kluwer Academic Publishers, Dordrecht, 2002.

[43] E. Zitzler and L. Thiele, “Multiobjective Evolutionary
Algorithms: A Comparative Case S tudy and t he S trength
Pareto A pproach,” IEEE Transactions on Evolutionary
Computation, Vol. 3, No. 4, 1999, pp. 257-271.

[44] C. M. Fonseca and P. J. Fleming, “Genetic Algorithms for
Multiobjective Optimization: Formulation, Discussion and
Generalization,” Proceedings of 5th International Confer-
ence on Genetic Algorithm, Urbana, June 1993, pp. 416-
423.

[45] C. M. Fonseca and P. J. Fleming, “An overview of Evolu-
tionary Algorithms in Multiobjective Optimization,” Evo-
lutionary Computation, Vol. 3, No. 1, 1995, pp. 1-16.

[46] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A Fast
and Elitist M ultiobjective G enetic A lgorithm: N SGA I I,”
IEEE Transactions on Evolutionary Computation, Vol. 6,
No. 2, 2002, pp. 182-197.

[47] D. Corne, M. Dorigo and F. Glover, “New Ideas in Opti-
mization,” McGraw-Hill, London, 1999.

[48] W. Wattanapornprom, P . Olanviwitchai, P. Chutima and
P. Chongsatitvatana, “Multi-Objective Combinatorial Op-

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

363

timisation w ith Coincidence A lgorithm,” Proceedings of
IEEE Congress on Evolutionary Computation, Norway, 11
February 2009, pp. 1675-1682.

[49] J. R. Jackson, “A Com puting Procedure for a L ine Bal-
ancing P roblem,” Management Science, Vol. 2, No. 3,
1956, pp. 261-271.

[50] D. E. Goldberg, “Genetic Algorithms in Search, Optimiza-
tion, a nd M achine Learning,” Addison-Wesley, Boston,
1989.

[51] J. Horn, N . Nafpliotis a nd D . E. Goldberg, “A Ni ched
Pareto Genetic A lgorithm for M ultiobjective O ptimiza-
tion,” Proceedings of the First IEEE Conference on Evo-
lutionary Computation, IEEE World Congress on Compu-
tational Intelligence, Orlando, 27-29 June 1994.

[52] P. Lacomme, C. Prins and M. Sevaux, “A Genetic Algo-
rithm for a Bi-Objective Capacitated ARC Rout ing Prob-
lem,” Computer & Operations Research, Vol. 33, No. 12,
2006, pp. 3473-3493.

[53] P. Chutima and P. Pinkoompee, “An Investigation of Lo-

cal S earches i n M emetic A lgorithms for Multi-Objective
Sequencing Problems on Mixed-Model Assembly Lines,”
Proceedings of Computers and Industrial Engineering,
Beijing, 31 October-2 November 2008.

[54] R. Kumar and P . K. S ingh, “Pareto Evolutionary A lgo-
rithm H ybridized w ith L ocal S earch for Bi-Objective
TSP,” Studies in Computational Intelligence (Hybrid Evo-
lutionary Algorithms), Springer, Be rlin/Heidelberg, Vol.
75, 2007, pp. 361-398.

[55] D. C. Montomery, “Design and Analysis of Experiments,”
John Wiley & Sons, Inc., Hoboken, 2009.

[56] N. T. Thomopoulos, “Mixed M odel L ine Ba lancing w ith
Smoothed S tation A ssignment,” Management Science,
Vol. 14, No. 2, 1970, pp. B59-B75.

[57] A. L. Arcus, “COMSOAL: A Com puter M ethod of Se-
quencing O perations for A ssembly L ines,” International
Journal of Production Research, Vol. 4, No. 4, 1965, pp.
259-277.

J. Software Engineering & Applications, 2010, 3: 364-373
doi:10.4236/jsea.2010.34041 Published Online April 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

Study and Analysis of Defect Amplification Index
in Technology Variant Business Application
Development through Fault Injection Patterns

Paloli Mohammed Shareef1, Midthe Vijayaraghavan Srinath2, Subbiah Balasubramanian3

1Trimentus Technologies, Chennai, India; 2Mahendra Engineering College, Namakkal, India; 3Anna University, Coimbatore, India.
Email: pmshareef@gmail.com, {sri_induja, s_balasubramanian}@rediffmail.com

Received December 26th, 2009; revised January 14th, 2010; accepted January 26th, 2010.

ABSTRACT

Software reliability for business applications is becoming a topic of interest in the IT community. An effective method to
validate and understand defect behaviour in a software application is Fault Injection. Fault injection involves the de-
liberate insertion of faults or errors into software in order to determine its response and to study its behaviour. Fault
Injection Modeling has demonstrated to be an effective method for study and analysis of defect response, validating
fault-tolerant systems, and understanding systems behaviour in the presence of injected faults. The objectives of this
study are to measure and analyze defect leakage; Amplification Index (AI) of errors and examine “Domino” effect of
defects leaked into subsequent Software Development Life Cycle phases in a business application. The approach en-
deavour to demonstrate the phasewise impact of leaked defects, through causal analysis and quantitative analysis of
defects leakage and amplification index patterns in system built using technology variants (C#, VB 6.0, Java).

Keywords: Fault Injection, Amplification Index (AI), Domino Effect, Defect Leakage

1. Introduction

Formulating reliable and fault tolerant software is difficult
and requires discipline both in specifying system function-
ality and in implementing systems correctly. Approaches
for developing highly reliable software include the use of
formal methods [1-3], and rigorous testing methods [4].

Testing cannot guarantee that commercial and busi-
ness software is correct [5], and verification requires
enormous human effort and is subject to errors [6]. Au-
tomated support is necessary to help ensure software
correctness and fault tolerance.

Fault injection modelling involves the deliberate inser-
tion of faults or errors into a computer system in order to
determine its response. It has proven to be an effective
method for measuring and studying response of defects,
validating fault-tolerant systems, and observing how
systems behave in the presence of faults. In this study,
faults are injected in key phases of software development
of business application following a typical water fall
software life cycle viz., SRS, Design and Source code.

2. Literature Review

The literature review consolidates the understanding on

fault injection, associated topics and subsequent studies
to emphasis the need to fault injections in business soft-
ware application. It also crystallizes the need for aware-
ness, tools and analyzes defect leakage/amplification.

Even after 20 years of existence the awareness of fault
injection and associated modelling with tools are very
rarely used and understood in the commercial software
industry and used. The usefulness in the defect modelling
and building fault tolerant software systems are not
properly preached and/or practiced. Added, the availabil-
ity of appropriate literature and software tools is very few
and not used in commercial and business application
design and testing.

After a detailed review of literature by the researcher it
was concluded that there is an industrious interest soft-
ware fault injection in the software industry to develop
commercially reliable software.

3. Approach

In recent years there has been much interest in the field of
software reliability and fault tolerance of systems and
commercial software. This in turn has resulted in a wealth
of literature being published around the topic, such as the

Study and Analysis of Defect Amplification Index in Technology Variant Business Application 365
Development through Fault Injection Patterns

Fault Injection in the form of the ‘Marrying Software
Fault Injection Technology Results with Software Reli-
ability’ by Jeffrey Voas, Cigital Norman Schneidewind.

Many critical business computer applications require
“fault tolerance,” the ability to recover from errors or
exceptional conditions. Error free software is very diffi-
cult to create and creating fault tolerant software is an
even greater challenge. Fault tolerant software must suc-
cessfully recover from a multitude of error conditions to
prevent harmful system failures.

Software testing cannot demonstrate that a software
system is completely correct. An enormous number of
possible executions that must be examined in any
real-world sized software system. Fault tolerance ex-
pands the number of states (and thus execution histories)
that must be tested, because inconsistent or erroneous
states must also be tested.

Mailing lists, websites, research and forums have been
created in which all aspects of this fresh new niche soft-
ware engineering area are discussed. People are inter-
ested, partly because it is a new area but also because the
whole field of commercial software reliability is in itself
so interesting; as it holds so many wide ranging disci-
plines, perspectives and logic at its core. Software reli-
ability engineering is uniting professionals in disciplines
that previously had little to do with one another, it is cre-
ating more opportunities for employment in the online
environment, and it is changing the face and structure of
all information that we seek out on the web. In the era of
economic recession, customer demands reliable, certified
and fault tolerant commercial and business software ap-
plications.

In this research, the focus is on software testing tech-
niques that use fault injection. Several potentially pow-
erful existing systems have drawbacks for practical ap-
plication in business application development environ-
ment. We first examine existing fault injection tech-
niques and evaluate their potential for practical applica-
tion for commercial and business software applications.
Available and accessible literature infrastructure includ-
ing premium subscribed IEEE and ACM resources were
studied and summarized for literature review from 1986
(20 years).

4. Fault Injection Modelling

Fault Injection Modelling (FIM) involves the deliberate
insertion of faults or errors into a computer system in
order to determine its response. It has proven to be an
effective method for measuring and studying response of
defects, validating fault-tolerant systems, and observing
how systems behave in the presence of faults. In this
study, faults are injected in all phases of software devel-
opment life cycle viz., Requirements, Design and Source
code.

4.1 Objectives

The objectives of conducting these experiments are to
measure process efficiencies, statistically study, analysis
and report defect amplification of defects (Domino’s
effect) across software development phases with a simi-
lar system constructed with technological variation.

The goal of this research is to understand the behav-
iour of faults and defects pattern in commercial and
business software application and defect leakage in each
phase of application development.

Throughout the literature certain questions reoccur,
which one would anticipate when a new field emerges in
commercial software fault tolerance? People are inter-
ested, and want to understand and define commercial
software reliability and fault tolerance since the work on
most fault injections and software reliability is found in
life critical and mission critical application, so we try to
answer the following questions;
 Why study Fault Injection Modelling?
 Why study business software fault tolerance re-

quirements?
 Why are they called ‘Fault Injection & Error Seed-

ing’?
 Why review Software Implemented Fault Injection

(SWIFI)?
 What work was performed, current status and work

proposed?
These questions will be expanded upon throughout the

research, and seek to bring clarity to those who want to
find the answers to the above, or to see if there truly are
any answers!

4.2 Background Concepts

A fault is a hardware or software defect, inconsistency,
transient electrical field, or other abnormal circumstance.
An error is an invalid internal state, which may or may
not be detected by the system.

A failure is an invalid output. Thus a fault or error be-
comes a failure when it propagates to the output. There is
a natural progression from fault to error to failure. Re-
covery code is the part of a program that is designed to
respond to error states. Recovery code executes after the
program recognizes that some erroneous or abnormal
state has been entered. This code should gracefully re-
store the system to a valid state before a failure occurs.

Figure 1 shows the progression from faults to errors
and finally to failures. The recovery code should serve as
a safety net to prevent the progression from error to fail-
ure. A fault tolerant system should never fail, even if it
has faults.

Testing recovery code requires the modeling of bad
states that accurately simulate exceptional situations. As
much as 50% of a fault tolerant program can consist of
recovery code. Although testing might include invalid

Copyright © 2010 SciRes JSEA

Study and Analysis of Defect Amplification Index in Technology Variant Business Application 366
Development through Fault Injection Patterns

data that executes some of the recovery code, often much
of this code is never executed during normal testing.

Any recovery code testing technique must be based
upon an assumed fault model [7]. We assume that all
faults will behave according to some specific rules. Any
fault model can only consider a subset of all possible
faults.

For example, a common debugging practice is to insert
a series of print statements in key positions. This debug-
ging practice assumes a particular fault model.

Faults will cause the program to execute in the incor-
rect order and will be demonstrated

Figure 2 illustrates the taxonomy of Fault Injection
Techniques in the printed output. Clearly, not all faults
will adhere to this model.

No one fault model will fit all faults. However, a fault
model can be very effective in detecting faults that fit the
model.

Fault Injection technique of fault injection dates back
to the 1970s when it was first used to induce faults at a
hardware level. This type of fault injection is called
Hardware Implemented Fault Injection (HWIFI) and
attempts to simulate hardware failures within a system.
The first experiments in hardware fault injection in-
volved nothing more than shorting connections on circuit
boards and observing the effect on the system (bridging
faults). It was used primarily as a test of the dependabil-
ity of the hardware system. Later specialised hardware
was developed to extend this technique, such as devices
to bombard specific areas of a circuit board with heavy

Figure 1. Fault tolerance terms

Figure 2. Taxonomy of fault injection techniques

radiation. It was soon found that faults could be induced
by software techniques and that aspects of this technique
could be useful for assessing software systems. Collec-
tively these techniques are known as Software Imple-
mented Fault Injection (SWIFI) [8].

Martin defines software fault injections as faults which
are injected at the software level by corrupting code or
data. So faults are applicable at the implementation phase
when the code of the system is available, and it can be
applied on an application to simulate either internal or
external faults.

Internal faults represent design and implementation
faults, such as variables/parameters that are wrong or not
initialized, incorrect assignments or condition checks.
External faults represent all external factors that are not
related to faults in the code itself but that alter the sys-
tem’s state.

The injection of failures can discover errors that nor-
mal procedures cannot. First, it tests the mechanisms of
exception and treatment of failures that in normal cir-
cumstances are not sufficiently proven and, helps to eva-
luate the risk, verifying how much defective can be the
system behavior in presence of errors. All of the injection
failures methods are based on concrete hardware or
software characteristics associated to systems which are
applied, then, to realize generalizations is a very compli-
cated task.

4.3 Prior Work on Fault Injection

Fault injection can be used to modify either a program’s
source code text or the machine state of an executing
program. Figure 2 shows taxonomy of the key methods
of fault injection. Fault injection techniques based on
static analysis－program source modification－are mod-
eled by the left subtree.

The most common static fault injection is mutation
testing. The right subtree in Figure 2 models dynamic
fault injection techniques where changes are made to an
actively running program’s state. Much of the recent fault
injection research is concerned with dynamic injection.

4.4 Domino’s Effect

Domino’s effect is the cascading effect of defects from
the initial stages of the project to all the subsequent stag-
es of the software life cycle. Errors undetected in one
work product are ‘leaked’ to the child work product and
amplifies defects in the child work product. This chain
reaction causes an exponential defect leakage. E.g.: un-
detected errors in requirements leak and cause a signifi-
cant number of defects in design which, in turn, causes
more defects in the source code. The result of this study
is to arrive at an “Amplification Index” which will char-
acterize the extent of impact or damage of phase-wise
defects in subsequent Software Development Life Cycle

Copyright © 2010 SciRes JSEA

Study and Analysis of Defect Amplification Index in Technology Variant Business Application 367
Development through Fault Injection Patterns

(SDLC) phases.
The defect components in a work product and leakage

into subsequent phases are illustrated in Figure 3 below:

4.5 Trimentus Approach for Fault Injection
Experiments

Defects were deliberately injected into each phase (work
product) in the software development life cycle of a typ-
ical application development project and the effect of the
defects injected was studied subsequently. The injected
defects are typical defects that are characteristic of the
software systems of a commercial application on Library
Management System (LMS) and were chosen from the
organizational defect database.

An approach was adopted towards studying the impact
of defect amplification in a software system was causal
analysis of the defects occurring in subsequent phases
caused due to injected defects.

Fault injection can occur in several ways:
 Additional code can be linked to the target program

and executed synchronously with the program flow.
 A separate process can perform the injection asyn-

chronously with the flow of the target process.
 Separate hardware can directly access the memory to

modify the state, thus not affecting the timing char-
acteristics of the target process.

Overlay faults occur when a program writes into an
incorrect location due to a faulty destination operand.
Chillarege and Bowen claim that overlay faults account
for 34% of the errors in systems programs. The experi-
ment involved the use of failure acceleration, decreasing
fault and error latency and increasing the probability that
a fault will cause an error. The experiment applied failure
acceleration by corrupting a large region of memory in a
single injection. To inject an overlay fault, all bits in an
entire page of physical memory are set to one. Because
the page is in physical memory, the probability that the
latency will be short is further increased. About 16% of
the faults immediately crashed the system; about 14%
caused a partial loss of service, which was usually re-
covered from soon after.

Half of the faults did not cause failures. These poten-
tial hazards are failures waiting to occur. The injection

Figure 3. Fault injection pattern

process used was manual and only 70 faults were in-
jected during the entire experiment.

Software faults introduced include:
 Initialization faults: incorrectly or uninitialized vari-

ables. They are modeled by dynamically replacing
the initializing assembly instructions with incorrect
values or no-ops.

 Assignment faults: incorrect assignment statements.
Variable names on the right hand side are changed
by dynamically mutating the assembly code.

 Condition check faults: missing condition checks,
for example, failure to verify return values. Condi-
tion checks are either entirely overwritten with
no-ops, or replaced an incorrect condition check.

 Function faults: Invalid functions. The assembly
code for a function is dynamically replaced with the
assembly code from a manually rewritten alternate
version.

Initialization faults can be caught statically with a good
compiler. The assignment and condition check faults are
clearly relevant to the testing of recovery code, since an
incorrect assignment or condition can be a condition that
should force the execution of recovery code. Function
faults are also relevant, especially if they could be auto-
matically generated. Unfortunately, manual rewriting of
sections of code is prohibitive in a large system.

4.6 Why Study Fault Injection Modelling?

Fault Injection Modelling has gradually crept into prom-
inence over the last decade as one of the new buzz words
in software design. However, as Martin observes:

“The main characteristic of fault injection software is
that it is capable of injecting failures into any functional
addressing unit by means of software, such as memory,
registers, and peripherals. The goal of the fault injection
software is to reproduce, in the logical scope, the errors
that are reproduced after failures in the hardware. A good
characterization of failure model should be allowed that
this one was as versatile as possible, allowing a major
number of combinations among the location, trigger con-
ditions, kind of fault and duration, so that the coverage
was maximum. Recent days, the Fault Injection tech-
nique has been considered as a very useful tool to moni-
tor and evaluate the behavior of computing systems in
the presence of faults. It’s because the tool tries to pro-
duce or simulate faults during an execution of the system
under test, and then the behavior of the system is de-
tected.”[9]

Figure 4 illustrates the relative cost factor in the defect
resolution as the work product elaborates in the Software
Development Life Cycle phases;
 The Carnegie Mellon Software Engineering Institute1

1Carnegie Mellon Software Engineering Institute, the Business Case for
Requirements Engineering, RE’ 2003, 12 September 2003.

Copyright © 2010 SciRes JSEA

Study and Analysis of Defect Amplification Index in Technology Variant Business Application 368
Development through Fault Injection Patterns

reports that at least 42-50 percent of software defects
originate in the requirements phase.
 The Defense Acquisition University Program Man-
ager Magazine2 reports that a Department of Defense
study that over 50 percent of all software errors originate
in the requirements phase.

1) MSDN (November, 2005) “Leveraging the Role of
Testing and Quality across the Lifecycle to Cut Costs and
Drive IT/Business Responsiveness”.

2) Direct Return on Investment of Software Inde-
pendent Verification and Validation: Methodology and
Initial Case Studies, James B. Dabney and Gary Barber,
Assurance Technology Symposium, 5 June 2003.

5. Description of Software System
A Library Management System (LMS) help in automat-
ing functions of the library. It helps in reducing the time
spent in record keeping and management effectively. The
management information system application was used to
conduct the fault injection experiments. The same appli-
cation was developed in the following technologies in 3G
languages as listed in Table 1 below.

LMS was simultaneously developed by independent
project team and were made mutually exclusive. The ap-
plication development for the projects followed the same
process as described in the quality management system
for software development of Trimentus. LMS was chosen
to FIM because common MIS Domain knowledge for the
application was high; it can be independently managed

Figure 4. Relative cost to fix defects vs. development phases

Table 1. Library management system (LMS) experiment
technology variants

Project
Id

Programming
Language

RAD Tool Database

LMS 1 C#.Net Visual Studio
2005

SQL Server
2005

LMS 2 Visual Basic 6.0 Visual Studio
6.0

Ms Access
2007

LMS 3 Java (jdk1.5) NetBeans IDE
5.0

SQL Server
2005

and developed; it covers the entire development life cy-
cle; and the technology used is typical of current com-
mercial applications and technologies in vogue.

SDLC, technology, exclusiveness allows different
types of faults to be injected at various phases without
bias and enables direct comparison.

In this paper, the system contains injected defects
common across all projects. The same count of defects (5
numbers) were introduced in each phase of SDLC.

6. Results of the Experiments

The results from the independent experiments are derived
at each stage of the Software Life Development Cycle
Phase. The following section describes the detailed ac-
tivities and step-by-step process followed in the intro-
duction of defects in each software work product with
results output.

6.1 Requirement Review

SRS (Software Requirement Specification) document
was prepared and used as the basis for development of
for all the experiments. SRS is identified as requirements
documents. However, after the review of SRS, defects
were injected into the same document. The SRS contain-
ing the defects were baselined by independent project
team respectively to be used as basis for the Design.

The defects injected into the Requirement document
are given in Table 2. The requirements defects are ana-
lyzed through causal analysis techniques to be classified
and categorized.

6.2 Design Phase Analysis

Design document is prepared with (fault injected) SRS as
basis. There were several defects observed with “source”

Table 2. Definition of defect types – requirements

Action
taken

Defect Injected Defect
severity

Defect Type

Deleted
Reports based on clas-
sification by Type of
books

High
Missed Re-
quirement

Modified

Changed User Login to
Student ID
Changed the default
status of the books
given from “Pending”
to “Borrowed”
Add more records
option not given as part
of screen layout

Medium
Incomplete,
Missed Re-
quirement

Added
Obtaining the proposed
date for return of books

High Ambiguous

Deleted Set the type of fine High
Missed Re-
quirement

Added
Set the number of times
a books can be renewed
by the members

Medium
Incorrect
Requirement 2Defense Acquisition University Program Manager Magazine, Nov-Dec

1999, Curing the Software Requirements and Cost Estimating Blues

Copyright © 2010 SciRes JSEA

Study and Analysis of Defect Amplification Index in Technology Variant Business Application 369
Development through Fault Injection Patterns

as requirements. The Injected defects were major cause
for design defects.

6.2.1 Design Review
Table 3 lists the number of defects injected independ-
ently in Requirements and inherent defects detected after
Requirements document review. Further, it lists the de-
fect leakage to the child work product (Design) with in-
herent defects detected after Design review for each ex-
periment.

6.2.2 Design Defect Amplification: Technology
Variant

Figure 5 represents the comparison of Amplification
Index between the LMS developed on different tech-
nologies. The amplification of design defects caused due
to the injected requirement defects in LMS is evidenced
in all technologies and more prominent in VB Microsoft
technology.

6.2.3 Amplification Index (AI) for Requirements
Table 3 and Table 4 represent the methodology that was
used to calculate Requirement Amplification Index (i.e.
impact of requirements defects on Design).

6.2.4 Defects in Design
Table 5 lists the various types of known design defects
that were introduced after design review. The defects are
classified and categorized after causal analysis.

Table 3. Defects injected－requirements to design

Source

SRS Design

Injected Inherent Leaked Inherent

LMS 1 5 4 4 8

LMS 2 5 8 7 6

LMS 3 5 5 7 9

Table 4. Defects amplification index computation－require-
ments to design

Application Formula AI (Requirements on
Design)

LMS1 No. of design defects
caused due to injected
Requirement Defects /
No. of injected Re-
quirement defects

2/5 = 0.5 (rounded)
 One requirement
defect leaked causes
0.5 defect in design in
C # technology

LMS2 No. of design defects
caused due to injected
Requirement Defects /
No. of injected Re-
quirement defects

6/5 = 1.3 (rounded)
 One requirement
defect leaked causes
1.3 defect in design in
VB technology

LMS3 No. of design defects
caused due to injected
Requirement Defects /
No. of injected Re-
quirement defects

4/5 = 0.8 (rounded)
 One requirement
defect leaked causes
0.8 defect in design in
Java technology

Table 5. Definition of defect types – design

Action
taken

Defect Injected
Defect
severity

Defect Type

Removed
Validation and au-
thentication of au-
thorized students

High
Interface,
Incomplete

Modified Data Type Changed Medium
Database,
Incorrect

Review
finding

Editing of book type
by borrower

High Incorrect

Modified

There is a possibility
to add null records
when no validations
are made or no ex-
ceptions are handled.

Medium Incorrect

Changed
A datagrid displays
the content only when
the recordset is open.

Low
Database
Incorrect

6.2.5 Statistical Analysis and Validation
Based on the AI derived from the above requirement data
analysis, a statistical study was carried out to understand
and analyze the statistical significance and relationship of
AI across phases.

A hypothesis was formulated based on the conditions
of analysis as follows;

H0 : Requirements Amplification Index is same across tech-
nologies
H1 : Requirements Amplification Index is different between
technologies

Minitab tool was used to analyze the data set of Re-
quirement Amplification Index. A simple T-test was run
to validate the statistical significance of the requirement
AI data across technologies.

Minitab output on the Hypothesis Testing is listed in
Table 6 below.

The statistical rule of elimination is:
1) If the P- Value > 0.05, Then H0 is true and there is

no difference in the groups. = Accept H0
2) If the Value < 0.05, Then H0 is false and there is a

statistically significant difference. = Reject H0 and Ac-
cept H1

Figure 5. Amplification index trend – design

Copyright © 2010 SciRes JSEA

Study and Analysis of Defect Amplification Index in Technology Variant Business Application 370
Development through Fault Injection Patterns

Table 6. Statistical analysis computation

One-Sample T:

Test of mu = 0 vs mu not = 0
Variable N Mean StDev SE Mean
AI 3 0.867 0.404 0.233

Variable 95.0% CI T P

AI (–0.137, 1.871) 3.71 0.065

This results in: 0.065 > 0.05; so by the rule, Accept the

Ho.
To conclude that, “Requirements Amplification Index

is same across technologies and there is no statistical
significant difference on AI across technologies in the
Library Management System (LMS) developed in dif-
ferent technologies”.

6.3 Coding Phase Analysis

Coding was performed with (fault injected) design as ba-
sis. There were several defects observed with “source” as
Design and Requirements. The Injected defects were the
major cause for Code defects detected in Code review.

6.3.1 Code Review
Table 7 appends to Table 3 with the number of defects
injected independently with leaked defected in design
document. Further, it lists the defect leakage from Design
to Code with inherent defects detected after Code review
for each experiment.

6.3.2 Code Defect Amplification: Technology Variant
Figure 6 represents the comparison of Amplification In-
dex between the LMS developed on different technolo-
gies.

The amplification of coding defects caused due to the
injected design defects in LMS is evidenced in all tech-
nologies and more prominent in VB Microsoft technology.

6.3.3 Amplification Index for Design
Table 8 illustrates the methodology and computation
details used to calculate Design Amplification Index (i.e.
impact of Design defects on Code).

AI Trend - Technology Wise

0.9

1.9

1.6

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

LMS 1 LMS 2 LMS 3

Coding Phase - Technology

A
I

Figure 6. Amplification index trend－coding

Table 7. Defects injected－design to code

Source
SRS Design Code

Injected Inherent

Leaked
+

In-
jected

Inherent Leaked Inherent

LMS 1 5 4 4 + 5 8 7 7

LMS 2 5 8 7 + 5 6 9 6

LMS 3 5 5 7 + 5 9 10 6

6.3.4 Statistical Analysis and Validation
Similarly, based on the AI derived from the above design
data analysis, a statistical study was carried out to under-
stand and analyze the statistical significance and rela-
tionship of AI across design phases.

A hypothesis was formulated based on the conditions
of analysis as follows;

H0 : Design Amplification Index is same across technologies

H1 : Design Amplification Index is different between technologies

Minitab tool was used to analyze the data set of design
Amplification Index. A simple T-test was run to validate
the statistical significance of the design AI data across
technologies.

Minitab output on the Hypothesis Testing is listed in
Table 9 below.
The statistical rule of elimination is:

1) If the P- Value > 0.05, Then H0 is true and there is
no difference in the groups. = Accept H0

2) If the Value < 0.05, Then Ho is false and there is a
statistically significant difference. = Reject H0 and Ac-
cept H1

This results in: 0.038 < 0.05; so by the rule, Reject H0
and Accept H1.

To conclude that, “Design Amplification Index is dif-
ferent across technologies and there is a statistical sig-
nificant difference on design AI across technologies in

Table 8. Defects amplification index computation－design
to code

Application Formula AI (Design on Code)

LMS1

No. of Code defects
caused due to injected
Design Defects / No. of
injected Design defects

4.9/5 = 0.9 (rounded)
 One design defect
leaked causes 0.9
defect in code in C #
technology

LMS2

No. of Code defects
caused due to injected
Design Defects / No. of
injected Design defects

9/5 = 1.9 (rounded)
 One design defect
leaked causes 1.9
defect in code in VB
technology

LMS3

No. of Code defects
caused due to injected
Design Defects / No. of
injected Design defects

8/5 = 1.6 (rounded)
 One design defect
leaked causes 1.6
defect in code in Java
technology

Copyright © 2010 SciRes JSEA

Study and Analysis of Defect Amplification Index in Technology Variant Business Application 371
Development through Fault Injection Patterns

Table 9. Statistical analysis computation

One-Sample T:

Test of mu = 0 vs mu not = 0

Variable N Mean StDev SE Mean

AI 3 1.467 0.513 0.296

Variable 95.0% CI T P

AI (0.192, 2.741) 4.95 0.038

the Library Management System (LMS) developed in
different technologies”.

6.4 Testing Phase Analysis

Testing was performed with (fault injected) code as basis.
There were several defects observed with “source” as
Coding, Design and Requirements. The injected defects
were the major cause for Code defects detected in Testing.

6.4.1 Testing
Table 10 appends to Table 7 with the number of defects
injected independently with leaked defected in Code.
Further, it lists the defect leakage from Code to Test
Cases with inherent defects detected after Test Case re-
view for each experiment.

6.4.2 Test Defect Amplification: Technology Variant
Figure 7 represents the comparison of Amplification In-
dex between the LMS developed on different technologies.
The amplification of test defects caused due to the injected
code defects in LMS is evidenced in all technologies and
more prominent in VB Microsoft technology.

6.4.3 Amplification Index for Code
Table 11 illustrates the methodology and computation
details used to calculate Test Amplification Index (i.e.
impact of Code defects on Test results).

6.4.4 Statistical Analysis and Validation
Similarly, based on the AI derived from the above code
data analysis, a statistical study was carried out to under-
stand and analyze the statistical significance and rela-
tionship of AI across test phase.

Table 10. Defects injected－code to test

Source

Design Code Testing

Leaked
+

Injected

Inher-
ent

Leaked
+

Injected

Inher-
ent

Leaked
Inher-

ent

LMS1 4 + 5 8 7 + 5 7 9 0

LMS2 7 + 5 6 9 + 5 6 14 4

LMS3 7 + 5 9 10 + 5 6 15 2

Table 11. Defects amplification index computation－code to
test

Application Formula
AI (Code on Test

results)

LMS1

No. of Test results de-
fects caused due to in-
jected Code Defects / No.
of injected Code defects

9/5 = 1.9 (rounded)
One code defect leaked
causes 1.9 defect in
test results in C #
technology

LMS2

No. of Test results de-
fects caused due to in-
jected Code Defects / No.
of injected Code defects

11/5 = 2.1 (rounded)
 One code defect
leaked causes 2.1
defect in test results in
VB technology

LMS3

No. of Test results de-
fects caused due to in-
jected Code Defects / No.
of injected Code defects

7/5 = 1.5 (rounded)
One code defect leaked
causes 1.5 defect in
test results in Java
technology

A hypothesis was formulated based on the conditions
of analysis as follows;

Ho : Code Amplification Index is same across technologies

H1 : Code Amplification Index is different between technologies

Minitab tool was used to analyze the data set of Code
Amplification Index. A simple T-test was run to validate
the statistical significance of the code AI data across
technologies.

Minitab output on the Hypothesis Testing is listed in
Table 12 below.

The statistical rule of elimination is:
1) If the P- Value > 0.05, Then Ho is true and there is

no difference in the groups. = Accept Ho
2) If the Value < 0.05, Then Ho is false and there is a

statistically significant difference. = Reject Ho and Ac-
cept H1

This results in: 0.009 < 0.05; so by the rule, Reject Ho
and Accept H1.

To conclude that, “Code Amplification Index is dif-
ferent across technologies and there is a statistical sig-
nificant difference on design AI across technologies in
the LiBrary Management System (LMS) developed in
different technologies”.

AI Trend - Technology Wise

1.9
2.1

1.5

0.0

0.5

1.0

1.5

2.0

2.5

LMS 1 LMS 2 LMS 3

Testing Phase - Technology

A
I

Figure 7. Amplification index trend－testing

Copyright © 2010 SciRes JSEA

Study and Analysis of Defect Amplification Index in Technology Variant Business Application 372
Development through Fault Injection Patterns

Table 12. Statistical analysis computation

One-Sample T:

Test of mu = 0 vs mu not = 0

Variable N Mean StDev SE Mean

AI 3 1.833 0.306 0.176

Variable 95.0% CI T P

AI (1.074, 2.592) 10.39 0.009

7. Conclusions

AI Trend Analysis
The Amplification Index indicates the extent of dam-

age caused by a defect in various phases of the project.
The index increases with every step in the life cycle of
the project. This is evident in the case of Microsoft tech-
nologies (VB and C#.net) but AI in the case of open
source technologies such Java, the AI increases in re-
quirements and design but in code, it is found have mar-
ginal decrease compared to other technologies. It is also
seen that defects amplification in the VB Technology
show substantial increase in the amplification index
across phases compared to other selected technologies.

The relative growth of AI across phases in Java tech-
nology is less compared to Microsoft technology. This
indicates a better fault tolerance for Java technology.

It was concluded and validated statistically that;
 Requirement defects amplification index across on

identified technologies remains are same.
 Design and Code defects amplification index across

on technologies vary based on technologies for the
common application developed in the same domain.

Figure 8 illustrates the consolidated Amplification
Index trend across technologies classified under each
phase of SDLC;

The defect leakage analysis emphasizes the impor-
tance of thorough and systematic reviews in the early
stages of a software project with an emphasis on defect
prevention. The analysis indicates a high increase of cost
and effort to remove the defects at later stages. The
number of defects increases exponentially as a direct
result of defects leaked from previous stages.

Figure 9 consolidated the defect leakage pattern
across technologies distributed each SDLC phase.

8. Future Experiments

Currently, the study is being extended to analyze the ef-
fect of the defects and amplification index in the devel-
opment phases of the different domain based projects
developed with same technology.

Guidelines for review time and effort estimation are
being computed by analyzing and defining the review
and test stop criteria. Error seeding during testing can be

AI Trend - Technology Wise

0.8

1.6
1.5

1.3

1.9
2.1

0.5

0.9

1.9

0.0

0.5

1.0

1.5

2.0

2.5

Req Design Coding

Phases

A
I

Java

VB

C#.Net

Figure 8. Amplification index trend – technology wise

Figure 9. Defect leakage

carried out to define the test stop criteria.

9. Limitations of Experiments

The following are the limitations of the experiments:
 Causal analysis is relatively subjective to understand

the cause of amplified defect. This required detailed
review and discussion with project team and techni-
cal/technology experts.

 Defect removal efficiency percentage used for ex-
periments in different technologies are based on a
test in a sample requirement, design and code with
known defects provided to project members and re-
view efficiency percentage derived from the defects
detected.

 It is verified that the skill set of the analysts and
programmers working in the projects are same
and/or similar across technologies.

The experiments do not consider specialized auto-
mated tools and techniques used in the development of
software work products which could have impact of the
work product output quality.

REFERENCES

[1] A. Hall, “Seven Myths of Formal Methods,” IEEE Soft-
ware, September 1990, pp. 11-19.

[2] C. B. Jones, “Systematic Software Development Using
VDM,” Prentice-Hall International, London, 1986.

Copyright © 2010 SciRes JSEA

Study and Analysis of Defect Amplification Index in Technology Variant Business Application
Development through Fault Injection Patterns

Copyright © 2010 SciRes JSEA

373

[3] S. J. Garland, J. V. Guttag and J. J. Horning. “Debugging
Larch Shared Language Specifications,” IEEE Transac-
tions on Software Engineering, September 1990, pp.
1044-1057.

[4] W. Howden, “A Functional Approach to Program Testing
and Analysis,” IEEE Transactions on Software Engi-
neering, October 1986, pp. 997-1005.

[5] L. J. White, “Basic mathematical Definitions and Results
in Testing,” In: B. Chandrasekaran and S. Radicchi, Ed.,
Computer Program Testing, North-Holland, 1981, pp.
13-24.

[6] R. DeMillo, R. Lipton and A. Perlis, “Social Processes
and Proofs of Theorems and Programs,” Communications
of the ACM, May 1979, pp. 803-820.

[7] B. W. Johnson, “Design and Analysis of Fault-Tolerant
Digital Systems,” Addison-Wesley, Massachusetts, 1989.

[8] D. Dreilinger and L. J. Lin, “Using Fault Injection to Test
Software Recovery Code,” November 1995.

[9] N. G. M. Leme, E. Martins and C. M. F. Rubira, “A
Software Fault Injection Pattern System,” Proceedings of
the 9th Brazilian Symposium on Fault-Tolerant Comput-
ing, Florianópolis, 5-7 March 2001, pp. 99-113.

J. Software Engineering & Applications, 2010, 3: 374-383
doi:10.4236/jsea.2010.34042 Published Online April 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

Time Series Forecasting of Hourly PM10 Using
Localized Linear Models

Athanasios Sfetsos, Diamando Vlachogiannis

Environmental Research Laboratory, INTR-P, National Centre for Scientific Research “Demokritos”, Attikis, Greece.
Email: ts@ipta.demokritos.gr

Received October 15th, 20009; revised November 4th, 2009; accepted November 8th, 2009.

ABSTRACT

The present paper discusses the application of localized linear models for the prediction of hourly PM10 concentration
values. The advantages of the proposed approach lies in the clustering of the data based on a common property and the
utilization of the target variable during this process, which enables the development of more coherent models. Two al-
ternative localized linear modelling approaches are developed and compared against benchmark models, one in which
data are clustered based on their spatial proximity on the embedding space and one novel approach in which grouped
data are described by the same linear model. Since the target variable is unknown during the prediction stage, a com-
plimentary pattern recognition approach is developed to account for this lack of information. The application of the
developed approach on several PM10 data sets from the Greater Athens Area, Helsinki and London monitoring net-
works returned a significant reduction of the prediction error under all examined metrics against conventional fore-
casting schemes such as the linear regression and the neural networks.

Keywords: Localized Linear Models, PM10 Forecasting, Clustering Algorithms

1. Introduction

Environmental health research has demonstrated that
Particulate Matter (PM) is a top priority pollutant when
considering public health. Studies of long-term expo-
sure to air pollution, mainly to PM, suggest adverse
long- and short-term health effects, increased mortality
(e.g. [1,2]), increased risk of respiratory and cardio-
vascular related diseases (e.g. [3]), as well as increased
risk of developing various types of cancer [4]. Hence,
the development and use of accurate and fast models
for forecasting PM values reliably is of immense inter-
est in the process of decision making and modern air
quality management systems.

In order to evaluate the ambient air concentrations of
particulate matter, a deterministic urban air quality
model should include modelling of turbulent diffusion,
deposition, re-suspension, chemical reactions and
aerosol processes. In recent years, an emerging trend is
the application of Machine Learning Algorithms
(MLA), and particularly, that of the Artificial Neural
Networks (ANN) as a means to generate predictions
from observations in a location of interest. The strength
of these methodologies lies in their ability to capture
the underlying characteristics of the governing process
in a non-linear manner, without making any predefined

assumptions about its properties and distributions.
Once the final models have been determined, it is then
a straight-forward and exceedingly fast process to gen-
erate predictions. However, ANN have also inherent
limitations. The main one is the extension of models in
terms of time period and location; this always requires
training with locally measured data. Moreover, these
models are not capable of predicting spatial concentra-
tion distributions.

Owing to the importance and significant concentra-
tions of PM in major European cities, there is an in-
creasing amount of literature concerned with the ap-
plication of statistical models for the prediction of
point PM values. For the purposes of the EU-funded
project APPETISE, an inter-comparison of different air
pollution forecasting methods was carried out in Hel-
sinki [5]. Neural networks demonstrated a better fore-
casting accuracy than other approaches such as linear
regression and deterministic models.

In [6], Perez et al. compared predictions produced by
three different methods: a multilayer neural network,
linear regression and persistence methods. The three
methods were applied to hourly averaged PM2.5 data for
the years of 1994 and 1995, measured at one location in
the downtown area of Santiago, Chile. The prediction
errors for the hourly PM2.5 data were found to range

Time Series Forecasting of Hourly PM10 Using Localized Linear Models 375

from 30% to 60% for the neural network, from 30% to
70% for the persistence approach, and from 30% to 60%
for the linear regression, concluding however that the
neural network gave overall the best results in the predic-
tion of the hourly concentrations of PM2.5.

In [7], Gardner undertook a model inter-comparison
using Linear Regression, feed forward ANN and Classi-
fication and Regression Tree (CART) approaches, in
application to hourly PM10 modelling in Christchurch,
New Zealand (data period: 1989-1992). The ANN
method outperformed CART and Linear Regression
across the range of performance measures employed. The
most important predictor variables in the ANN approach
appeared to be the time of day, temperature, vertical
temperature gradient and wind speed.

In [8], Hooyberghs et al. presented an ANN for fore-
casting the daily average PM10 concentrations in Bel-
gium one day ahead. The particular research was based
upon measurements from ten monitoring sites during the
period 1997-2001 and upon the ECMWF (European
Centre for Medium-Range Weather Forecasts) simula-
tions of meteorological parameters. The most important
input variable identified was the boundary layer height.
The extension of this model with further parameters
showed only a minor improvement of the model per-
formance. Day-to-day fluctuations of PM10 concentra-
tions in Belgian urban areas were to a larger extent
driven by meteorological conditions and to a lesser
extent by changes in anthropogenic sources.

In [9], Ordieres et al. analyzed several neural-network
methods for the prediction of daily averages of PM2.5
concentrations. Results from three different neural net-
works (feed forward, Radial Basis Function (RBF) and
Square Multilayer Perceptron) were compared to two
classical models. The results clearly demonstrated that
the neural approach not only outperformed the classical
models but also showed fairly similar values among dif-
ferent topologies. The RBF shows up to be the network
with the shortest training times, combined with a greater
stability during the prediction stage, thus characterizing
this topology as an ideal solution for its use in environ-
mental applications instead of the widely used and less
effective ANN.

The problem of the prediction of PM10 was ad-
dressed in [10], using several statistical approaches such
as feed-forward neural networks, pruned neural networks
(PNNs) and Lazy Learning (LL).The models were de-
signed to return at 9 a.m. the concentration estimated for
the current day. The forecast accuracy of the different
models was comparable. Nevertheless, LL exhibited the
best performances on indicators related to average good-
ness of the prediction, while PNNs were superior to the
other approaches in detecting the exceedances of alarm
and attention thresholds.

In view of the recent developments in PM forecasting,

the present paper introduces an innovative approach
based on localized linear modelling. Specifically, two
alternative localized liner modelling approaches are de-
veloped and compared against benchmark models such
as the linear regression and the artificial neural networks.
The advantage of the proposed approach is the identifica-
tion of the finer characteristics and underlying properties
of the examined data set through the use of suitable clus-
tering algorithms and the subsequent application of a
customized linear model on each one. Furthermore, the
use of the target variable in the clustering stage enhances
the coherence of the localized models. The developed
approach is applied on several data sets from the moni-
toring networks of the Greater Athens Area and Helsinki,
during different seasons.

2. Modelling Approaches

Time series analysis is used for the examination of a data
set organised in sequential order so that its predominant
characteristics are uncovered. Very often, time series
analysis results in the description of the process through
a number of equations (Equation (1)) that in principle
combine the current value of the series, yt, to lagged val-
ues, yt-k, modelling errors, et-m, exogenous variables, xt-j,
and special indicators such as time of the day. Thus, the
generalized form of this process could be written as fol-
lows:

yt = f (yt-k, xt-j, et-m | various k,j,m and special indicators)
(1)

2.1 Linear Regression

This approach uses linear regression models to determine
whether a variable of interest, yt, is linearly related to one
or more exogenous variable, xt, and lagged variables of
the series, yt. The expression that governs this model is
the following:

j

jtj

k

ktkt ycy x (2)

The coefficients c, β, γ are usually estimated from a least
squares algorithm. The inputs should be a set of statisti-
cally significant variables, defined under Student’s t-test,
estimated from the examination of the correlation coeffi-
cients or using a backward elimination selection proce-
dure from a larger initial set.

2.2 Artificial Neural Networks (ANN)

The multi-layer perceptron or feed-forward ANN [11]
has a large number of processing elements called neurons,
which are interconnected through weights (wiq, vqj). The
neurons expand in three different layer types: the input,
the output, and one or more hidden layers. The signal
flow is from the input layer towards the output. Each
neuron in the hidden and output layer is activated by a

Copyright © 2010 SciRes JSEA

Time Series Forecasting of Hourly PM10 Using Localized Linear Models 376

nonlinear function that relies on a weighted sum of its
inputs and a neuron-specific parameter, called bias, b.
The response of a neuron in the output layer as a function
of its inputs is given by Equation (3), where f1 and f2 can
be sigmoid, linear or threshold activation functions.

1 2
1 1

 (())
l m

i iq qj j j
q j

y f w f v x b b

 q (3)

The strength of neural networks lies in their ability to
simulate any given problem from the presented example,
which is achieved from the modification of the network
parameters through learning algorithms. In this study, the
Levenberg-Marquardt [12] algorithm is applied because
of its speed and robustness against the conventional
back-propagation.

The most important issue concerning the introduction
of ANN in time series forecasting is “generalization”,
which refers to their ability to produce reasonable fore-
casts on data sets other than those used for the estimation
of the model parameters. This problem has two important
parameters that should be accounted for. The first is data
preparation, which involves pre-processing and the se-
lection of the most significant variables. The second em-
braces the determination of the optimum model structure
that is closely related with the estimation of the model
parameters. Although, there is no systematic approach,
which can be followed [13], some useful insight can be
found using statistical methods such as the correlation
coefficients.

The second aspect can be jointly tackled under the
cross-validation training scheme. The data set is split into
three smaller sets the training (TS), the evaluation or
validation (ES) and the prediction or testing (PS) sets.
The model is initialized with a few parameters. The next
step is to train the model using data from the training set
and when the error of the evaluation set is minimized, the
model parameters and configuration are stored. The
number of parameters is then increased and a new net-
work is trained from the beginning. If ES error is lower
compared to the previously found minimum, then the
parameters of this new model are stored. This iterative
process is terminated when a predefined number of itera-
tions are reached (Figure 1).

In this study, ES was formed using a Euclidean metric
withholding a percent value (here 25% is used) of the TS
data that are located nearest to other data. The strength of
this approach lies in the fact that TS covers more distinct
characteristics of the process, thus, allowing for the de-
velopment of a model with better generalization capabili-
ties.

2.3 Nearest Neighbours

This class of hybrid models includes a local modelling
and a function approximation to capture recent dynamics

Figure 1. Iterative cross-validation training

of the process. The underlying aim of these predictors is
that segments of the series neighbouring under some dis-
tance measure may correspond to similar future values.
This claim was endorsed by the work of Farmer and Si-
dorowich [14] that showed that the chaotic time-series
prediction is several orders of magnitude better using
local approximation techniques rather than universal ap-
proximators. The tricky part in these models is the selec-
tion of the embedding dimension, which effectively de-
termines segments of the series, and the number of
neighbours. Initially, it is required to estimate the em-
bedding dimension d and time delay τ of the attractor as
follows:

 j)(t),)1((),...,()(x dtytytY (4)

In this study, a value of τ = 1 was used and Y(t) had the
same parameters as the linear regression model. The
number of neighbours was not pre-determined but was
set to vary between predefined limits. A small number of
neighbours increase the variance of the results whereas a
large number can compromise the local validity of a
model and increase the bias of results. Once the nearest
neighbours to Y(t) have been identified, an averaging
procedure is followed in the present study to generate
predictions.

2.4 Local Models with Clustering Algorithms
(LMCA)

The idea behind the application of clustering algorithms
in time series analysis is to identify groups of data that
share some common characteristics. On each of these
groups, the relationships amongst the members are mod-
elled through a single equation model. Consequently,

Copyright © 2010 SciRes JSEA

Time Series Forecasting of Hourly PM10 Using Localized Linear Models 377

l

each of the developed models has a different set of pa-
rameters. The process is described in the following steps:

1) Selection of the input data for the clustering algo-
rithm. This can contain lagged and/or future characteris-
tics of the series, as well as other relevant information.

C(t) = [yt, yt-k, xt-j]. Empirical evidence suggests that
the use of the target variable yt is very useful to discover
unique relationships between input-output features. Ad-
ditionally, higher quality modelling is ensured with the
function approximation since the targets have similar
properties and characteristics. However, this occurs to
the expense of an additional process needed to account
for this lack of information in the prediction stage.

2) Application of a clustering algorithm combined
with a validity index or with user defined parameters, so
that ncl clusters will be estimated.

3) Assign all patterns from the training set to the ncl
clusters. For each of the clusters, apply a function ap-
proximation model, , so that

ncl forecasts are generated.

(,) 1...t i t k t j cy f y i n x ,

Successful application of this method has been re-
ported on the prediction of locational electricity marginal
prices [15], Mckay Glass and daily electric load peak
series [16], the A and D series of the Santa Fe forecasting
competition [17] and hourly electric load [18].

In this study, the k means clustering algorithm was se-
lected [19]. It is a partitioning algorithm that attempts to
directly decompose the data set into a set of groups
through the iterative optimization of a certain criterion.
More specifically, it re-estimates the cluster centres
through the minimization of a distance-related function
between the data and the cluster centres. The algorithm
terminates when the cluster centres stop changing.

The optimal number of clusters is determined using a
modified cluster validity index, CVI, [20], which is di-
rectly related to the determination of the user-defined
(here the number of clusters) parameters of the clustering
algorithm. Two indices are used for showing an estimate
of under-partitioning (Uu) and over-partitioning (Uo) of
the data set:

min

1

1

d

c
U

MD
c

U

o

c

i
iu

 (5)

MDi is the mean intra-cluster distance of the i-th clus-
ter. Here, dmin is the minimum distance between cluster
centres, which is a measure of intra-cluster separation.
The optimum number is found from the minimization of
a normalized combinatory expression of these two indi-
ces.

2.5 Hybrid Clustering Algorithm (HCA)

The hybrid clustering algorithm is an iterative procedure

that groups data, based on their distance from the hy-
per-plane that best describes their relationship. It is im-
plemented through a series of steps, which are presented
below:

1) Determine the most important variables.
2) Form the set of patterns H(t) = [yt, yt-k, xt-k].
3) Select the number of clusters nh.
4) Initialize the clustering algorithm so that nh clusters

are generated and assign patterns.
5) For each new cluster, apply a linear regression

model to yt using as explanatory variables the remaining
of the set Ht.

6) Assign each pattern to a cluster based on their dis-
tance.

7) Go to 5) unless any of the termination procedures is
reached.

The following termination procedures are considered:
a) the maximum pre-defined number of iterations is
reached and b) the process is terminated when all pat-
terns are assigned to the same cluster as in the previous
iteration in 6). The selection of the most important
lagged variables, 1), is based on the examination of the
correlation coefficients of the data.

The proposed clustering algorithm is a complete time
series analysis scheme with a dual output. The algorithm
generates clusters of data, the identical characteristic of
which is that they “belong” to the same hyper-plane, and
synchronously, estimates a linear model that describes
the relationship amongst the members of a cluster.
Therefore, a set of nh linear equations is derived (Equa-
tion (6)).

hjtjiktkiioit niXbyaay 1 ,ˆ ,,,, (6)

Like any other hybrid model that uses the target vari-
ables in the development stage, the model requires a
secondary scheme to account for this lack of information
in the forecasting phase. For HCA and LMCA, the only
requirement is the determination of the cluster number,
nh and ncl respectively, which is equivalent to the estima-
tion of the final forecast.

The optimum number of HCA clusters is found from a
modified cluster validity criterion. An estimate of un-
der-partition (Uu) of the data was formed using the in-
verse of the average value of the coefficient of determi-
nation (Ri

2) on all regression models. Uo indicates the
over-partitioning of the data set, and dmin is the minimum
distance between linear models (Equation (7)). The op-
timum number is found from the minimization of a nor-
malized combinatory expression of these two indices.

min

1

21

1

d

c
U

R
h

U

o

h

i
i

u

 (7)

Copyright © 2010 SciRes JSEA

Time Series Forecasting of Hourly PM10 Using Localized Linear Models 378

2.6 Pattern Recognition

A pattern recognition scheme with three alternative ap-
proaches was then applied to convert the LMCA and
HCA output to the final predictions. Initially, a conven-
tional clustering (k-means) algorithm was employed to
identify similar historical patterns in the time series. The
second was to determine ncl / nh at each time step, using
information contained in the data of the respective cluster.

(p1) Select a second data vector using only histori-
cal observations Pt = [yt-k, xt-k]

(p2) Initialize a number of clusters nk
(p3) Apply a k-means clustering algorithm on Pt.
(p4) Assign data vectors to each cluster, so that

each of the nk clusters should contain km, m = 1,…, nk
data.

To obtain the final forecasts the following three alter-
natives were examined:

(M1) From the members of the k-th cluster find the
most frequent LMCA / HCA cluster, i.e. ncl / nh number.

(M2) From the members of the k-th cluster estimate
the final forecast as a weighted average of the LMCA/
HCA clusters. Here pi is the percentage of appearances of
the LMCA / HCA cluster in the k-th cluster data.

clh
i

ntit nnnandkiypy or ,...,1 ,...,1,

(8)

(M3) From the members of the k-th cluster estimate
the final forecast as a distance weighted average of the
HCA clusters.

2 and

or ,...,1 ,...,1,

a
d

d
t

PPd

nnnandkiyty

i

a
i

a
i

i

iti

clh
i

ntit

(9)

The optimal number of clusters for the pattern recog-
nition stage was determined using the modified com-
pactness and separation criterion for the k-means algo-
rithm discussed previously in section “Local Models with
Clustering Algorithms”.

3. Data Description and Results

The previously described forecasting methodologies
were applied to eight different data sets both univariate
and multivariate. The data sets were hourly PM10 con-
centration values from the monitoring network in the
Greater Athens Area and in the cities of Helsinki and
London, spanning over different seasons. It should be
clarified that meteorological data were available only
from the Helsinki station. The results returned by the
applied algorithms for each station are discussed sepa-
rately in the following sections.

In addition to the combined LMCA / HCA – PR meth-
odology, the ideal case of a perfect knowledge of the ncl /
nh parameter is also presented. This indicates the predic-
tive potential, or the least error that the respective meth-
odology could achieve. Also, the base-case persistent
approach (yt = yt-1) is presented as a relative criterion for
model inter-comparison amongst different data sets. The
ability of the models to produce accurate forecasts was
judged against the following statistical performance met-
rics:

Root Mean Square Error

k

i
ii PO

k
RMS

1

21
 (10)

Normalized RMS

k

i
i

k

i
ii

OO

PO

NRMS

1

2

1

2

 (11)

Mean Absolute Percentage Error

k

i i

ii

O

PO

k
MAPE

1

1
100 (12)

Index of Agreement

k

i
ii

k

i
ii

OOPO

PO

IA

1

2

1

2)(

1 (13)

Fractional Bias

)(5.0

)(

PO

PO
FB

 (14)

3.1 Greater Athens Area – Aristotelous Str

The selected station from the Greater Athens Area moni-
toring network was Aristotelous Str. It is located at
23°43΄39΄΄ North and 37°59΄16΄΄ West, at an elevation
height of 95 m above ground level. It is characterized as
an urban station, positioned in the city centre with traffic
dominated emissions. The training and the prediction sets
covered the periods from 1/7/2001 to 14/8/2001 and
15/8/2001 to 31/8/2001, respectively.

The analysis revealed that the most influential vari-
ables were PMt-1, PMt-2, PMt-24, PMt-25 and an indicator
for the time of the day. This data set was used for the
development of all methodologies and the input set for
the pattern recognition scheme. The results on Table 1
indicate that with the exception of NN, all other conven-
tional approaches demonstrate a reduction of the predic-
tion error by approximately 6% on the basis of the RMS
error compared to the base case persistent method. The
difference between LR and ANN was not found to be

Copyright © 2010 SciRes JSEA

Time Series Forecasting of Hourly PM10 Using Localized Linear Models

Copyright © 2010 SciRes JSEA

379

statistically significant, although the later was marginally
better under all criteria.

The application of the local linear models was able to
reduce the predictive error by an order of magnitude de-
pending on the pattern recognition scheme that was ap-
plied. Both LMCA and HCA are capable of reaching
exceedingly lower prediction error, with IA above 0.98,
if all ncl/nh clusters are predicted correctly at each time
step. Figure 2 presents a graphical description of the
prediction error of the HCA-perfect cluster forecast. The
HCA coupled with the M3 scheme returned the overall

best prediction error that was approximately 8% lower
than that of the persistent approach.

3.2 Greater Helsinki Area – Kallio

The data from the Helsinki monitoring network were
from the suburban station of Kallio, with co-ordinates
25°52΄92΄΄ W and 66°75΄47΄΄ N and elevation height of
21 m above sea level. The training set was from 3/9/2003
to 9/11/2003, whereas the unknown prediction set
spanned from 10/11/2003 to 30/11/2003.

The developed models for the prediction of PM10 val-

Table 1. Prediction results from Aristotelous

 RMS NRMS MAPE d FB
Nu of
clusters

Persistent 9.5596 0.3112 13.006 0.9223 –0.0002

LR 9.0193 0.277 12.6536 0.9007 0.0052

ANN 8.9311 0.2716 12.3984 0.9152 0.0037

NN 10.117 0.3485 14.3699 0.892 –0.0094 24

LCMA ncl = 4 nk = 32

Perfect 4.6355 0.0732 7.2108 0.9813 –0.0043

M1 9.6748 0.3187 13.3351 0.8999 –0.0107

M2 9.0637 0.2797 12.434 0.9121 –0.0052

M3 9.0559 0.2793 12.3804 0.9108 –0.009

HCA ncl = 8 nk = 13

Perfect 2.1522 0.0158 2.857 0.9961 –0.0002

M1 9.6085 0.3144 12.5104 0.9105 –0.0134

M2 8.8787 0.2684 12.3668 0.915 0.0048

M3 8.8153 0.2646 12.3368 0.9178 0.0046

Figure 2. HCA perfect cluster forecast for the Aristotelous station (Athens)

Time Series Forecasting of Hourly PM10 Using Localized Linear Models 380

Table 2. Linear regression model details for Helsinki 1

Variable Coef. St. Error t-stat. Variable Coef. St. Error t-stat.

c 4.7626 1.1361 4.1921 T t-1 1.0627 0.2753 3.8601

PM t-1 0.7611 0.0247 30.8584 T t-2 –1.0446 0.274 –3.8128

PM t-2 0.0622 0.0246 2.5319 u t-1 –0.749 0.2213 –3.3847

PM t-24 0.0232 0.0136 1.7008 u t-2 0.6094 0.2216 2.7493

RH t-1 0.2055 0.0547 3.7582 v t-1 0.6673 0.2242 2.9767

RH t-2 -0.2361 0.0547 -4.317 v t-2 –0.4508 0.2257 –1.9968

Table 3. Prediction Results from Helsinki 1

RMS NRMS MAPE d FB

Nu of
clusters

Persistent 5.1208 0.2793 33.3564 0.9301 0.0001

LR 4.9654 0.2626 36.4317 0.9073 –0.0139

ANN 5.1722 0.2849 39.5785 0.9085 –0.0591

NN 5.6876 0.3446 43.8667 0.857 –0.0489 13

LCMA ncl = 3 nk = 61

Perfect 3.033 0.098 18.1484 0.9724 0.0038

M1 5.1044 0.2775 37.1176 0.9295 –0.0119

M2 4.892 0.2549 37.5676 0.9193 0.0008

M3 4.8416 0.2497 36.905 0.9229 0.0049

HCA ncl = 7 nk = 19

Perfect 1.5653 0.0261 8.9912 0.9932 –0.0051

M1 5.2179 0.29 42.6351 0.9072 0.021

M2 4.8139 0.2468 37.4036 0.9203 –0.0018

M3 4.7612 0.2415 36.7128 0.9239 –0.0006

ues from Helsinki contained meteorological parameters
that were identified using a combination of statistical
correlation properties and stepwise linear regression,
discarding all those that were judged statistically as not
significant under Student’s t-test. The finally selected
parameters and their estimation from the least squares fit
are shown on Table 2.

The prediction results (Table 3) demonstrate that the
forecasting ability of the conventional models is some-
what similar to that of the base-case persistent approach.
The large prediction error of the ANN can be partly ex-
plained by the linear nature governing process that relates
PM10 values to lagged values and from the over-fitting of
the applied training scheme. The introduction of the
LMCA and HCA localized models coupled with the M3
pattern recognition scheme returned the least overall pre-
diction error that was approximately 5.5% and 7% re-
spectively lower on the RMS criterion and double under
NRMS. Figure 3 shows the values of the prediction error
of the LMCA-M3 modelling approach.

m
3)

Figure 3. Prediction and error with LCMA – M3 approach

3.3 Greater London Area – Bloomsbury

The data from the Greater London Area were from the

Copyright © 2010 SciRes JSEA

Time Series Forecasting of Hourly PM10 Using Localized Linear Models 381

Bloomsbury station located in the city centre of London
(51°31'24" N, 0°7'54" W), characterised as an urban
background station. The training set was selected to
cover the period from 1/9/2005 to 22/10/2205, whereas
the unknown prediction set comprised data ranging from
23/10/2005 to 6/11/2005.

The stepwise regression with a threshold value for the
t-statistic of 1.96, corresponding to the 95% confidence
interval, revealed as the most significant values PMt-1,
PMt-2, PMt-24. Additionally, an indicator for the time of
the day was utilized. That data set was used for the de-
velopment of all methodologies while the input set for
the pattern recognition scheme. The analysis of the re-
sults (Table 4) indicated that none of the conventional
forecasting approaches managed to return consistently
lower prediction errors than the base case persistent ap-
proach. The least prediction error was returned from the
ANN that was 3.6% lower than the persistent approach
on the basis of the RMS error.

The developed localized linear model (HCA) has sig-
nificant forecasting potential, as it can be observed in
Figure 4, under the assumption of a perfect knowledge
of the future cluster in the pattern recognition stage. The
percentage improvement over the bench-mark persistent
approach ranged from 40-70%. Similar results were
found for the other two data sets

4. Discussion

The development and application of accurate models for
forecasting PM concentration values in a rather fast and

efficient manner is of primary concern in modern air
quality management systems. The applied LR and ANN
are nowadays mature approaches that have been inte-
grated in many operational systems and could be used for
the benchmarking of novel methodologies. The results of
this work yielded that for the majority of the examined
data sets, the linear approach marginally outperforms
ANN. This indicates that the underlying process could
possess predominantly linear characteristics.

The main focus of this work was the development and
application of novel localized linear models. These were
based on clustering algorithms as a means to identifying

Figure 4. Index of agreement for HCA – perfect cluster
forecast

Table 4. Prediction results from London Bloomsbury

 RMS NRMS MAPE d FB Remarks

Persistent 4.4165 0.272 16.4202 0.9282 –0.0007

LR 4.3119 0.2593 17.281 0.9257 0.0206

ANN 4.256 0.2526 16.9101 0.9266 0.0221

NN 5.1193 0.3655 22.466 0.8933 0.0075 14

LCMA ncl = 4 nk = 16

Perfect 4.1665 0.2421 17.0711 0.9324 0.0193

M1 4.4947 0.2817 17.9071 0.9137 –0.0136

M2 4.2704 0.2543 17.051 0.9228 0.0069

M3 4.3005 0.2579 17.9051 0.9229 0.021

HCA ncl = 7 nk = 29

Perfect 1.2401 0.0214 5.1061 0.9945 0.0064

M1 4.3246 0.2608 16.8142 0.8877 –0.0188

M2 4.2795 0.2554 16.8375 0.9163 0.0097

M3 4.2513 0.2521 16.9179 0.8812 0.0046

Copyright © 2010 SciRes JSEA

Time Series Forecasting of Hourly PM10 Using Localized Linear Models 382

similar properties of the time series. The LMCA identi-
fied clusters based on their proximity on the embedding
space, whereas HCA identified grouped points that were
described by the same linear model. As both approaches
included the target variable in the model development
stage, a pattern recognition scheme was needed to ac-
count for this lack of information in the prediction stage.

The final prediction model was reached with the use of
the modified CVI coupled with a pattern recognition
scheme. The results suggested M3 as the most effective
choice, because it produced consistently the least predic-
tion error, under all metrics. For the RMS and MAPE
errors, the improvement over the persistent approach
ranged from 3.5% (London) to 7.7% (Athens and Hel-
sinki). This value was almost doubled for NRMS and IA
for the respective data sets. The HCA produced the least
prediction error on every single examined data set, com-
pared both to conventional approaches and the LCMA.

5. Conclusions

This paper introduced the application of localized linear
models for forecasting hourly PM10 concentration values
using data from the monitoring networks of the cities of
Athens, Helsinki and London. The strength of this inno-
vative approach is the use of a clustering algorithm that
identifies the finer characteristics and the underlying re-
lationships between the most influential parameters of
the examined data set and subsequently, the development
of a customized linear model. The calculated clusters
incorporated the target variable in the model develop-
ment phase, which was beneficial for the development of
more coherent localized models. However, in order to
overcome this lack of information in the prediction stage
a complementary scheme was required. For the purposes
of this study, a pattern recognition scheme based on the
concept of weighted average distance (M3) was devel-
oped that consistently returned the least error under all
examined metrics. The calculated results show that the
proposed approach is capable of generating significantly
lower prediction error against conventional approaches
such as linear regression and neural networks, by at least
one order of magnitude.

6. Acknowledgements

The assistance of members of OSCAR project (funded
by EU under the contract EVK4-CT-2002-00083), for
providing the Helsinki data for this research, is gratefully
acknowledged. The Department of Atmospheric Pollu-
tion and Noise Control of the Hellenic Ministry of Envi-
ronment, Physical Planning and Public Works is also
acknowledged for the provision of the Athens data. The
data from London are from the UK air quality archive
(http://www.airquality.co.uk).

REFERENCES

[1] K. Katsouyanni, “Ambient Air Pollution and Health,”
British Medical Bulletin, Vol. 68, 2003, pp. 143-156.

[2] E. Samoli, A. Analitis, G. Touloumi, J. Schwartz, H. R.
Anderson, J. Sunyer, L. Bisanti, D. Zmirou,. J. M. Vonk,
J. Pekkanen,. P. Goodman,. A. Paldy,. C. Schindler and K.
Katsouyanni, “Estimating the Exposure-Response Rela-
tionships between Particulate Matter and Mortality within
the APHEA Multicity Project,” Environmental Health
Perspectives, Vol. 113, 2005, pp. 88-95.

[3] R. D. Morris, “Airborne Particulates and Hospital Admi-
ssions for Cardiovascular Disease: A Quantitative Review
of the Evidence,” Environmental Health Perspectives,
Vol. 109, Supplement 4, 2001, pp. 495-500.

[4] E. G. Knox and E. A. Gilman, “Hazard Proximities of
Childhood Cancer in Great Britain from 1953-1980,”
Journal of Epidemiology and Health, Vol. 51, 1997, pp.
151-159.

[5] J. Kukkonen, L. Partanen, A. Karppinen, J. Ruuskanen, H.
Junninen, M. Kolehmainen, H. Niska, S. Dorling, T.
Chatterton, R. Foxall and G. Cawley, “Extensive
Evaluation of Neural Extensive Evaluation of Neural
Network Models for the Prediction of NO2 and PM10
Concentrations, Compared with a Deterministic Modell-
ing System and Measurements in Central Helsinki,”
Atmospheric Environment, Vol. 37, 2003, pp. 4539-4550.

[6] P. Perez, A. Trier and J. Reyes, “Prediction of PM2.5
Concentrations Several Hours in Advance Using Neural
Networks in Santiago, Chile,” Atmospheric Environment,
Vol. 34, 2000, pp. 1189-1196.

[7] M. W. Gardner, “The Advantages of Artificial Neural
Network and Regression Tree Based Air Quality
Models,” Ph.D. Dissertation, School of Environmental
Sciences, University of East Anglia, Norwich, 1999.

[8] J. Hooyberghs, C. Mensink, G. Dumont, F. Fierens and O.
Brasseur, “A Neural Network Forecast for Daily Average
PM10 Concentrations in Belgium,” Atmospheric Environ-
ment, Vol. 39, No. 18, 2005, pp. 3279-3289.

[9] J. B Ordieres, E. P. Vergara, R. S. Capuz and R. E.
Salazar, “Neural Network Prediction Model for Fine
Particulate Matter (PM2.5) on the US-Mexico Border in
El Paso (Texas) and Ciudad Juαrez (Chihuahua),” Envi-
ronmental Modelling & Software, Vol. 20, No. 5, 2005,
pp. 547-559.

[10] G. Corani, “Air Quality Prediction in Milan: Feed-
Forward Neural Networks, Pruned Neural Networks and
Lazy Learning,” Ecological Modelling, Vol. 185, No. 2-4,
2005, pp. 513-529.

[11] C. Lin and C. Lee, “Neural Fuzzy Systems,” Prentice Hall,
Upper Saddle River, 1996.

[12] M. Hagan and M. Menhaj, “Training Feed-Forward
Networks with the Marquardt Algorithm”, IEEE Transac-
tions on Neural Networks, Vol. 5, 1996, pp. 989-993.

[13] T. Chernichow, A. Piras, K. Imhof, P. Caire, Y. Jaccard,
B. Dorizzi and A. Germond, “Short Term Electric Load

Copyright © 2010 SciRes JSEA

Time Series Forecasting of Hourly PM10 Using Localized Linear Models

Copyright © 2010 SciRes JSEA

383

Forecasting with Artificial Neural Networks,” Engine
Intelligent Systems, Vol. 2, 1996, pp. 85-99.

[14] J. D Farmer and J. J. Sidorowich, “Predicting Chaotic
Dynamics, Dynamic Patterns in Complex Systems,” In: J.
A. S. Kelso, A. J. Mandell and M. F. Shlesinger, Ed.,
World Scientific, 1988, pp. 265-292.

[15] Y. Y. Hong and C. Y. Hsiao, “Locational Marginal Price
Forecasting in Deregulated Electricity Markets Using
Artificial Intelligence,” IEE Proceedings of Generation
Transmission Distribution, Vol. 149, No. 5, 2002, pp.
621-626.

[16] J. Mitchell and S. Abe, “Fuzzy Clustering Networks:
Design Criteria for Approximation and Prediction,”
IEICE Transactions on Information and Systems, Vol.
E79D, No. 1, 1996, pp. 63-71.

[17] A. B. Geva, “Hierarchical-Fuzzy Clustering of Temporal-

Patterns and its Application for Time-Series Prediction,”
Pattern Recognition Letters, Vol. 20, No. 14, 1999, pp.
1519-1532.

[18] M. Djukanovic, B. Babic, O. J. Sobajic and Y. H. Pao,
“24-hour Load Forecasting,” IEE Proceedings – C, Vol.
140, 1993, pp. 311-318.

[19] J. B. McQueen, “Some Methods for Classification and
Analysis of Multivariate Observations,” Proceedings of
5th Berkley Symposium on Mathematical Statistics and
Probability, Berkeley, 27 December 1965-7 January 1966,
pp. 281-297.

[20] D. J. Kim, Y. W. Park and D. J. Park, “A Novel Validity
Index for Determination of the Optimal Number of Clus-
ters,” IEICE Transactions on Information and Systems,
Vol. E84-D, No. 2, 2001, pp. 281-285.

J. Software Engineering & Applications, 2010, 3: 384-390
doi:10.4236/jsea.2010.34043 Published Online April 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

Exploring Design Level Class Cohesion Metrics

Kuljit Kaur, Hardeep Singh

Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar, India.
Email: kuljitchahal@yahoo.com

Received November 17th, 2009; revised December 15th, 2009; accepted January 25th, 2010.

ABSTRACT

In object oriented paradigm, cohesion of a class refers to the degree to which members of the class are interrelated.
Metrics have been defined to measure cohesiveness of a class both at design and source code levels. In comparison to
source code level class cohesion metrics, only a few design level class cohesion metrics have been proposed. Design
level class cohesion metrics are based on the assumption that if all the methods of a class have access to similar pa-
rameter types then they all process closely related information. A class with a large number of parameter types common
in its methods is more cohesive than a class with less number of parameter types common in its methods. In this paper,
we review the design level class cohesion metrics with a special focus on metrics which use similarity of parameter
types of methods of a class as the basis of its cohesiveness. Basically three metrics fall in this category: Cohesion
among Methods of a Class (CAMC), Normalized Hamming Distance (NHD), and Scaled NHD (SNHD). Keeping in
mind the anomalies in the definitions of the existing metrics, a variant of the existing metrics is introduced. It is
named NHD Modified (NHDM). An automated metric collection tool is used to collect the metric data from an open
source software program. The metric data is then subjected to statistical analysis.

Keywords: Design Metrics, Class Cohesion Metrics, Cohesion among Methods of a Class, Normalized Hamming

Distance, Scaled NHD

1. Introduction

In the object oriented paradigm, cohesion of a class re-
fers to the degree to which members of the class are in-
terrelated. Chidamber and Kemerer defined the first met-
ric to measure cohesiveness of a class [1]. Since then,
several class cohesion metrics have been proposed (dis-
cussed in the next section). Empirical studies report that
class cohesion metrics are useful to assess software de-
sign quality [2,3], to predict fault proneness of classes
[4-6], and to identify reusable components [7,8].Existing
class cohesion metrics mainly fall into two categories –
metrics which can be computed at design level (high
level) and metrics which can be computed one step later
i.e. at source code level (low level). Design level class
cohesion metrics use the limited amount of information
available about a class at this level i.e. only the class at-
tributes, and method signatures. Method implementation
is not completely defined at design level. So some as-
sumptions are made. Different class cohesion metrics
defined at design level are based on different assump-
tions.

1) One school of thought assumes that the types of
method parameters match the types of the attributes ac-

cessed by the method. It is further assumed that the set of
attribute types accessed by a method is the intersection of
this method’s parameter types and the set of parameter
types of all the methods in the class [9,10].

2) Another school of thought assumes that the set of
attribute types accessed by a method is the intersection of
the set of this method’s parameter types and the set of its
class attribute types [11].

In this paper we review the design level class cohesion
metrics based on the first assumption. Keeping in mind
the anomalies in the definitions of the existing metrics, a
variant of the metrics is introduced. The paper is organ-
ized as follows: Section 2 reviews the related work. Sec-
tion 3 explains the existing design level class cohesion
metrics and introduces a modified version as well. Sec-
tion 4 presents the statistical analysis of the data col-
lected from an open source project. Section 5 concludes
the paper.

2. Related Work

A number of class cohesion metrics are defined in the
low level metrics category [1,12-26]. However, there are
only a few proposals for design level class cohesion met-
rics [9-11].

Exploring Design Level Class Cohesion Metrics 385

The metric, named Cohesion among Methods of a
Class (CAMC) captures the information about parameter
types of methods of a class [9]. A class is cohesive if all
methods of the class use the same set of parameter types.
Methods which use same type of parameter types are
assumed to process related kind of information. CAMC
metric values lie in the range [0, 1]. Counsell et al. point
out some anomalies in definition of this metric, and pro-
pose a new metric named Normalized Hamming Dis-
tance (NHD) [10]. It is a normalized metric which meas-
ures average agreement between each pair of methods on
their parameter types. A variant of the NHD metric
called Scaled NHD (SNHD) is introduced in the same
paper. It addresses shortcomings of both CAMC and
NHD, as claimed by the authors [10]. This research finds
anomalies in the definitions of NHD and SNHD as well,
and proposes a modified version of the NHD metric -
NHD modified (NHDM). The NHDM metric gives sta-
tistically significant results.

Dallal proposes another metric for measuring cohesion
of a class at design level [11]. Similarity based Class
Cohesion (SCC) metric is based on the second assump-
tion discussed above. This metric is not analyzed in this
paper as the automated tool developed for this research
does not support collection of this metric.

3. Design Metrics

This section describes the class cohesion metrics com-
putable with information available at design level. At
design level, information regarding name of the class, its
attributes (names, and data types), and method signatures
is available. Method signature includes name of the
method and its parameter list which describes names of
the parameters and their data types. A Class does not
have a detailed or algorithmic description of its methods
available at this level.

3.1 CAMC

The CAMC metric measures the extent of intersection of
individual method parameter type lists with the parame-
ter type list of all methods in the class [9]. This metric
computes the relatedness among methods of a class
based upon the parameter list of the methods. It is as-
sumed that methods of a class, having access to similar
parameter types, process closely related information.

The CAMC metric uses a parameter-occurrence matrix
(PO matrix) that has a row for each method and a column
for each data type that appears at least once as the type of
a parameter in at least one method in the class. The value
in row i and column j in the matrix is 1 when the ith
method has a parameter of the jth data type and is 0 oth-
erwise. In the original version of the metric [9], the PO
matrix has an additional column of all 1s. This column
represents the ‘self’ parameter that corresponds to the
type of the class itself which is by default one of the pa-

rameters of every method. In this discussion, the original
version of the metric is referred to as CAMCs (Cohesion
among methods of a class with ‘self’ parameter) and
metric definition without the ‘self’ parameter is named as
CAMC [10].

The CAMC metric is defined as the ratio of the total
number of 1s in the PO matrix to the total size of the ma-
trix.

1 1

CAMC(C) where [][]
k l

PO i j
kl

CAMC suffers from the following anamolies:
1) CAMC gives false positives – the metric gives a

non-zero value for a class with no parameter sharing in
its methods.

2) CAMC can not differentiate between two classes
having same number of 1s but with different patterns of
1s in their PO matrices.

3) Smaller classes take high values for the cohesion
metric than the larger classes with same properties.

3.2 NHD

Counsell et al. [10] suggested an alternative of CAMC. It
is based on the definition of hamming distance. NHD
measures agreement between rows in the PO matrix.
NHD metric for a class with k methods and l unique pa-
rameter types (set obtained from union of parameter
types received by all its methods) is defined as:

1

1 1

2
NHD (,)

(1)

k k

j
a i j

lk k

where a(i,j) is value of the cell at (i,j)th location in the
PO matrix. Another easy way to compute NHD is to first
find the sum of disagreements between methods for all
the parameter types and then subtract it from 1.

1

2
1 (

(1)

l

)j jNHD c k c
lk k

where cj is the number of 1s in the jth column of the PO
matrix.

A varaint of NHD (with self parameter), NHDs can be
defined for a PO matrix with an additional column of all
1s.

NHD suffers from the following anomalies:
1) NHD metric also gives false positives. The metric

removes the first anomaly of the CAMC for a class with
k = l = 2. The metrics fails to give correct answer for
higher values of k and l (e.g. when k = l = 3, and there is
no parameter sharing among methods, NHD metric gives
a non-zero value).

2) NHD does not give different answers for classes
with different properties – metric fails to distinguish a
class with no parameter sharing in its methods from a
class with substantial amount of parameter sharing in its
methods.

3) Class size influences metric value. As size of the
class increases, value of the NHD metric also increases
(even if the PO matrix gets sparser).

Copyright © 2010 SciRes JSEA

Exploring Design Level Class Cohesion Metrics 386

3.3 SNHD

SNHD is the Scaled NHD metric proposed to interpret
values of the NHD metric in a more varied range. Pro-
ponents of the NHD metric are of the opinion that NHD
metric can take values at two extremes: the minimum or
the maximum. But they admit that it is not clear as to
which of these extremes represents a cohesive class.
However without giving any clear explanation they state
that classes at both the extremes may be cohesive. They
define these extreme values as NHDmin and NHDmax re-
spectively [10]. SNHD metric value helps to know how
close the NHD metric is to the maximum value of the
NHD value in comparison to the minimum value. SNHD
is defined as follows:

min max

min

0 ,

1

2 1,
max min

if NHD NHD and kl

SNHD = if kl

NHD NHD
otherwise

NHD NHD

,

The SNHD metric values lies in the range [-1,1]. SNHD
= –1 implies that NHD = NHDmin, and SNHD = 1 implies
that NHD=NHDmax. NHD is closer to its minimum or
maximum value depending upon whether SNHD is get-
ting values close to –1 or +1 respectively. A class is con-
sidered non-cohesive if SNHD metric value for the class
is 0.

SNHDs is defined by considering the ‘self’ parameter.
SNHD suffers from these Anomalies:

1) Difficult to calculate and interpret.
2) False negatives – SNHD metric gives 0 value for a

class with good degree of cohesion.

3.4 NHDM

Keeping in view the anomalies of the cohesion metrics
discussed above, this research proposes a variation of the
NHD metric. This variat is named as Normalized Ham-
ming Distance Modified (NHDM) metric. The NHD
metric ignores the method pairs with zero values in a
column of the PO matrix. It counts only those methods
pairs which do not agree, and ignores all other method
pairs irrespective of whether they agree on a 0 or a 1.
NHDM counts the method pairs which agree on a 0, as a
disagreement. NHDM for a class with k methods and l
unique parameter types, of all its methods, is defined as:

1

2 1
1 (() (

(1) 2

l

j j j jNHDM c k c z z
lk k

 1))

where cj is the number of ones and zj is the number of
zeroes in the jth column of the PO matrix for the class.

Similarly NHDMs is defined by including the ‘self’
parameter in the PO matrix.

This metric removes the anomalies present in the de-
fintion of CAMC, NHD, and SNHD metrics. NHDM

gives correct results. It gives different results for classes
with different properties. NHDM metric values are inde-
pendent of the class size.

4. Data Analysis

Cohesion metrics discussed above are collected from an
open source software system available at www.source-
forge.net. The software is a JAVA based charting library,
and it consists of 884 classes. For automated collection
of metrics, a tool CohMetric is developed.

4.1 Descriptive Analysis

Histograms in Figures 1 to 4 show metrics distributions.
Table 1 presents the descriptive statistics. It can be ob-
served that majority of the CAMC metric values lie close
to 0 (see Figure 1). On average a class’s cohesion value
is 0.21. NHD metric takes values in a higher range (Fig-
ure 2). Average NHD metric value is 0.66. SNHD is 0
for maximum of the classes. Its values lie more on the

Figure 1. Distribution of CAMC metric

Table 1. Descriptive statistics for cohesion metrics

Metric Average Std
Dev

Metric Average Std
Dev

CAMC 0.21 0.18 CAMCs 0.48 0.21

NHD 0.66 0.21 NHDs 0.81 0.12

SNHD -0.43 0.51 SNHDs 0.63 0.42

NHDM 0.05 0.16 NHDMs 0.38 0.22

Figure 2. Distribution of NHD metric

Copyright © 2010 SciRes JSEA

Exploring Design Level Class Cohesion Metrics 387

Figure 3. Distribution of SNHD metric

Figure 4. Distribution of NHDM metric

left side of 0 which implies that majority of the classes
has NHD more close to NHDmin than NHDmax. Average
SNHD for a class is –0.43 and standard deviation is also
very high (Figure 3). NHDM takes very low values
(Figure 4). For majority of the classes it is 0. Its average
value is just 0.05. As earlier stated, it may be due to the
reason that it does not give false positives.

4.2 Metric Variants

Variants of these cohesion metrics are defined on the
basis of the assumption that all the methods of a class by
default receive the class type itself (self) as one of the
parameter types. CAMCs, NHDs, SNHDs and NHDMs
are defined as variants of CAMC, NHD, SNHD, and
NHDM respectively. Cohesion metrics which consider
the ‘self’ parameter are expected to give higher values as
the class methods agree on at least one parameter type.
Table 1 gives a comparison of averages of cohesion met-
rics and their variants. All the metrics in this category
(which consider self parameter type) have higher aver-
ages than their counterparts. The observation is that met-
ric variants, which consider ‘self’ as one of the parameter
types, take values in higher range.It is also confirmed by
the descriptive analysis of these metrics as shown in
Figures 5 to 8. It is worth noting that SNHDs takes val-
ues in the range from 0 to 1 more frequently, in contrast
to SNHD which takes values in the range from 0 to –1. It

CAMCS

Figure 5. Distribution of CAMCs metric

NHDS

Figure 6. Distribution of NHDs metric

SNHDS

Figure 7. Distribution of SNHDs metric

NHDMS

Figure 8. Distribution of NHDMs metric

Copyright © 2010 SciRes JSEA

Exploring Design Level Class Cohesion Metrics 388

implies that a class whose NHD value is more close to
NHDmax is more cohesive.

4.3 Size Independence

Figures 9 to 12 present the relation between cohe-
sion metrics and class size (measured in terms of number
of methods). CAMC metric value is higher for small
classes and is lower for large classes. NHD takes large
values for classes with larger number of methods. This is
in line with the earlier findings about these two metrics
[10]. As shown in Figure 11, SNHD is close to 1 for

Figure 9. Scatter diagram of CAMC and class size

Figure 10. Scatter diagram of NHD and class size

Figure 11. Scatter diagram of SNHD and class size

Figure 12. Scatter diagram of NHDM and class size

some comparatively small classes. For larger classes,
SNHD lies in the range [-1, 0]. NHDM takes values near
0 for most of the classes. However small classes have
metric value in the higher range. However if size of the
parameter occurrence (PO) matrix is taken into consid-
eration then it is found that it does not have significant
correlation with any of the metrics (see Table 2). Here l
represents the number of parameter types, k is the num-
ber of methods of the class, and lk is the size of the pa-
rameter occurrence matrix. This result is unlike the pre-
vious studies on these metrics [10,27].

4.4 Metrics Inter-Dependencies

The parametric Pearson’s correlation coefficient between
each pair of cohesion metrics is given in Table 3. All the
correlation figures are significant at p = 0.01 level. Met-
ric variants such as CAMCs, NHDs, SNHDs, and NHDMs
are moderately correlated with their counterparts. NHD
and NHDs have the highest correlation coefficient in this
category. NHDM and CAMC are strongly correlated.
Similar is the case for their variants NHDMs and CAMCs.
SNHD is moderately correlated with NHDMs and
CAMCs. Unlike the previous studies, the correlation
analysis for this data set does not show any significant
correlation in NHD and CAMC [10,27]. However the
scatter plot of values for these two metrics shows a nega-
tive trend. CAMC and NHD show a negative relationship
in the scatter diagram given in Figure 13. CAMC is very
low for the classes for which NHD is very high. On av-
erage the NHD metric takes values in higher range.This
implies that this metric pair does not have a linear co-
variation.

Principal Component Analysis (PCA) is used to iden-
tify the metrics measuring orthogonal dimensions. Ro-
tated principal components are obtained using the vari-
max rotation technique. Three principal components are
extracted which capture 93.28% of the data set variance
(shown in Table 4). Metrics with significant loading co-
efficients in a particular dimension are highlighted in
bold. An analysis of the table shows that NHDMs and
CAMCs and SNHD contribute significantly to the first

Copyright © 2010 SciRes JSEA

Exploring Design Level Class Cohesion Metrics 389

Table 2. Correlation in cohesion metrics and size

C
A

M
C

C
A

M
C

s

N
H

D

N
H

D
s

S
N

H
D

S
N

H
D

s

N
H

D
M

N
H

D
M

s

l -.222 -.696 .337 .003 -.356 -.539 -.128 -.645

k -.307 -.520 .350 .219 -.071 -.179 -.177 -.429

lk -.158 -.357 .210 .138 .067 -.223 -.075 -.298

Table 3. Correlation analysis among metrics

 CAMC CAMCs NHD NHDs SNHD SNHDs NHDM

CAMCs 0.575

NHD -0.267 -0.542

NHDs -0.372 -0.024 0.623

SNHD 0.341 0.654 -0.043 0.334

SNHDs -0.253 0.347 0.271 0.678 0.478

NHDM 0.854 0.466 0.122 0.107 0.403 -0.043

NHDMs 0.456 0.962 -0.356 0.249 0.726 0.520 0.480

Figure 13. Scatter diagram shows correlation in CAMC and
NHD metrics

Table 4. Principal Components Matrix

 PC1 PC2 PC3
Eigen Value 3.72 2.39 1.35
Percent 46.45 29.93 16.90
Comm. percent 46.45 76.38 93.28

CAMC 0.25 -0.32 0.90
CAMCs 0.91 -0.27 0.30
NHD -0.39 0.89 0.11
NHDs 0.27 0.90 -0.13
SNHD 0.84 0.21 0.27

SNHDs 0.66 0.59 -0.31

NHDM 0.24 0.15 0.95

NHDMs 0.95 -0.01 0.25

dimension: PC1. SNHDs is moderately significant in two
dimensions: PC1 and PC2. NHD and NHDs both load
significantly on PC2. NHDM and CAMC both load sig-
nificantly on PC3.

It is worth mentioning here that NHDM and NHDMs
have the maximum variance among all the metrics in this
analysis. So metrics measuring different dimensions are:

PC1: NHDMs, CAMCs
PC2: NHD, NHDs
PC3: NHDM, CAMC

5. Conclusions

Cohesion is one of the important design properties to
realize a quality software product. Many empirical stud-
ies exist which relate the cohesion deign property with
other properties of interest such as maintainability, reus-
ability, and reliability. Several metrics have been pro-
posed to compute cohesion at class level in object ori-
ented systems. In this paper design level cohesion met-
rics such as CAMC, NHD, SNHD have been investigated
using empirical data. In view of the anomalies present in
the existing metrics’ definitions, a modified version of
the NHD metric is proposed and is named as NHDM
(NHD Modified) ss. Statistical analysis of the metrics
data shows that CAMC and NHD are influenced by the
size of class (measured in terms of number of methods).
None of the studied metrics correlates with the size of the
Parameter Occurence matrix (PO matrix) of the class.
Principal Component Analysis of the data shows that
NHDM and CAMC both give similar results but NHDM
has more variation in its values. Similar is the case for
NHDMs and CAMCs. SNHD or SNHDs does not con-
tribute significantly to any dimension. NHD and NHDs
are not significantly related to any of the other metrics.

REFERENCES

[1] P. Chidamber and C. Kemerer, “Towards a Metrics Suite
for Object Oriented Design,” Proceedings of 6th ACM
Conference on Object Oriented Programming, Systems,
Languages and Applications, Phoenix, Arizona, 1991, pp.
197-211.

[2] L. Briand, J. Wust, J. Daly and D. Porter, “Exploring the
Relationships between Design Measures and Software
Quality in Object Oriented Systems,” Journal of Systems
and Software, Vol. 51, No. 3, 2000, pp. 245-273.

[3] J. Bansiya and C. Davis, “A Hierarchical Model for Ob-
ject Oriented Quality Assessment,” IEEE Transactions on
Software Engineering, Vol. 28, No. 1, 2002, pp. 4-17.

[4] T. Gyimothy, R. Ferenc and I. Siket, “Empirical Valida-
tion of Object-Oriented Metrics on Open Source Software
for Fault Prediction,” IEEE Transactions on Software
Enineering, Vol. 31, No. 10, 2005, pp. 897-910.

[5] Z. Zhou and H. Leung, “Empirical Analysis of Object-
Oriented Design Metrics for Predicting High and Low

Copyright © 2010 SciRes JSEA

Exploring Design Level Class Cohesion Metrics

Copyright © 2010 SciRes JSEA

390

Severity Faults,” IEEE Transactions on Software Engi-
neering, Vol. 32, No. 10, 2006, pp. 771-789.

[6] M. Marcus and D. Poshyvanyk, “Using the Conceptual
Cohesion of Classes for Fault Prediction in Object-Orien-
ted System,” IEEE Transactions on Software Engineering,
Vol. 34, No. 2, 2008.

[7] J. Lee, S. Jung, S. Kim, W. Jang and D. Ham,“Compo-
nent Identification Method with Coupling and Cohesion,”
Proceedings of the Eighth Asia-Pacific Software Engi-
neering Conference, December 2001, pp. 79-86.

[8] G. Gui and D. Scott, “Measuring Software Component
Reusability by Coupling and Cohesion Metrics,” Journal
of Computers, Vol. 4, No 9, Academy Publishers, 2009,
pp. 797-805.

[9] J. Bansiya, L. Etzkorn, C. Davis and W. Li, “A Class
Cohesion Metric for Object Oriented Designs,” Journal of
Object Oriented Programming, Vol. 11, No. 8, 1999, pp.
47-52.

[10] S. Counsell, S. Swift and J. Crampton, “The Interpreta-
tion and Utility of Three Cohesion Metrics for Object-
Oriented Design,” ACM Transactions on Software Engi-
neering and Methodology, Vol. 15, No. 2, 2006, pp.
123-149.

[11] J. Dallal, “A Design-Based Cohesion Metric for Object-
Oriented Classes,” Proceedings of the International
Conference on Computer and Information Science and
Engineering, 2007, pp. 301-306.

[12] W. Li and S. Henry, “Object-Oriented Metrics that Predict
Maintainability,” Journal of Systems and Software, Vol.
23, No. 2, 1993, pp. 111-122.

[13] S. Chidamber and C. Kemerer, “A Metrics Suite for
Object Oriented Design,” IEEE Transactions on Software
Engineering, Vol. 20, 1994, pp. 476-493.

[14] M. Hitz and B. Montazeri, “Measuring Coupling and
Cohesion in Object-Oriented Systems,” Proceedings of
International Symosium on Applied Corporate Computing,
1995.

[15] J. Bieman and B. Kang, “Cohesion and Reuse in an
Object-Oriented System,” Proceedings of the 1995 Sym-
posium on Software Reusability, ACM Press, 1995, pp.
259-262.

[16] B. Henderson-Sellers, L. Constantine and I. Graham,
“Coupling and Cohesion (towards a Valid Metrics Suite
for Object-Oriented Analysis and Design),” Object Ori-
ented Systems, Vol. 3, 1996, pp. 143-158.

[17] L. Briand, J. Daly and J. Wust, “A Unified Framework for
Cohesion Measurement in Object-Oriented Systems,”
Empirical Software Engineering, Vol. 3, No. 1, 1998, pp.
65-117.

[18] H. Chae, Y. Kwon and D. Bae, “A Cohesion Measure for
Object-Oriented Classes,” Software Practice and Experi-
ence, Vol. 30, No. 12, 2000, pp. 1405-1431.

[19] Z. Chen, Y. Zhou and B. Xu, “A Novel Approach to
Measuring Class Cohesion Based on Dependence Analy-
sis,” Proceedings of the International Conference on
Software Maintenance, 2002, pp. 377-384.

[20] L. Badri and M. Badri, “A Proposal of a New Class Co-
hesion Criter Ion: An Empirical Study,” Journal of Object
Technology, Vol. 3, No. 4, 2004.

[21] J. Wang, Y. Zhou, L. Wen, Y. Chen, H. Lu and B. Xu,
“DMC: A More Precise Cohesion Measure for Classes,”
Information and Software Technology, Vol. 47, No. 3, pp.
176-180, 2005.

[22] C. Bonja and E. Kidanmariam, “Metrics for Class
Cohesion and Similarity between Methods,” Proceedings
of the 44th Annual Southeast Regional Conference, ACM
Press, New York, 2006, pp. 91-95.

[23] G. Cox, , L. Etzkorn and W. Hughes, “Cohesion Metric
for Object-Oriented Systems Based on Semantic Close-
ness from Disambiguity,” Applied Artificial Intelligence,
Vol 20, No. 5, 2006, pp. 419-436.

[24] L. Fernández and R. Peña, “A Sensitive Metric of Class
Cohesion,” International Journal of Information Theories
and Applications, Vol. 13, No. 1, 2006, pp. 82-91.

[25] S. Makela and V. Leppanen, “Client Based Object
Oriented Cohesion Metrics,” 31st Annual International
Computer Software and Applications Conference, Vol. 2,
2007, pp. 743-748.

[26] A. Marcus and D. Poshyvanyk, “The Conceptual Cohe-
sion of Classes,” Proceedings of 21st IEEE International
Conference on Software Maintenance, 2005, pp. 133-142.

[27] J. Dallal and L. Briand, “An Object-Oriented High-Level
Design-Based Class Cohesion Metric,” Simula Technical
Report (2009-1), Version 2, Simula Research Laboratory,
2009.

J. Software Engineering & Applications, 2010, 3: 391-403
doi:10.4236/jsea.2010.34044 Published Online April 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

391

DSPs/FPGAs Comparative Study for Power
Consumption, Noise Cancellation, and Real
Time High Speed Applications

Alon Hayim, Michael Knieser, Maher Rizkalla

Department of Electrical and Computer Engineering, Indiana University Purdue University Indianapolis, Indianapolis,
USA.
Email: mrizkall@iupui.edu, mrizkall@yahoo.com

Received December 24th, 2009; revised January 6th, 2010; accepted February 3rd, 2010.

ABSTRACT

Adaptive noise data filtering in real-time requires dedicated hardware to meet demanding time requirements. Both DSP
processors and FPGAs were studied with respect to their performance in power consumption, hardware architecture,
and speed for real time applications. For testing purposes, real time adaptive noise filters have been implemented and
simulated on two different platforms, Motorola DSP56303 EVM and Xilinx Spartan III boards. This study has shown
that in high speed applications, FPGAs are advantageous over DSPs with respect of their speed and noise reduction
because of their parallel architecture. FPGAs can handle more processes at the same time when compared to DSPs,
while the later can only handle a limited number of parallel instructions at a time. The speed in both processors impacts
the noise reduction in real time. As the DSP core gets slower, the noise removal in real time gets harder to achieve.
With respect to power, DSPs are advantageous over FPGAs. FPGAs have reconfigurable gate structure which con-
sumes more power. In case of DSPs, the hardware has been already configured, which requires less power consump-
tion? FPGAs are built for general purposes, and their silicon area in the core is bigger than that of DSPs. This is an-
other factor that affects power consumption. As a result, in high frequency applications, FPGAs are advantageous as
compared to DSPs. In low frequency applications, DSPs and FPGAs both satisfy the requirements for noise cancelling.
For low frequency applications, DSPs are advantageous in their power consumption and applications for the battery
power devices. Software utilizing Matlab, VHDL code run on Xilinix system, and assembly running on Motorola devel-
opment systems, have been used for the demonstration of this study.

Keywords: Four Quadrant (4Q) Converter, Interlacing, Traction Systems, Power Quality Analysis

1. Introduction

The performance of real-time data processing is often
limited to the processing capability of the system.
Therefore, evaluation of different digital signal process-
ing platforms to determine the most efficient platform is
an important task. There have been many discussions
regarding the preference of Digital Signal processors
(DSPs) or Field Programmable Gate Arrays (FPGA) in
real time noise cancellation. The purpose of this work is
to study features of DSPs and FPGAs with respect to
their power consumption, speed, architecture and cost.
DSP is found in a wide variety of applications, such as
filtering, speech recognition, image enhancement and
data compression, neural networks, as well as analog
linear-phase filters. Signals from the real world received
in analog form, then discretely sampled for a digital com-

puter to understand and manipulate. There are many ad-
vantages of hardware that can be reconfigured with dif-
ferent programming. Reconfigurable hardware devices
offer both the flexibility of computer software, and the
ability to construct custom high performance computing
circuits. In space applications, it may be necessary to
install new functionality into a system, which may have
been unforeseen. For example, satellite applications need
to adjust to changing operation requirements. With a re-
configurable chip, functionality that is not normally pre-
dicted at the outset can be uploaded to the satellite when
needed. To test the adaptive noise cancelling, the least
mean square (LMS) approach has been used. Besides the
standard LMS algorithm, the modified algorithms that
are proposed by Stefano [1] and by Das [2] have been
implemented for the noise cancellation approach, giving
the opportunity of comparing both platforms with respect

DSPs/FPGAs Comparative Study for Power Consumption, Noise Cancellation, and Real Time High Speed Applications 392

to their speed, noise, architecture, cost, and power.

2. Adaptive Filter Design on Motorola
DSP56300

Adaptive filters have the ability to adjust their own pa-
rameters and coefficients automatically. Hence, their
design requires little or no prior knowledge of the input
signal or noise characteristics of the system. Adaptive
filters have two inputs, x(n) and d(n), which are usually
correlated in some manner. Figure 1 gives the basic con-
cept of the adaptive filter.

The filter’s output y(n), which is computed with the
parameter estimates, is compared with the input signal
d(n). The resulting prediction error e(n) is fed back
through a parameter adaption algorithm that produces a
new estimate for the parameters and as the next input
sample is received, a new prediction error can be gener-
ated. The adaptive filter features minimum prediction
error. Two aspects of the adaptive filter are its internal
structure and adaptation algorithm. Its internal structure
can be either that of a nonrecursive (FIR) filter or that of
a recursive (IIR) filter. An adaptation algorithm can be
divided into two major classes; gradient algorithms and
nongradient algorithms. A gradient algorithm is used to
adjust the parameters of the FIR filter. The least mean
square (LMS) algorithm is the most widely applied gra-
dient algorithm. This adjusts the filter’s parameters to
minimize the mean-square error between the filter’s out-
put y(n) and the desired response input d(n) [3]. When an
adaptive filter is implemented on the DSP56300 proc-
esser, address pointer to mimic FIFO (First-In-First-
Out)-like shifting of the RAM data, modulo addressing
capability to provide wrap around data buffers, multi-
ply/accumulate (MAC) instruction top both multiply two
operands and add the product to a third operand in a sin-
gle instruction cycle, data move in parallel with the MAC
instructions to keep the multiplier running at 100% ca-
pacity and Repeat Next Instruction (REP) to provide
compact filter code are being used by the processor. The
processor’s capability to perform modulo addressing
allows an address register (Rn) value to be incremented
(or decremented) and yet remain within an address range
of size L, where L is defined by a lower and an upper

x(n)

d(n)

+

-

e(n)Filter
Parameters

Figure 1. Basic concep the adaptive filter

address is the

t of

 boundary. For the adaptive FIR filter, L
number of coefficients (taps). The value L-1 is stored in
the processor’s Modifier Register (Mn). The upper ad-
dress boundary is calculated by the processor and is not
stored in a register. When modulo addressing is used, the
Address Register (Rn) points to a modulo data buffer
located in X-Memory and/or Y-Memory. The address
pointer (Rn) is not required to point at the lower address
boundary; it can point anywhere within the defined
modulo address range L. If the address pointer incre-
ments past the upper address boundary (base address plus
L-1 plus 1), it will wrap around to the base address.
Modulo Register M1 is programmed to the value
NTAPS-1 (modulo NTAPS). Address Register R1 is
programmed to point to the state variable modulo buffer
located in X-Memory. Modulo Register M4 is pro-
grammed to the value NTAPS-1. Address Register R4 is
programmed to point to the coefficient buffer located in
Y-Memory. Given that the FIR filter algorithm has been
executing for some time and is ready to process the input
sample x(n) in the Data ALU input Register X0, the ad-
dress in R4 is the base address (lower boundary) of the
coefficient buffer. The address in R1 is M, where M is
greater than or equal to the lower boundary of X-Memory
address and less than or equal to the upper boundary of
X-Memory address. The X-Memory map for the filter
states, the Y-Memory map for the coefficients, and the
contents of the processor’s A and B Accumulators and
Data ALU Input Registers X0, X1, Y0 and Y1 are shown
in the Figure 2. The CLR instruction clears the A-Accu-

Figure 2. Memory map and data registers after last MAC
instruction

Copyright © 2010 SciRes JSEA

DSPs/FPGAs Comparative Study for Power Consumption, Noise Cancellation, and Real Time High Speed Applications 393

tim

Y1 and the error sample e(n) to the Data
In

mulator and simultaneously moves the input sample x(n)
from the Data ALU’s Input Register X0 to the
X-Memory location pointed to by address register R1,
and moves the first coefficient from the Y-Memory loca-
tion pointed to by address register R4 to the Data ALU’s
Input Register Y0. Both Address Registers R1 and R4
are automatically incremented by one at the end of the
CLR instruction (post-incremented). The REP instruction
regulates execution of NTAPS-1 iteration of the MAC
instruction. The MAC instruction multiplies the filter
state variable X0 by the coefficient in Y0, adds the
product to the A-Accumulator and simultaneously moves
the next state variable from the X-Memory location
pointed to by the Address Register R1 to the Input Reg-
ister X0, and moves the next coefficient from the
Y-Memory location pointed to by Address Register R4 to
Input Register Y0. Both Address Registers R1 and R4
are automatically incremented by one at the end of the
MAC instruction (post-incremented).

During the execution of the filter algorithm, Address
Register R4 is post incremented to a total of NTAPS

es; once in conjunction with the CLR instruction and
NTAPS-1 times (due to the REP instruction) in conjunc-
tion with the MAC instruction. Since the modulus for R4
is NTAPS and R4 is incremented NTAPS times, the ad-
dress value in R4 wraps around and points to the coeffi-
cient buffer’s lower boundary location [3]. Also Address
Register R1 is post incremented to a total NTAPS times;
once in conjunction with the CLR instruction and
NTAPS-1 times (due to the REP instruction) in conjunc-
tion with the MAC instruction. Also at the beginning of
the algorithm, the input sample x(n) is moved from the
Data ALU Input Register X0 to the X-Memory location
pointed to by R1. Since the modulus for R1 is NTAPS
and R1is incremented NTAPS times, the address value in
R1 wraps around and points to the state variable buffer’s
X-Memory location M. The MACR instruction calculates
the final tap of the filter algorithm and performs conver-
gent rounding of the result. The data move portion of this
instruction loads the input sample x(n) into the B-Ac-
cumulator. At the end of the MACR instruction, the ac-
cumulator contains the filter output sample y(n) as shown
in Figure 3.

The two Move instructions transfers the loop gain K to
the data register

put Register X1. The first MOVE instruction in the “do
loop” transfers the parameter bi(n) to the A-Accumulator
and the filter state x(n-i) to the Data Input Register X0.
Address Register R1 is incremented by one to point to
the next filter state. The MAC instruction multiplies the
filter state, in X0, by the product of the loop gain and the
error sample, in Y1, and adds the product to the A-Ac-
cumulator. The result in the A-Accumulator is the up-
dated parameter bi(n+1). The second Move instruction in
the “do loop” transfers the parameter bi(n+1) to the

Y-Memory location pointed to by the Address Register
R4. R4 is incremented by one to point to the next filter
parameter as shown in Figure 4. The LUA instruction
decrements R1 by one, and R1 then points to the state
variable buffer’s X-Memory location M-1. When the
algorithm is executed, a new (next) input sample x(n+1)
will overwrite the value in X-Memory location M-1.
Thus FIFO-like shifting of the filter state variables is
accomplished by adjusting the R1 address pointer as
shown in Figure 5.

Figure 3. Memory map and data registers after MACR
instruction

Figure 4. Memory map and data registers after last pass of
do loop

Copyright © 2010 SciRes JSEA

DSPs/FPGAs Comparative Study for Power Consumption, Noise Cancellation, and Real Time High Speed Applications 394

Figure 5. Memory map and data registers after LUA in-
struction

Consider the problem of finding the linear minimum
mean square estimate (LMMSE) of a zero-mean signal
vector, S, from a noisy zero-mean data vector, X = S + N,
where N denotes the additive noise vector. A LMMSE of
S is given in Equation (1), where A denotes a matrix of
filter coefficients as given in Equation (2).

Here, CSS and Cnn denote the covariance matrices of sig-
nal and noise, respectively. Notice that if X has a
non-zero mean vector, μ, Equation e becomes:

For point-wise processing of a non-stationary signal of a
local mean, µS, and local variance, σS

2, and the noise to
be zero-mean, white with a local variance, σn

2, the
point-wise LMMSE will be given by:

XAS (1)

 XCCCS nnSSSS
1 (2)

 XCCCS nnSSSS
1

 (3)

 S
nS

S
S xS

 2

22 (4)

σn

2 is constant, while σS
2 and μS vary with the time index,

k. Thus the filtered estimate at time, k can be written as:

 kkx
k

k
kS S

nS

S
S

22

2

 (5)

where μ (k) and σ 2(k) d

S S

of local mean and local variance
ad

 filtering.
Lee’s adaptive wiener filter suffers from

oising perform-
ance of the filter is improved by introducing a non-rec-
tangular window to process weighted dat
second, a scheme for online estimation of noise power is

observed data consists of predominantly low-frequency
signal components and additive white noise, the
can be modeled as a sum of the spectral density of the

enote the time varying estimates

 of S(k). An improved
 version of Lee’s aptive wiener filter has been proposed

by Das [4]. The main contributions of this algorithm in-
clude a better technique for estimation of noise variance,
and incorporation of a data window for adaptive

two major
 drawbacks. First, it requires prior knowledge of noise

power and second, its performance deteriorates when the
signal-to-noise ratio (SNR) is low and noise power is
imprecisely known. The improved wiener filter incorpo-
rates two modifications. First, the de-n

a samples and

incorporated which is based on analyzing the power
spectral density, S(ω), of the data. Assuming that the

n S(ω)

signal and a constant, σn
2, which represents the variance

of noise. The estimated σn
2 is the average value of the

high-frequency section of S(ω) [2]. The improved wiener
filter can be done in a fashion similar to that of Lee’s
wiener filter, but Equation (2) now takes the form S =
AWX, where A denotes a matrix of filter coefficients, and
W is a (diagonal) data weighting matrix. The LMMSE of
S is now given by Equation (6), where XW = WX, and
similarly, the point-wise LMMSE is given by

 WnnSSSS XCCCS 1 (6)

 SW
nS

S
S XS

22

2

 (7)

3. FPGAs Adaptive Filter Design

The efficient realization of complex algorithms on
FPGAs requires a familiarity with their specific archi-
tectures. The modifications needed to implement an al-
gorithm on an FPGA and also the specific architectures
for adaptive filtering and their advantages are given be-
low.

3.1 FPGA Realization Issues

FPGAs are ideally suited for the implementation of adap-
tive filters. However, there are several issues that need to
be addressed. When performing software simulations of
adaptive filters, calculations are normally carried out with
floating point precision. Unfortunately, the resources re-
quired of an FPGA to perform floating point arithmetic
are normally too large to be justified. A
the filter tap itself. Numerous techniques have been de-
vised to efficiently calculate the convolution
when the filter’s coefficients are fixed in advan

nother concern is

 operation
ce. For an

Copyright © 2010 SciRes JSEA

DSPs/FPGAs Comparative Study for Power Consumption, Noise Cancellation, and Real Time High Speed Applications 395

r time, these

ugh computing floating point arithmetic in FPGA is
d with the inclusion of

 costly in terms of

 deci-
 decimal places is ade-

for a given algorithm to

s only four bits. For simple convolution,
 then dividing the output

adaptive filter whose coefficients change ove
methods will not work or need to be modified signifi-
cantly [5]. The reconfigurable filter tap is the most im-
portant issue for high performance adaptive filter archi-
tecture, and as such it will be discussed at length.

3.2 Finite Precision Effects

Altho
possible, it is usually accomplishe
custom floating point units, which are
logic resources. Therefore, a small number of floating
point units can be used in the entire design, and must be
shared between processes. This does not take full advan-
tage of the parallelization that is possible with FPGAs
and is therefore not the most efficient method. All calcu-
lation should therefore be mapped into fixed point only,
but this can introduce some errors. The main errors in
DSP include ADC quantization error, coefficient quanti-
zation error, overflow error caused impermissible word
length, and round off error. The other three issues will be
addressed later.

3.2.1 Scale Factor Adjustment
A suitable compromise for dealing with the loss of preci-
sion when transitioning from a floating point to a fixed-
point representation is to keep a limited number of
mal digits. Normally, two to three
quate, but the number required
converge must be found through experimentation. When
performing software simulations of a digital filter for
example, it is determined that two decimal places is suf-
ficient for accurate data processing. This can easily be
obtained by multiplying the filter’s coefficients by 100
and truncating to an integer value. Dividing the output by
100 recovers the anticipated value. Since multiplying and
dividing be powers of two can be done easily in hard-
ware by shifting bits, a power of two can be used to sim-
plify the process. In this case, one would multiply by 128,
which would require seven extra bits in hardware. If it is
determined that three decimal digits are needed, then ten
extra bits would be needed in hardware, while one deci-
mal digit require
multiplying by a preset scale and
by the same scale has no effect on the calculation. For a
more complex algorithm, there are several modifications
that are required for this scheme to work [6]. The first
change needed to maintain the original algorithm’s con-
sistency requires dividing by a scale constant any time
and previously scaled values are multiplied together.
Consider, for example, the values a and b and the scale
constant s, the scaled integer values are represented by

as and bs . To multiply theses values requires divid-
ing by s to correct for the s2 term that would be intro-
duced and recover the scaled product ba .

 abss
bsas (8)

Likewise, division must be corrected with a subse-
quent multiplication. It should now be evident why a
power of two is chosen for the scale constant, since mul-
tiplication and division by power of two results in simple
bit shifting. Addition and subtraction require no addi-
tional adjustment. The aforementioned procedure must
be applied with caution, however, and does not work in
all circumstances. While it is perfectly legal to apply to
the convolution operation of a filter, it may need to be
tailored for certain aspects of a given algorithm. Consider
the tap-weight adaptation equation for the LMS algo-
rithm in Equation (9).

)()()(ˆ)1(ˆ nenunwnw (9)
where μ is the learning rate parameter; its purpose is to
control the speed of the adaptation process. The LMS

rithm i onvergent in the mean square provided in
Equation (10).
algo s c

MAX
 2

0 (10)

where MAX is the largest eigenvalue of the correla-
tion matrix Rx of the filter’s input. Typically this is a
fraction value and its product with the error term has the
effect of keeping the algorithm from diverging. If µ is
blindly multiplied by some scale factor and truncated to a
fixed-point integer, it will take on a value greater than
one. The affect will be to make the LMS algorithm di-
verge, as its inclusion will now amplify the added error
term. The heuristic adopted in this case is to divide by
the inverse value, which will be greater than one. Simi-
larly, division by values smaller than one should be re-
placed by multiplication with its inverse. The outputs of
the algorithm will then

need to be divided by th

obtain the true output. The following algorithm

Scale = accuracy rounded up to a power of two.
Multiply all constants by scal

vide by

e scale to
 describes

the fixed point conversion:
Determine Scale
Through simulations, find the needed accuracy (#

decimal places).

e
- Di scale when two scaled values are multi-

plied.
- Multiply by scale when two scaled values are di-

vided.
Replace
For multiplication by values less than 1
- Replace with division by the reciprocal value.
Likewise, for division by values less than 1
Replace with multiplication by the reciprocal value.

3.2.2 Training Algorithm Modification
The training algorithms for the adaptive filter need some
minor modifications in order to converge for a fixed-
point implementation. Changes to the LMS weight up-
date equation were discussed in the previous section.

Copyright © 2010 SciRes JSEA

DSPs/FPGAs Comparative Study for Power Consumption, Noise Cancellation, and Real Time High Speed Applications 396

Specifically, the learning rate µ and all other constants
should be multiplied by the scale factor. When µ is ad-
ju rm in Equation (11). With µ modifi-
ca

sted it takes the fo
tion weight update Equation (11) can be modified as in

Equation (12).

scale

̂
1

 (11)

̂
)()1(nwnw (12)

)()(nenu
ˆˆ

t form FIR structure has a delay that is de-
te tree, which is
de IR, on
th nd one
ad d-
va e-

idth. Figure 6

R structure is shown in Figure 6 and the
output y at any time n is given by Equation (13), where
nodes B and C are described
respectively.

Figure 7. Transposed form FIR structure

The direc
rmined by the depth of the output adder
pendent on the filter’s order. The transposed F

ier ae other hand, has a delay of only one multipl
der, regardless of the filter length. It is therefore a
ntageous to use the transposed form for FPGA impl

mentation to achieve maximum bandw
shows the direct and Figure 7 shows the transposed FIR
structures for a three tap filter. The relevant nodes have
been labeled A, B and C for a data flow analysis. Each
filter has three coefficients, and are labeled h0[n], h1[n]
and h2[n]. The coefficients’ subscript denotes the relevant
filter tap, and the n subscript represents the time index,
which is required since adaptive filters adjust their coef-
ficients at every time instance.

The direct FI

 in Equations (14) and (15)

Figure 6. Direct form FIR structure

][][][][][0 nBnhnxnAny (13)
][][]1[][1 nCnhnxnB

][]2[][2 nhnxnC

 (14)
 (15)

][]2[][]1[][][][210 nhnxnhnxnhnxny (16)

][][][k nhknxny

2

0

N

k

posed FIR str s shown i

 (17)

n Figure 7 and

The trans
the ou any time n en ow.

ucture i
 is giv

tput y at bel

]1[][][][0 nBnhnxny (18)

][][][1[] 1 nCxnB nhn (19)

][][][2 nhnxnC (20)
]2[]2]1[]1[][][][210 [nhxnhnxnhnxny n

(21)

2

][][][
N

k knhknxny

with the direct FIR output, the di

0k
 (22)

Compared

the [n-k] index of the coefficient indicates th
produce equivalent output only when the
don’t change with time. This means
architecture is used, the LMS algorithm will not con
verge differently from the direct implementation i
[7]. The change needed was to account for the weights as
shown in Equation (23). A suitable app
up

slower. Though simulations show that it nev
converges with as good results as the tr
algorithm. It may be acceptable still thou
increased bandwidth of the tran
high convergence rates are not re

fference in
 at the filters

 coefficients
if the transposed FIR

-
s used

roximation is to
date the weights at every N input, where N is the

length of the filter. This obviously will converge N times
h0[n]

er actually
aditional LMS
gh, due to the

 sposed form FIR, when
quired.

scale

nenu
nMwnMw

)()(
)(ˆ)1(ˆ

 (23)

3.3 Implementing Adaptive Noise Filter with
FPGAs

Adaptive noise filtering techniques are applied to low
frequency like voice signals, and high frequency signals
such as video streams, modulated data, and multiplexed
data coming from an array of sensors. Unfortunately in
all high frequency and high speed applications, a soft-
ware implementation of the adaptive noise filtering usu-
ally doesn’t meet the required processing speed, unless a
high end DSP processor is used. A convenient solution
can be represented by a dedicated hardware implementa-
tion using a Field Programmable Gate Array (FPGA). In
this case the limiting factor is represented by a number of

z-1

z-1

x A

h1[n]

h2[n]

B

C

y

h1[n]

x y A

h2[n]
C

B

z

h0[n]

-1

z-1

Copyright © 2010 SciRes JSEA

DSPs/FPGAs Comparative Study for Power Consumption, Noise Cancellation, and Real Time High Speed Applications

Copyright © 2010 SciRes JSEA

397

ultipliers. More-
over experimental data showed that the modified algo-
rithm achieves the same or even better performan
the standard LMS version. There are many possi

ost
IR)

digital filter, whose coefficients are iteratively updated

multiplications required by the adaptive noise cancella-
tion algorithm. By using a novel modified version of the
LMS algorithm, the proposed implementation allows the
use of a reduced number of hardware m

ces than
ble im-

plementations for an adaptive noise filter, but the m
widely used employs a Finite Impulse Response (F

using the LMS algorithm. The algorithm is described in
Equations (24) to (26), leading to the evaluation of the
FIR output, the error, and the weights update.

i
T
ii WXY (24)

iii YDe (25)
iiii XeWW 21 (26)

In the above equations, Xi is a vector containing the
reference noise samples, Di is the primary input signal,
Wi is the filter weights vector at the ith iteration, and ei is
the error signal. The µ coefficient is often empirically
chosen to optimize the learning rate of the LMS algo-
rithm. The hardware implementation of the algorithm in
an FPGA device is not trivial, since the FIR filter has not
constant coefficients, so multipliers cannot be synthe-
sized by using a look-up table (LUT) based approach.
This however, should be straightforward in FPGA archi-
tecture. Multipliers with changing inputs instead need to
be built by using a significantly greater number of inter-
nal logic resources (either elementary logic blocks or
embedded multipliers). In an Nth order filter the algo-
rithm requires at least 2N multiplications and 2N addi-
tions. Note the factor 2µ that is usually chosen to be a
power of two in order to be executed by shifting. This
makes it impractical for fully parallel hardware imple-

he value of N grows. This mentation of the algorithm as t
is due to the huge number of m
der to reduce the complexity of
weights update expression (Equation
as

pability of the filter. To overcome
this weakness, and significantly improve the
characteristics, a dynamic learning rate coefficient

t an adaptive filter whose order can
i-

ultipliers required. In or-
the algorithm, the
(26)) is simplified

 in Equation (27).

 iiiiii WXeWW sgn1 (27)

As a consequence the weights are updated using a
factor proportional to the error and the sign of the current

reference noise sample, instead of its value. This implies
that weights can be updated by using an addition (or sub-
traction) instead of a multiplication. This simplified al-
gorithm requires only N multiplications and 2N additions.
However the simplification of the weights update rule
usually results in worse learning performances, i.e. in a
slower adaptation ca

 learning
α has

been used. Generally this can be done by updating it with
an adaptive rule, or, by using a heuristic function. Simu-
lations of the above mentioned method shows that a dy-
namic learning rate gives an advantage not only in the
learning characteristics, but also in the accuracy of the
final solution (in term of improvement of the signal to
noise ratio of the steady state solution). The product αei
is used to update all weights; only one additional multi-
plication is required.

3.4 Architecture for Implementation on FPGA

The architecture of the adaptive noise filtering based on
the modified LMS algorithm is shown in Figure 8. It was
designed to implement 32 tap adaptive noise filter in a
medium density FPGA device. It has a modular and
scalable structure composed by 8 parallel stages, each
one capable of executing 1 to 4 multiply and accumulate
(MAC) operations and weights update. By controlling
the number of operation performed by each block it is
possible to implemen
range from 8 to 32. In the first case, by exploiting max
mum parallelism, the filter is capable of processing a
data sample per clock cycle. In the other cases 2 to 4
clock cycles are requested. Some FPGA’s internal RAM
blocks were used to implement the tap delays and to
store weights coefficients. Each weights update block is
mainly composed by an adder/subtractor accumulator.
The weights update coefficients Δi are computed by a
separated block, which also handles the learning rate
update function, following the above mentioned heuristic
algorithm, and implements its multiplication with the
error signal. By slightly modifying this unit, a more so-
phisticated adaptive function, can be easily obtained, thus
enhancing the performances of the adaptive noise filter-
ing for non stationary signals.

he modified LMS filterFigure 8. Architecture of t

DSPs/FPGAs Comparative Study for Power Consumption, Noise Cancellation, and Real Time High Speed Applications 398

4. Simulations and Results

Adaptive noise filters have been implemented on DSPs
and FPGAs. Motorola DSP56303 has been used for DSP
platform, while Xilinx Spartan III boards are used to im-
plement FPGA adaptive noise filtering. Matlab Simulink
has been used to test the effectiveness and correctness of
the adaptive filters before hardware implementation.

4.1 Matlab Simulink Simulations and Results

To test the theory and see the impro
er that is proposed by
ugh Matlab Simulink.

tool
ise

vements visually that
is proposed by Das, the adaptive filt
Lee and Das has been compares thro
(see Figure 9)

The target simulink model is responsible for code gen-
eration where as the host simulink model is responsible
for testing. The host drives the target model with heavy
wavelet noisy test data consisting of 4096 samples gen-
erated from wnoise function in Matlab. Matlab’s fda
is used for designing the bandpass filter to color the no
source. A colored Gaussian noise is then added to the
input test signal. This noisy signal and the reference
noise are inputs to the terminal of the LMS filter Simu-
link block. Figure 10 Desired Signal (top), received

Figure 9. Block diagram of Matlab Simulink

Figure 10. Desired signal

signal (middle), output (bottom) This code has been im-
plemented in C programming language. The LMS filter
is placed in the virtual internal ram of the simulink model.
In the code, breakpoints are placed in the corresponding
section of the code where FIR filtering takes place. It
takes 46, 213 and 266 clock cycles to run the filtering
section. The time computation would be the clock cycles
measured, divided by 225 MHz, which is the virtual
clock speed. The execution time is 20 s. The imple-
mentation of LMS filter takes worst case time of 38.95

iltering of heavy sine noisy signal
consisting of 4096 samples per frame. Figure 11 shows
the comparison between the Das proposal of the wiener
filter and the Lee’s wiener filter proposal in the signal to
noise ratio aspect. As it can be seen from the Figure 11
the performance for the Das proposal is higher than the
Lee’s wiener filter. The improved adaptive wiener filter
provides SNR improvement from 2.5 to 4 dB as com-
pared to Lee’s adaptive wiener filter.

4.2 Motorola DSP56300 Results

The DSP system consists of two analog-to-digital (A/D)
converters, and two digital-to-analog converters (D/A)
converters. The DSP56303EVM evolution module is
used to provide and control the DSP56300 processor, the
two A/D converters, and the two D/A converters. The left
analog input sig sired in t sig-

5 m

ms to compute the f

nal x(t) consists of the de pu
nal s(n) plus a white noise signal w(n). The left analog
input signal x(t) is first digitized using the A/D converter
on the evaluation board. DSP Processor executes the
adaptive filter algorithm to process the left digitized in-
put signal x(n), the left and right output signals y1(n) and
y2(n) will be generated. The left output signal y1(n) is the
error signal. The right output signal y2(n) is the filtered
version of the left digitized input signal x(n), which is an
estimate of the desired input signal s(n). The two D/A
converters on the evaluation board are then used to con-
vert the left and right digital output signals y1(n) and y2(n)
to the left and right analog output signals y1(t) and y2(t).

Figure 11. SNR performance comparison between Lee and
Das proposals

Copyright © 2010 SciRes JSEA

DSPs/FPGAs Comparative Study for Power Consumption, Noise Cancellation, and Real Time High Speed Applications 399

The continuous analog signal was sampled at a rate of
twice the highest frequency present in the spectrum of the
sampled analog signal in order to accurately recreate the
analog audio signal from the discrete samples. The analog
audio signal was mixed with noise using a sum block
which is bound to occur when the audio signal passes
through the channel. The noise however, first low pass
passed filter using a finite impulse response filter to make
it finite in bandwidth. FIR noise filter was observed to
have little or no significant effect on the signal with noise.
The information bearing signal is a sine wave of

sample

cycles
055.0 is shown in Figure 12. The noise picked

p by the secondary microphone is the input for the adap-u
tive filter as shown in Figure 13. The noise that corrupts
the sine wave is a low pass filtered version of the noise.
The sum of the filtered noise and the information bearing
signal is the desired signal for the adaptive filter. The
noise corrupting the information bearing signal is a fil-
tered version of noise as shown in the Figure 14. Figure
15 shows that the adaptive filter converges and follows
the desired filter response. The filtered noise should be
completely subtracted from the signal noise combination
and the error signal should only have the original signal.
The results can be seen in Figures 12 to 16.

Figure 12. Plot showing the input signal

Figure 13. Plot of the noise signal

Figure 14. Noise corrupting the original

Figure 15 ponse to
the respon

. Convergence of the adaptive filter res
se of the FIR filter

V
ol

ta
ge

 (
V

)

 signal

Figure 1 l signal

4.3 Xilinx Spartan III Results

The algorithm for adaptive filtering were coded in Mat-
lab experimented to determine optimal parameters
such the learning rate for the LMS algorithm. After the
para ters have been determined, algorithms were coded
for Xilinx in VHDL language.

4.3.1 Standard LMS Al Results
The d t was
corrupted by a higher frequency sinusoid and random
Gaussian noise with a signal to noise ratio of 5.86 dB.
The input signal can be seen in Figure 17. A direct form
FIR filter of length 32 is used to filter the input signal.
The adaptive is trained with the LMS algorithm with a
learning rate

6. Plot of the error and the origina

and
 as
me

gorithm
esired signal output was a sine wave, and i

05.0 . It appears that the filter with the
standard LMS has learned the signal statistics
and is filtering within 200-250 iterations. Since t e re-

 that the clock for standard
LMS algorithm is 25 MHz. The input and output sig-
nals f he standard LMS algorithms are given in Fig-
ures and 18.

4.3.2 odified LMS Algorithm Results
The se reduction obtained by both the standard LMS
algorithm and the modified algorithm as applied to a sta-

algorithm
h

sults have shown that the standard LMS algorithm re-
moves the noise from the signal, the next section. The
timing analyzer has showed

or t
 17

 M
noi

Figure 17. Input signal for standard LMS algorithm

V
ol

ta
ge

 (
V

)
V

ol
ta

ge
 (

V
)

V
ol

ta
ge

 (
V

)

V
o

e
(V

)
) Time (s

lt
ag

Time (s)

Time (s)

Time (s) Time (s)

Copyright © 2010 SciRes JSEA

DSPs/FPGAs Comparative Study for Power Consumption, Noise Cancellation, and Real Time High Speed Applications 400

Figure 18. Output signal for standard LMS algorithm

tionary signal composed by 3 frequencies, corrupted by a
random Gaussian noise, with signal to noise ratio of 5.86
dB were studied. Both algorithms used 16 bit fixed point
representation for data and filter coefficients [14]. The
frequency spectrum of the original signal, standard LMS,
and modified LMS filter are given in Figure 19. The
modified LMS used a dynamic learning rate coefficient α
based on a heuristic function formerly proposed by
Widrow [8], and consisted of 1/n decaying function, co-
efficients were approximated by a piecewise linear curve,
starting from the value 0.1 down to 0.001 (in about 1000

aster conver-

the standard LMS used a static learning rate with the best
performances obtained by setting the µ parameter equal

. The two algorithms reported noise attenuation
ater than 40 dB and 36 dB respectively. As can be
n from the two learning characteristics in Figure 20

steps). This heuristic function achieved a f
gence, and les gradient noise. It has proved to be effec-
tive when applied to stationary signals. On the other hand

to 0.05
gre
see

Figure 19. Frequency Spectrum of a signal processed with
the standard and modified LMS

Figure 20. Learning Characteristics of both LMS algo-

the modified LMS offered a faster convergence. A large
class of signals (either stationary or short term stationary)

rithms

nd noises showed similar simulation results. The adap-
tive noise filtering was implemented using a 16 bit 2’s
complement fixed point representation for samples and
weights. As it can be seen in Figure 5, the floor planned
design required 1776 slices (logic blocks) of 3072 avail-
able (about 57%), and allowed a running clock frequency
of 50 MHz (with a non optimized, fully automatic place
& route process). It would require 2750 slices (89%) and
would run at less than 25 MHz (due mainly to routing
congestion). The Assembly file used for the simulation is
given in Appendix A. The assembly code is provided
elsewhere [26].

s discussed in the previous chapters, the concept of the
adaptive noise filtering applications can be implemented
in both DSP processors like Motorola DSP56300 series
and also in the Field Programmable Gate Array such as
Xilinx Spartan III boards. In high performance signal
processing applications, FPGAs have several advantages
over high end DSP processors. Literature survey has
showed that high-end FPGAs have a huge throughput
advantage over high performance DSP processors for
certain types of signal processing applications. FPGAs
use highly flexible architectures that can be greatest ad-
vantage over regular DSP processors. However, FP As

ith more gates FPGAs can process more
e time. Thus power consumption per

a

5. Conclusions

A

G
come with a hardware cost. The flexibility comes with a
great number of gates, which means more silicon area,
more routing and higher power consumption. DSP proc-
essors are highly efficient for common DSP tasks, but the
DSP typically takes only a tiny fraction of the silicon
area, which is dedicated for computation purposes. Most
of the area is designated for instruction codes and data
moving. In high performance signal processing applica-
tions like video processing, FPGAs can take highly par-
allel architectures and offer much higher throughput as
compared to DSP processors. As a result FPGA’s overall
energy consumption may be significantly lower than
DSP processors, in spite of the fact that their chip level
power consumption is often higher. DSP processors can
consume 2-3 watts, while the FPGAs can consume in the
order of 10 watts. The pipeline technique, more compu-
tation area and w
channels at the sam
channel is significantly less in the FPGA’s [15]. DSPs
are specialized forms of microprocessor, while the
FPGA’s are form of highly configurable hardware. In the
past, the usage of DSPs has been nearly ubiquitous, but
with the needs of many applications outstripping the
processing capabilities (MIPS) of DSPs, the use of
FPGAs has become very prevalent. It has generally come
to be expected that all software, (DSP code is considered
a type of software) will contain some bugs and that the

V
o

Time (s)

lt
ag

e
(V

)

Copyright © 2010 SciRes JSEA

DSPs/FPGAs Comparative Study for Power Consumption, Noise Cancellation, and Real Time High Speed Applications 401

best can be done is to minimize them. Common DSP
software bugs are caused because of, failure of interrupts
to completely restore processor state upon completion,
non-uniform assumptions regarding processor resources
by multiple engineers simultaneously developing and
integrating disparate functions, blocking of critical inter-
rupt by another interrupt or by an uninterruptible process,
undetected corruption or non-initialization of pointers,
failing to properly initialize or disable circular buffering
addressing modes, memory leaks, the gradual consump-
tion of available volatile memory due to failure of a
thread to release all memory when finished, dependency
of DSP routines on specific memory arrangements of
variables, use of special DSP “core mode” instruction
options in core, conflict or excessive latency between
peripheral accesses, such as DMA, serial ports, L1, L2,
and external SDRAM memories, corrupted stack or
semaphores, subroutine execution times dependent on
input data or configuration, mixture of “C” or high-level
language subroutines with assembly language subroutines,
and pipeline restrictions of some assembly instructions
[15]. Both FPGA and DSP implementation routes offer
the option of using third party implementation for com-
mon signal processing algorithms, interfaces and proto-
cols. Each offers the ability to reuse existing IP in the
future designs. FPGA’s are more native implementation
for more DSP algorithms. Figures 21 and 22 give the
block diagrams of the DSP and FPGA respectively.

Motorola DSP56300 series can only do one arithmetic

Figure 21. Digital signal processor block diagram

Figure 22. FPGA’s block diagram

computation and two move instructions at a time. How-
ever, in the case of FPGAs, each task can be computed
by its own configurable core and designated input and
output interface.

5.

Speed is one of the most important concepts that deter-
mine the computation time and also it is one of the most
important concepts in the market. In the adaptive filters
the parameters are updated with the each iteration and
after the each iteration the error between the input and
the desired signal get smaller. After some number of it-
erations the error becomes zero and the desired signal is
achieved. According to the specifications from the
manufacturer manuals, Motorola DSP56300 series has a
CPU clock of 100 MHz, but this speed depend on the
instruction fetch, computation speed and also the speed
of th au-
dio codec runs on 24.57 MHz, this clock speed is deter-
mined by an external crystal. In the other hand Xilinx
Spartan 3 has the maximum clock frequency of 125 MHz,
but this speed can be reduced because of the number of
instruction ns, gates and the congestion on the routing of
the signals. Both of the modified adaptive noise filtering
applications take about 200-250 iterations to cancel the
noise and achieve the desired signal. In the Motorola
DSP processor case because of the actual clock speed
being lower, causality conditions and the speed limitation
that is coming from the audio codec part of e board, the
running time is 20 MHz.

e clock to be faster.

s

1 Speed Comparison

e peripherals. On the DSP56303EVM board the

 th
 of the modified LMS algorithm

in the case of the FPGA’s the running speed is around
50 MHz. This due to discussions from the previous sec-
tion, which is FPGA’s flexibility and reconfigurable
gates allows for th

5.2 General Conclusion

As discussed in the previous sections, we have shown the
differences between the DSP processors and FPGAs. As
far as power and cost are considered, DSP processors in
general have lower power consumption, which makes
them suitable for battery powered applications. These
applications can be done on audio applications. These
voice applications are very straight forward and do not
require sophisticated pipeline and parallel moves. Audio
applications can be different filter applications. These are
used especially in the voice transmission lines and cell
phones. When it comes to the high frequency applica-
tions, DSP processors have some restrictions on their part
when they are compared to the FPGAs. In high speed
applications, FPGA’s are much faster than the DSP
processors. When it comes to high speed applications,
the DSP boards have some limitations when compared to
the FPGAs. FPGAs can offer more channels, and thus
when cost per channel is considered because FPGAs can

Copyright © 2010 SciRes JSEA

DSPs/FPGAs Comparative Study for Power Consumption, Noise Cancellation, and Real Time High Speed Applications 402

offer more channels, the cost per channel is lower than
the DSP’s. Also the partitioning of the FPGA’s can
offer more throughputs as compared to DSP processors.
Thus FPGAs can handle multiple tasks when their con-
trols and finite state machines are configured correctly.

According to our study, the final conclusion is that for
simple audio applications like adaptive noise cancelling,
Motorola DSP56300 is more beneficial, because the re-
quirements for audio applications are met with DSP
processors. Also they are more power efficient and can

devices. But when adaptive
in high speed applications

y & Sons,

tions,” Proceedings of the IEEE, Vol. 63,

[9] S. M. Kuo and Noise Control: A
rial Review,” EEE, Vol. 87, No.

3, pp. 351-354.

n Speech and Audio Process-

n-

-IIIE 1.8V FPGA Family: Func-

r VLSI

national Associa-

l Conference on Signal and Image Processing,

dvanced Systems, Kuala

ral Networks, Vol.

cal Signal Process-

be used for battery powered
noise filtering is considered
like video streaming and multiplexed array signals,
FPGA’s are offering a faster approach and thus they are
more suitable for high frequency applications.

5.3 Future Work

In the future, the adaptive noise filtering can be imple-
mented on high frequency applications, such as noise
removal from video streaming and noise removal from
multiplexed data arrays. These applications may be ap-
plied first to FPGAs with Verilog HDL or VHDL. After
application has been verified, hardware code can be
converted to a net list and thru Synopsys a custom ASIC
design can created. The ASIC design and FPGA design
may be compared in the aspect of cost, power, architec-
ture, noise removal and speed. These comparisons would
be helping us to provide us a more educated choice for
future applications.

REFERENCES

[1] A. Di Stefano, A. Scaglione and C. Giaconia, “Efficient
FPGA Implementation of an Adaptive Noise Canceller,”
Proceedings Seventh International Workshop on Com-
puter Architecture for Machine Perception, Palermo, 2005,
pp. 87-89.

[2] M. El-Sharkawy, “Digital Signal Processing Applications
with Motorola's DSP56002 Processor,” Prentice Hall,
Upper Saddle River, 1996.

[3] K. Joonwan and A. D. Poularikas, “Performance of Noise
Canceller Using Adjusted Step Size LMS Algorithm,”
Proceedings of the Thirty-Fourth Southeastern Sympo-
sium on System Theory, Huntsville, 2002, pp. 248-250.

[4] R. M. Mersereau and M. J. T. Smith, “Digital Filtering A
Computer Laboratory Textbook,” John Wile
Inc., New York, 1994.

[5] J. Proakis and D. Manolakis, “Digital Signal Processing
Principles, Algorithms, and Applications,” 4th Edition,
Pearson Prentice Hall, Upper Saddle River, 2007.

[6] G. Saxena, S. Ganesan and M. Das, “Real Time Imple-
mentation of Adaptive Noise Cancellation,” EIT 2008
IEEE International Conference on Electro/Information
Technology, Ames, 2008, pp. 431-436.

[7] K. L. Su, “Analog Filters,” Chapman & Hall, London,

1996.

[8] B. Widrow, J. R. Glover, Jr., J. M. McCool, J. Kaunitz, C.
S. Williams, R. H. Hearn, J. R. Zeidler, Eugene Dong, Jr.,
and R. C. Goodlin, “Adaptive Noise Cancelling: Princi-
ples and Applica
1975, pp. 1692-1716.

 D. R. Morgan, “Active
 Proceedings of the ITuto

6, June 1999, pp. 943-973.

[10] K. C. Zangi, “A New Two-Sensor Active Noise Cancella-
tion Algorithm,” IEEE International Conference on
Acoustics, Speech, and Signal Processing, Minneapolis,
Vol. 2, 199

[11] A. V. Oppenheim, E. Weinstein, K. C. Zangi, M. Feder,
and D. Gauger, “Single-Sensor Active Noise Cancella-
tion,” IEEE Transactions o
ing, Vol. 2, 1994, pp. 285-290.

[12] T. H. Yeap, D. K. Fenton and P. D. Lefebvre, “Novel
Common Mode Noise Cancellation Techniques for xDSL
Applications,” Proceedings of the 19th IEEE Instrume
tation and Measurement Technology Conference, An-
chorage, Vol. 2, 2002, pp. 1125-1128.

[13] Xilinx Corp., “Spartan
tional Description,” November 2002.

[14] B. Dukel, M. E. Rizkalla and P. Salama, “Implementation
of Pipelined LMS Adaptive Filter for Low-Powe
Applications,” The 45th Midwest Symposium on Circuits
and Systems, Tulsa, Vol. 2, 2002, pp. II-533- II-536.

[15] M. Das, “An Improved Adaptive Wiener Filter for
De-noising and Signal Detection,” Inter
tion of Science and Technology for Development, Inter-
nationa
Honolulu, 2005, p. 258.

[16] K. Schutz, “Code Verification using RTDX,” MathWorks
Matlab Central File Exchange.

[17] S. Haykin, “Adaptive Filter Theory,” Englewood Cliffs,
Prentice Hall, Upper Saddle River, 1991.

[18] D. L. Donoho and J. M. Johnstone, “Ideal Spatial Adapta-
tion by Wavelet Shrinkage,” Biometrika, Vol. 81, 1 Sep-
tember 1994, pp. 425-455.

[19] J. Petrone, “Adaptive Filter Architectures for FPGA Im-
plementation,” Master’s Thesis, Department of Electrical
and Computer Engineering, Florida State University, Tal-
lahassee, 2004.

[20] S. Manikandan and M. Madheswaran, “A New Design of
Adaptive Noise Cancellation for Speech Signals Using
Grazing Estimation of Signal Method,” International
Conference on Intelligent and A
Lumpur, 2007, pp. 1265-1269.

[21] K. Chang-Min, P. Hyung-Min, K. Taesu, C. Yoon-Kyung
and L. Soo-Young, “FPGA Implementation of ICA Algo-
rithm for Blind Signal Separation and Adaptive Noise
Canceling,” IEEE Transactions on Neu
14, 2003, pp. 1038-1046.

[22] S. M. Kay, “Fundamentals of Statisti

Copyright © 2010 SciRes JSEA

DSPs/FPGAs Comparative Study for Power Consumption, Noise Cancellation, and Real Time High Speed Applications

Copyright © 2010 SciRes JSEA

403

CE Thesis, Purdue Uni-

p #ntaps-1
ac x0,y0,a x:(r1)+,x0 y:(r4)+,y0
acr x0,y0,a x:(r1),b
ove a,x:foutput
b a,b

op
ove b,x:ferror

py x1,y1,b

x0

put,b
r r,a

ing,” Prentice Hall, Upper Saddle River, 1996.

[23] J.-S. Lee, “Digital Image Enhancement and Noise Filter-
ing by Use of Local Statistics,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-2, versity, Lafayette, 2009.

1980, pp. 165-168.

[24] Alon Halim, “Real Time Noise Cancellation Field Pro-
grammable Gate Arrays,” MSE

 endm
stafir macro ntaps,lg,foutput,ferror
lr a x0,x:(r1)+ y:(r4)+,y0

Appendix A

init_filter macro

move #states,r1
 move #ntaps-1,m1
 move #coef,r4
 move #ntaps-1,m4

c
re
m
m
m
su
n
m
move #lg,y1
move b,x1
m
move b,y1
do #ntaps,_update
move y:(r4),a x:(r1)+,
mac x0,y1,a
move a,y:(r4)+
_update
lua (r1)-,r1
nop
move x:fout
move x:fe ro
endm

J. Software Engineering & Applications, 2010, 3: 404-408
doi:10.4236/jsea.2010.34045 Published Online April 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

Intelligent Supply Chain Management

Mohammad Zubair Khan1, Omar Al-Mushayt1, Jahangir Alam2, Jorair Ahmad1

1Faculty of Computer Science and Information System, University of Jizan, Jizan, Kingdom of Saudi Arabia; 2University Women’s
Polytechnic, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India.
Email: Zubair.762001@gmail.com, oalmushayt@yahoo.com, Jahangir.uk786@yahoo.co.uk

Received December 27th, 2009; revised January 31st, 2010; accepted February 5th, 2010.

ABSTRACT

Fuzzy Logic is used to derive the optimal inventory policies in the Supply Chain (SC) numbers. We examine the per-
formance of the optimal inventory policies by cutting the costs and increasing the supply chain management efficiency.
The proposed inventory policy uses multi-agent and Fuzzy logic, and provides managerial insights on the impact of the
decision making in all the SC numbers. In particular, we focus on the way in which our agent purchases components
using a mixed procurement strategy (combining long and short term planning) and how it sets its prices according to
the prevailing market conditions and its own inventory level (because this adaptivity and flexibility are key to its suc-
cess). In modern global market, one of the most important issues of the supply chain (SC) management is to satisfy
changing customer demands and enterprises should enhance the long-term advantage through the optimal inventory
control. In this paper an intelligent multi-agent system to simulate supply chain management has been developed.

Keywords: SCM Supply Chain Management, Customer Agent, RFQ, Component Agent

1. Background and Introduction

1.1 Supply Chain Management
Supply chains encompass the companies and the business
activities needed to design, make, deliver, and use a
product or service. Businesses depend on their supply
chains to provide them with what they need to survive
and thrive [1-3]. Every business fits into one or more
supply chains and has a role to play in each of them [3,4].
A multiechelon supply chain is illustrated in Figure 1. It
includes different types of flows i.e. financial flow, In-
formation flow and material flow. Third party logistics
(3PL) services providers (3PL is an organization that
manages and executes a particular logistics function,
using its own assets and resources, on behalf of another
company.) handle the inbound and outbound logistics for
the shipper (The person or company who is usually the
supplier or owner of commodities shipped). The inbound
logistics take care of the material management while the
outbound logistics deal with physical distribution of final
products. The term “supply chain management” arose in
the late 1980s and came into widespread use in the 1990s.
Prior to that time, businesses used terms such as “logis-
tics” and “operations management” instead. Some defini-
tions of a supply chain are offered below:
 “A supply chain is the alignment of firms that bring

products or services to market.”—Lambert, Stock, and
Ellram (1998).

 “A supply chain consists of all stages involved, di-
rectly or indirectly, in fulfilling a customer request. The
supply chain not only includes the manufacturer and
suppliers, but also transporters, warehouses, retailers, and
customers themselves.”—Chopra and Meindl (2001).
 “A supply chain is a network of facilities and distri-

bution options that performs the functions of procure-
ment of materials, transformation of these materials into
intermediate and finished products, and the distribution
of these finished products to customers.”—Ganeshan and
Harrison (1995).

Master strategist and a skillful general Napoleon once
remarked, “An army marches on its stomach.” Which
holds true in business, as it moves on physical flow of
materials, another saying that goes is also valid for the
business, “Amateurs talk strategy and professionals talk
logistics” [5-7].

Thus, we can say that Supply chain management is a
set of approaches used to efficiently integrate suppliers,
manufacturers, warehouses, and customers so that mer-
chandise is produced and distributed at the right quanti-
ties, to the right locations, and at the right time in order
to minimize system wise costs while satisfying service-
level requirements.

Supply chain management (SCM) is the task that
moves in a process from supplier to manufacturer to
wholesaler to retailer to consumer [1,4]. Supply chain
management involves coordinating and integrating these

Intelligent Supply Chain Management 405

SUPPLIERS MANUFACTURERS DISTRIBUTORS RETAILERS CUSTOMERS

Inbound Logistics Outbound Logistics

Material Management Physical Distribution

3PL Services Providers
Flow of Information

Flow of Goods

Flow of Finance along with Information

ULTIMATE
SUPPLIERS

Figure 1. The supply chain process

flows both within and among companies [2,8]. It is said
that the ultimate goal of any effective supply chain man-
agement system is to reduce inventory (with the assump-
tion that products are available when needed).

Supply chain management flows can be divided into
three main flows:
 The product flow
 The information flow
 The finances flow

The need of Supply chain Management in today’s
scenario is:
 Millions of dollars at stake!
 Excess Inventory costs
 Excess freight charges
 Lost sales/Stock outages
 Wasted time and energy
 Extra staff
 Listings/Delisting
 Customer dissatisfaction – privatization
 Capital costs
 Real Estate Costs
 Static and unresponsive SC policies
 Large inventories
 Unreliable deliveries
• Underperformance

1.2 Fuzzy Logic

Fuzzy logic is a form of multi-valued logic derived from
fuzzy set theory to deal with reasoning that is approxi-
mate rather than precise. Just as in fuzzy set theory the
set membership values can range (inclusively) between
any values, in fuzzy logic the degree of truth of a
statement can range between any values and is not
constrained to the two truth values {true, false} as in
classic predicate logic [1]. And when linguistic variables
are used, these degrees may be managed by specific
functions, as discussed below.

Fuzzy Set Theory defines Fuzzy Operators on Fuzzy
Sets. The problem in applying this is that the appropriate
Fuzzy Operator may not be known. For this reason,
Fuzzy logic usually uses IF-THEN rules, or constructs

that are equivalent, such as fuzzy associative matrices.
Rules are usually expressed in the form: IF variable IS
property THEN action.

For example, an extremely simple temperature regulator
that uses a fan might look like this: If temperature IS
very cold THEN stop fan. If temperature is cold THEN
turn down fan. If temperature IS normal THEN maintain
level. IF temperature IS hot THEN speed up fan. Notice
there is no “ELSE”. All of the rules are evaluated,
because the temperature might be “cold” and “normal” at
the same time to different degrees. This paper proposes a
multi-agent system to simulate supply chain management
using the concepts of fuzzy logic. The rest of the paper is
organizes as follows—Section 2 presents the proposed
model, Methodology adopted conducting the experi-
ments and results so obtained have been discussed in
Section 3. Section 4 concludes the paper.

2. Proposed Model

The proposed SCM model has been depicted in Figure 2.
In our model we are introducing the customer agent and
Customer RFQ (Request for Quantities). The customer
agent receives customer RFQ requesting a quantity of a
particular commodity for delivery on a specified day.
The customer agent is the key component while compo-
nent agent is responsible for dealing with the component
suppliers and aims to ensure that there are always suffi-
cient components in stock to address the customers’
changing demand for finished products.

In our model we propose customer agent only and
leave the component agent for future studies.

2.1 The Customer Agent

The customer agent is the key component in our model
(because we believe that offering the appropriate price at
the right time is vital for success). If the price is too low,
the agent will receive a low profit and if it is too high it
will fail to win any orders (because the natural tendency
of customers is to always choose the lowest offer price
among those they receive). Given this, the key challenges
are to determine which customer RFQ to bid for and at

Copyright © 2010 SciRes JSEA

http://en.wikipedia.org/wiki/Multi-valued_logic
http://en.wikipedia.org/wiki/Fuzzy_set
http://en.wikipedia.org/wiki/Reasoning
http://en.wikipedia.org/wiki/Fuzzy_set_theory
http://en.wikipedia.org/wiki/Membership_function_(mathematics)
http://en.wikipedia.org/wiki/Predicate_logic
http://en.wikipedia.org/wiki/#cite_note-0
http://en.wikipedia.org/wiki/Fuzzy_associative_matrix

Intelligent Supply Chain Management 406

Figure 2. The SCM model

what price. To achieve this, we use fuzzy reasoning [9,10]
to determine how to set prices according to the agent’s
inventory level, the market demand and the time into
consideration.

2.2 Choosing Customer RFQ’s

The customer agent receives customer RFQs requesting a
quantity of a particular commodity for delivery on a
specified day [2,8,11]. When selecting which RFQs to
respond to, Our ISCM rates them according to the poten-
tial profit that they may bring and according to the in-
ventory it holds. The latter inventory driven strategy of-
fers customers commodity according to what is currently
available and also what can be produced given the deliv-
ery date of pending components orders. In more detail,
suppose a customer RFQ is represented as a tuple (i, q,
pres, cpenalty, pbase), where i is the type of commodity
the customer wants, q > 0 is the quantity, pres > 0 is the
reservation price (maximum it will pay), cpenalty > 0 is
the fine paid if the computers are not delivered on time,
and ddue is the desired delivery date. On each day, the
customer agent receives a bundle of such RFQs and sorts
them in the decreasing order of the profit margin of the
type of commodity requested. Here pbase is the cost of
buying components (sum of the buying price for each
component). The intuition is that the agent will first serve
customers with high profit margins and low penalties.
This is because the higher the pres, the more profit will
be made (compared to selling the same product to a cus-
tomer with a low pres). At the same time, the agent also
wants to avoid getting high penalty orders because of the
inherent uncertainties that exist in the scenario.

Profit Margin = Pres-Pbase-(cpenalty/q)

3. Methodology

We are applying the Fuzzy logic if-else algorithm using

the following rules and simulated it using available data.
Here we define fuzzy rules and then revisited the rules
for our goal.

3.1 Fuzzy Rules for Calculating Offer Prices

 R1: if D is high and I is low then r1 is very-big
 R2: if D is medium and I is high then r2 is

very-medium
 R3: if D is low and I is high then r3 is small

3.2 Fuzzy Rules Revisited

 If D is high I is High E is far then r1` is big.
 If D is high I is High E is in between then r2` is big.
 If D is high I is High E is near then r3` is big.

3.3 The Component Agent

The component agent is responsible for dealing with the
component suppliers and aims to ensure that there are
always sufficient components in stock to address the cus-
tomers’ changing demand for finished products. In doing
so, it addresses a challenge that is common to all supply
chains facing dynamically changing customer demand.
That is, it must procure components at a low cost, whilst
simultaneously maintaining a minimal component inven-
tory in order to reduce the daily storage cost and also the
possibility of being left with redundant stock if customer
demands changes.

Types of procurements
 Far future procurement
 Near Future Procurement

3.3.1 Far Future Procurement
Of the two strategies, the far future procurement one is
the simpler. For this, the agent assumes that in the far
future, there will be a daily minimum need, and thus
checks whether there is sufficient current and pending

Copyright © 2010 SciRes JSEA

Intelligent Supply Chain Management 407

component inventory to meet this need. If not, it submits
an RFQ for a fixed amount to the relevant supplier, re-
questing delivery on the date at which the predicted in-
ventory falls below the daily minimum need.

3.3.2 Near Future Procurement
The near future procurement strategy is more complex. It
consists of two elements, a daily demand predictor that
predicts the future demand of components, and a market
tracker that generates the RFQs to be sent to the suppliers,
both to order actual components required and to test the
market to discern the most profitable order lead time and
set appropriate reserve price

3.4 Demand Predictor

As described above, the agent buys components for the
near future based on a prediction of customer demand.
Now, according to the game specification, the number of
RFQs that each agent receives from the customers is de-
scribed by three independent random walks; one for each
market segment (finished products are classified into
three such segments: high, mid and low range). In more
detail, the number of RFQs that an agent receives, within
a single market segment, on day d is denoted by Nd, and
is drawn from a Poisson distribution whose expected
value is given by the parameter, Qd. Thus, for each mar-
ket segment,

Nd = Poisson(Qd)

Having predicted the number of RFQs that will be re-
ceived, within each market segment, on each day within
the near future, the agent then calculates the expected
daily usage of each component type (Did).

3.5 Price Tracker

The price tracker acts to maintain an estimate of the cur-
rent market price of the components. Due to the behav-
iors of the competing agents, this market price depends
on the due date with which components are requested.
For example, if the competing agents are ordering com-
ponents with very short lead times, then the supplier will
have little spare capacity, and thus, the corresponding
offer prices that the agent receives will be greater than
those of orders with long lead times.

3.6 Factory Agent

One of the main challenges for the factory agent is
scheduling what to produce and when to produce it (i.e.,
how to allocate supply resources and factory time).

This strategy involves manufacturing commodities
according to customer orders and satisfying orders with
an earlier delivery date. Now, since the computers stored
in the factory will be charged storage cost, each order
will be delivered as soon as it is filled. The agent builds
the commodity according to the customers’ orders it has
obtained (which has the advantage of ensuring that the

factory always produces the needed computers on time).
However, if on any day, there are still free factory as-
sembling cycles available, and the numbers of finished
PCs in stock are below a certain threshold, then the agent
produces additional PCs of each kind uniformly (subject
to the availability of components) in order to maximize
the factory utilization. It is critical that this threshold is
set appropriately; a high threshold will lead to excessive
finished PC inventory, which may be hard to sell if de-
mand is low.

3.7 Simulated Results

Profit
Margin

Inventory
End of sea-

son
Predictors
Decision

High High Far yes

High High In Between yes
High High Near yes
High Medium Far yes
High Medium In Between yes
High Medium Near no
High Low Far yes
High Low In Between no
High Low Near no

Medium High Far yes
Medium High In Between yes
Medium High Near yes
Medium Medium Far yes
Medium Medium In Between yes
Medium Medium Near no
Medium Low Far no
Medium Low In Between no
Medium Low Near no

Low High Far no
Low High In Between no
Low High Near yes
Low Medium Far no
Low Medium In Between no
Low Medium Near no
Low Low Far no
Low Low In Between no
Low Low Near no

4. Conclusions

This mixture of baseline and opportunistic purchasing
behavior is a common strategy in this domain and the
technology we develop for achieving this can be readily
transferred. Second, we believe our pricing model tech-
nology will also be useful in real SCM applications
where just undercutting competitors’ prices can signifi-
cantly improve profitability. Specifically, to apply our
model in other domains, the designers of the rule base
would need to adapt the fuzzy rules to reflect the factors
that are most relevant. Now we believe that customer
demand and inventory level are highly likely to be criti-
cal factors for almost all cases and thus these rules can
remain unaltered.

By using different rule bases, different factors can eas-
ily be incorporated (as we did here, in order to handle the
additional need to reduce inventory towards the end of
the season). The purpose model also will use in this area

Copyright © 2010 SciRes JSEA

Intelligent Supply Chain Management

Copyright © 2010 SciRes JSEA

408

focuses on the component agent. We would like to im-
prove it so that it can adapt the quantity for far future and
near future procurement automatically between the sea-
sons according to the procurement behaviors employed
by the opponents.

REFERENCES

[1] J. Collins, R. Arunachalam, et al., “The Supply Chain
Management Game for the 2005 Trading Agent Competi-
tion,” Technical Report CMU-ISRI-04-139, School of
Computer Science, Carnegie Mellon University, Pitts-
burgh, December 2004.

[2] S. D. Levi, P. Kaminsky and S. E. Levi, “Designing and
Managing the Supply Chain,” McGraw-Hill, Illinois,
2000.

[3] D. Pardoe and P. Stone, “TacTex-03: A supply Chain
Management Agent,” SIGecom Exchanges: Special Issue
on Trading Agent Design and Analysis, Vol. 4, No. 3,
2004, pp. 19-28.

[4] K. Kumar, “Technology for Supporting Supply-Chain
Management,” Communications of the ACM, Vol. 44, No.
6, pp. 58-61, 2001.

[5] D. Pardoe and P. Stone, “Predictive Planning for Supply
Chain Management,” Proceedings of International Con-

ference on Automated Planning and Scheduling, to appear.

[6] M. Sugeno, “An Introductory Survey of Fuzzy Control,”
Information Sciences, Vol. 36, 1985, pp. 59-83.

[7] M. Wellman, J. Estelle, S. Singh, et al., “Strategic Inter-
actions in a Supply Chain Game,” Computational Intelli-
gence, Vol. 21, No. 1, 2005, pp. 1-26.

[8] M. He, H. F. Leung and N. R. Jennings, “An ARTMAP
Based Bidding Strategy for Autonomous Agents in Con-
tinuous Double Auctions,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 15, No. 6, 2003,
pp. 1345-1363.

[9] R. Arunachalam and N. Sadeh, “The Supply Chain Trad-
ing Agent Competition,” Electronic Commerce Research
and Applications, Vol. 4, No. 1, 2005, pp. 63-81.

[10] J. Collins, R. Arunachalam, N. Sadeh, J. Ericsson, N.
Finne and S. Janson, “The Supply Chain Management
Trading Agent Competition,” Technical Report CMU-
ISRI-04-139, Carnegie Mellon University, Pittsburgh,
2004.

[11] M. He, N. R. Jennings and H. Leung, “On Agent-Medi-
ated Electronic Commerce,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 15, No. 4, 2003,
pp. 985-1003.

J. Software Engineering & Applications, 2010, 3: 409-418
doi:10.4236/jsea.2010.34046 Published Online April 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

409

Designing a Fuzzy Expert System to Evaluate
Alternatives in Fuzzy Analytic Hierarchy Process

Hamed Fazlollahtabar1, Hamid Eslami2, Hamidreza Salmani2

1Mazandaran University of Science and Technology, Babol, Iran; 2Science and Research Campus, Islamic Azad University, Member
of Young Researchers Club, Tehran, Iran.
Email: hamed@ustmb.ac.ir

Received June 23rd, 2009; revised July 18th, 2009; accepted July 25th, 2009.

ABSTRACT

This paper concerns with proposing a fuzzy logic based expert system to breakthrough the problem of alternatives
evaluation in Analytic Hierarchy Process (AHP). AHP as a multi criteria decision aid helped decision makers for ana-
lyzing and prioritizing the alternatives in a hierarchical structure. During times AHP encountered some problems.
Hence, fuzzy analytic hierarchy process (FAHP) and some other extensions of AHP have been configured to solve those
problems.

Keywords: Multi Criteria Decision Making (MCDM), Analytic Hierarchy Process (AHP), Expert System

1. Introduction

Analytic hierarchy process (AHP) [1] has been widely
used as a useful multiple criteria decision making
(MCDM) tool or a weight estimation technique in many
areas such as selection, evaluation, planning and devel-
opment, decision making, forecasting, and so on [2]. The
AHP is expressed by a unidirectional hierarchical rela-
tionship amongst decision levels. The top element of the
hierarchy is the overall goal for the decision model. The
hierarchy decomposes to a more specific criterion on a
level and each criterion may be related to some subcrite-
ria. The AHP separates complex decision problems into
elements within a simplified hierarchical system.

The AHP usually consists of three stages of problem
solving: decomposition, comparative judgments, and
synthesis of priority. The decomposition stage aims at the
construction of a hierarchical network to represent a de-
cision problem, with the top level representing the over-
all objectives and the lower levels representing the crite-
ria, subcriteria, and alternatives. With comparative
judgments, users are requested to set up a comparison
matrix at each hierarchy by comparing pairs of criteria or
subcriteria. A scale of values ranging from 1 (Equally
Preferred) to 9 (Extremely Preferred), is used to express
the users preferences. Finally, in the synthesis of priority
stage, each comparison matrix is then solved by an ei-
genvector method for determining the importance of the
criteria and alternative performance.

One major advantage of AHP is its applicability to the

problems of group decision-making. In a group decision
setting, each participant is required to set up the prefer-
ence of each alternative by the AHP and the collective
views of the participants are used to obtain an average
weighting of each alternative.

The traditional AHP requires crisp judgments. However,
due to the complexity and uncertainty involved in real
world decision problems, a decision maker (DM) may
sometimes feel more confident to provide fuzzy judgments
than crisp comparisons. A number of methods have been
developed to handle fuzzy comparison matrices. For ex-
ample, Van Laarhoven and Pedrycz [3] suggested a fuzzy
logarithmic least squares method (LLSM) to obtain trian-
gular fuzzy weights from a triangular fuzzy comparison
matrix. Wang et al. [4] presented a modified fuzzy
LLSM.

Buckley [5] utilized the geometric mean method to
calculate fuzzy weights. Chang [6] proposed an extent
analysis method, which derives crisp weights for fuzzy
comparison matrices. Xu [7] brought forward a fuzzy
least squares priority method (LSM). Mikhailov [8] de-
veloped a fuzzy preference programming method (PPM),
which also derives crisp weights from fuzzy comparison
matrices. Csutora and Buckley [9] came up with a
Lambda-Max method, which is the direct fuzzification of
the well-known kmax method.

Among the above approaches, the extent analysis me-
thod has been employed in quite a number of applica-
tions [10-28] due to its computational simplicity. How-
ever, such a method is found unable to derive the true

Designing a Fuzzy Expert System to Evaluate Alternatives in Fuzzy Analytic Hierarchy Process 410

weights from a fuzzy or crisp comparison matrix. The
weights determined by the extent analysis method do not
represent the relative importance of decision criteria or
alternatives at all. Therefore, it should not be used as a
method for estimating priorities from a fuzzy pairwise
comparison matrix. The purpose of this paper is to show
by examples that the priority vectors determined by the
extent analysis method do not represent the relative im-
portance of decision criteria or alternatives and that the
misapplication of the extent analysis method to fuzzy
AHP problems may lead to a wrong decision to be made
and some useful decision information such as decision
criteria and fuzzy comparison matrices not to be consid-
ered. We illustrate these problems to avoid any possible
misapplications in the future. Here, we compare the
Fuzzy AHP with a proposed expert system and illustrate
our proposed expert system in an example.

2. Review of the Extent Analysis Method on Fuzzy
AHP

A triangular fuzzy number is represented by ~a

, with the membership function,),,(uml)(~ xa , defined

by the expression,

mx
u

mx

mx
l

xm

xa

)(1

)(1
)(~

where m is the center, l is the left spread and u is the right

spread. For two triangular fuzzy number

 and the fuzzy operations

are defined as follows:

~
1M

),,(111 uml),,(
~

2222 umlM

),,(
~~

21212121 uummllMM

),,(
~~

21212121 uummllMM

)
1

,
1

,
1

(
~

),
1

,
1

,
1

(
~

222

1
2

111

1
1 lmu

M
lmu

M

Consider a triangular fuzzy comparison matrix ex-
pressed by

 nnijMA)
~

(
~

)1,1,1(...),,(),,(
.

.

.

.

.

.

.

.

.

.

.

.
),,(...)1,1,1(),,(

),,(...),,()1,1,1(

222111

222212121

111121212

nnnnnn

nnn

nnn

umluml

umluml

umluml

where)
1

,
1

,
1

(~),,(~ 1

jijiji
jiijijijij lmu

aumla , for i,j =

1,…,n and . ji
To calculate a priority vector of the above triangular

fuzzy comparison matrix, Chang [9] suggested an extent
analysis method, which is summarized as follows.

Firstly, sum up each row of the fuzzy comparison ma-

trix A
~

 by fuzzy arithmetic operations:

.,...,1),,~,~,
~

(
~

1111

niumlMRS
n

j
ij

n

j
ij

n

j
ij

n

j
iji

Secondly, normalize the above row sums by

.,...,1,

~

,

~

,

~

~

1 1

1

1 1

1

1 1

1

1

ni

l

u

m

m

u

l

RS

RS
S

n

k

n

j
kj

n

j
ij

n

k

n

j
kj

n

j
ij

n

k

n

j
kj

n

j
ij

n

j
j

i
i

Thirdly, compute the degree of possibility of ji SS
~~

by the following equation:

other

ijnjiulif
lmmu

lu
mmif

ssV ij
jjii

ji

ji

ji

,0

;,...,1,,,
)()(

,1

)~~(

where),,(
~

iiii umlS and . The defini-

tion of possibility degree is shown in Figure 1.

),,(
~

jjjj umlS

Fourthly, calculate the degree of possibility of iS
~

over

all the other (n - 1) fuzzy numbers by ,

.

1
~~

(jSSV ji

),...,1),

~~
(min);...,

,,...,1
niSSVijn ji

ijnj

Finally, define the priority vector T
nwwW),...,(1 of

the fuzzy comparison matrix A
~

 as

.,...,1,

;,...,1
~~

;,...,1
~~

1

ni

kjnjSSV

ijnjSSV
w

n

k
jk

ji
i

It must be pointed out that the normalization formula
is wrong. The correct normalization formula for a set of
triangular fuzzy weights should be as follows:

)(x

iS
~

jS
~

)
~~

(ji SSV

Figure 1. Definition of the degree of possibility of

)
~~

(ji SSV

Copyright © 2010 SciRes JSEA

Designing a Fuzzy Expert System to Evaluate Alternatives in Fuzzy Analytic Hierarchy Process 411

,,
~

~

1 1

1

,1 11

1

1

m

m

ul

l

RS

RS
S

n

k

n

j
kj

n

j
ij

n

ikk

n

j
kj

n

j
ij

n

j
ij

n

j
j

i
i

.,...,1,

,1 11

1 ni

lu

u

n

ikk

n

j
kj

n

j
ij

n

j
ij

Although Fuzzy AHP solved some of the problems of
AHP, but still some problems arises:

Problem 1. The extent analysis method may assign a
zero weight to a decision criterion or alternative, leading
to the criterion or alternative not to be considered in de-
cision analysis.

Problem 2. The weights determined by the extent
analysis method do not represent the relative importance
of decision criteria or alternatives and cannot be used as
their priorities.

Problem 3. The extent analysis method may make a
wrong decision and select the worst decision alternative
as the best one when it is misused for solving a fuzzy
AHP problem.

Problem 4. The extent analysis method cannot make
full use of all the fuzzy comparison matrices information
and may cause some useful fuzzy comparison matrices
information to be wasted when it assigns an irrational
zero weight to some useful decision criteria or
sub-criteria.

Therefore, we propose an expert system which func-
tions based on fuzzy logic, to improve decision making
in uncertainties.

3. Fuzzy Logic

Fuzzy Logic (FL) is a problem-solving control system
methodology that lends itself to implementation in sys-
tems ranging from simple, small, embedded micro-
controllers to large, networked, multi-channel PC or
workstation-based data acquisition and control systems. It
can be implemented in hardware, software, or a combina-
tion of both. FL provides a simple way to arrive at a defi-
nite conclusion based upon vague, ambiguous, imprecise,
noisy, or missing input information. FL’s approach to
control problems mimics how a person would make deci-
sions, only much faster.

FL incorporates a simple, rule-based IF X AND Y
THEN Z approach to a solving control problem rather
than attempting to model a system mathematically. The
FL model is empirically-based, relying on an operator’s
experience rather than their technical understanding of
the system.

FL requires some numerical parameters in order to
operate such as what is considered significant error and

significant rate-of-change-of-error, but exact values of
these numbers are usually not critical unless very respon-
sive performance is required in which case empirical
tuning would determine them. For example, a simple
temperature control system could use a single tempera-
ture feedback sensor whose data is subtracted from the
command signal to compute “error” and then time-
differentiated to yield the error slope or rate-of-change-
of-error, hereafter called “error-dot”. Error might have
units of degs F and a small error considered to be 2 F
while a large error is 5 F. The “error-dot” might then have
units of degs/min with a small error-dot being 5 F/min
and a large one being 15 F/min. These values don’t have
to be symmetrical and can be “tweaked” once the system
is operating in order to optimize performance. Generally,
FL is so forgiving that the system will probably work the
first time without any tweaking.

FL works as follows:
1) Define the control objectives and criteria: What am

I trying to control? What do I have to do to control the
system? What kind of response do I need? What are the
possible (probable) system failure modes?

2) Determine the input and output relationships and
choose a minimum number of variables for input to the
FL engine (typically error and rate-of-change-of-error).

3) Using the rule-based structure of FL, break the con-
trol problem down into a series of IF X AND/OR Y
THEN Z rules that define the desired system output re-
sponse for given system input conditions. The number
and complexity of rules depends on the number of input
parameters that are to be processed and the number fuzzy
variables associated with each parameter. If possible, use
at least one variable and its time derivative. Although it
is possible to use a single, instantaneous error parameter
without knowing its rate of change, this cripples the sys-
tem’s ability to minimize overshoot for a step inputs.

4) Create FL membership functions that define the
meaning (values) of Input/Output terms used in the rules.

5) Create the necessary pre- and post-processing FL
routines if implementing in S/W, otherwise program the
rules into the FL H/W engine.

6) Test the system, evaluate the results, tune the rules
and membership functions, and retest until satisfactory
results are obtained.

In 1973, Professor Lotfi Zadeh proposed the concept
of linguistic or “fuzzy” variables. Think of them as lin-
guistic objects or words, rather than numbers. The sensor
input is a noun, e.g. “temperature”, “displacement”, “ve-
locity”, “flow”, “pressure”, etc. Since error is just the
difference, it can be thought of the same way. The fuzzy
variables themselves are adjectives that modify the vari-
able (e.g. “large positive” error, “small positive” error,
“zero” error, “small negative” error, and “large negative”
error). As a minimum, one could simply have “positive”,
“zero”, and “negative” variables for each of the parame-

Copyright © 2010 SciRes JSEA

Designing a Fuzzy Expert System to Evaluate Alternatives in Fuzzy Analytic Hierarchy Process 412

ters. Additional ranges such as “very large” and “very
small” could also be added to extend the responsiveness
to exceptional or very nonlinear conditions, but aren’t
necessary in a basic system. Here, using fuzzy logic we
define some rules that help the student to select the opti-
mal department, course and teacher based on his age,
average grade and skills.

4. Expert Systems

Knowledge-based systems are systems based on the me-
thods and techniques of Artificial Intelligence. Their core
components are the knowledge base and the inference
mechanisms. Some particular types of knowledge-based
systems are expert systems, case-based reasoning sys-
tems and neural networks.

Expert Systems (ES) are computer programs that are
derived from a branch of computer science research
called Artificial Intelligence (AI). AI’s scientific goal is
to understand intelligence by building computer pro-
grams that exhibit intelligent behavior. It is concerned
with the concepts and methods of symbolic inference, or
reasoning, by a computer, and how the knowledge used
to make those inferences will be represented inside the
machine.

Of course, the term intelligence covers many cognitive
skills, including the ability to solve problems, learn, and
understand language; AI addresses all of those. But most
progress to date in AI has been made in the area of prob-
lem solving; concepts and methods for building programs
that reason about problems rather than calculate a solu-
tion.

AI programs that achieve expert-level competence in
solving problems in task areas by bringing to bear a body
of knowledge about specific tasks are called knowl-
edge-based or expert systems. Often, the term expert
systems is reserved for programs whose knowledge base
contains the knowledge used by human experts, in con-
trast to knowledge gathered from textbooks or
non-experts. More often, the two terms, expert systems
(ES) and knowledge-based systems (KBS), are used
synonymously. Taken together, they represent the most
widespread type of AI application. The area of human
intellectual endeavor to be captured in an expert system
is called the task domain. Task refers to some
goal-oriented, problem-solving activity. Domain refers to
the area within which the task is being performed. Typi-
cal tasks are diagnosis, planning, scheduling, configura-
tion and design.

Building an expert system is known as knowledge en-
gineering and its practitioners are called knowledge engi-
neers. The knowledge engineer must make sure that the
computer has all the knowledge needed to solve a prob-
lem. The knowledge engineer must choose one or more
forms in which to represent the required knowledge as
symbol patterns in the memory of the computer, that is, he

(or she) must choose a knowledge representation. He
must also ensure that the computer can use the knowledge
efficiently by selecting from a handful of reasoning me-
thods.

Every expert system consists of two principal parts:
the knowledge base; and the reasoning, or inference, en-
gine. The knowledge base of expert systems contains
both factual and heuristic knowledge. Factual knowledge
is that knowledge of the task domain that is widely
shared, typically found in textbooks or journals, and
commonly agreed upon by those knowledgeable in the
particular field.

Today there are two ways to build an expert system.
They can be built from scratch, or built using a piece of
development software known as a “tool” or a “shell”.
Before we discuss these tools, let's briefly discuss what
knowledge engineers do. Though different styles and me-
thods of knowledge engineering exist, the basic approach
is the same: a knowledge engineer interviews and ob-
serves a human expert or a group of experts and learns
what the experts know, and how they reason with their
knowledge. The engineer then translates the knowledge
into a computer-usable language, and designs an inference
engine, a reasoning structure, that uses the knowledge
appropriately. He also determines how to integrate the use
of uncertain knowledge in the reasoning process, and
what kinds of explanation would be useful to the end user.

Next, the inference engine and facilities for represent-
ing knowledge and for explaining are programmed, and
the domain knowledge is entered into the program piece
by piece. It may be that the inference engine is not just
right; the form of knowledge representation is awkward
for the kind of knowledge needed for the task; and the
expert might decide the pieces of knowledge are wrong.
All these are discovered and modified as the expert sys-
tem gradually gains competence.

The discovery and accumulation of techniques of ma-
chine reasoning and knowledge representation is gener-
ally the work of artificial intelligence research. The dis-
covery and accumulation of knowledge of a task domain
is the province of domain experts. Domain knowledge
consists of both formal, textbook knowledge, and expe-
riential knowledge—the expertise of the experts.

Compared to the wide variation in domain knowledge,
only a small number of AI methods are known that are
useful in expert systems. That is, currently there are only
a handful of ways in which to represent knowledge, or to
make inferences, or to generate explanations. Thus, sys-
tems can be built that contain these useful methods
without any domain-specific knowledge. Such systems
are known as skeletal systems, shells, or simply AI tools.

Building expert systems by using shells offers signifi-
cant advantages. A system can be built to perform a
unique task by entering into a shell all the necessary
knowledge about a task domain. The inference engine

Copyright © 2010 SciRes JSEA

Designing a Fuzzy Expert System to Evaluate Alternatives in Fuzzy Analytic Hierarchy Process

Copyright © 2010 SciRes JSEA

413

corporate know-how so that it can be widely distributed to
other factories, offices or plants of the company.

that applies the knowledge to the task at hand is built into
the shell. If the program is not very complicated and if an
expert has had some training in the use of a shell, the
expert can enter the knowledge himself.

 Introduction of new products. A good example of a
new product is a pathology advisor sold to clinical pa-
thologists in hospitals to assist in the diagnosis of dis-
eased tissue.

Many commercial shells are available today, ranging
in size from shells on PCs, to shells on workstations, to
shells on large mainframe computers. They range in price
from hundreds to tens of thousands of dollars, and range
in complexity from simple, forward-chained, rule-based
systems requiring two days of training to those so com-
plex that only highly trained knowledge engineers can
use them to advantage. They range from general-purpose
shells to shells custom-tailored to a class of tasks, such as
financial planning or real-time process control.

An expert system tool, or shell, is a software develop-
ment environment containing the basic components of
expert systems. Associated with a shell is a prescribed
method for building applications by configuring and in-
stantiating these components. Some of the generic com-
ponents of a shell are shown in Figure 2 and described
below. The core components of expert systems are the
knowledge base and the reasoning engine.

Knowledge base: A store of factual and heuristic
knowledge. An ES tool provides one or more knowledge
representation schemes for expressing knowledge about
the application domain. Some tools use both frames (ob-
jects) and IF-THEN rules. In PROLOG the knowledge is
represented as logical statements.

Although shells simplify programming, in general they
don't help with knowledge acquisition. Knowledge ac-
quisition refers to the task of endowing expert systems
with knowledge, a task currently performed by knowl-
edge engineers. The choice of reasoning method, or a
shell, is important, but it isn’t as important as the accu-
mulation of high-quality knowledge. The power of an
expert system lies in its store of knowledge about the
task domain—the more knowledge a system is given, the
more competent it becomes. Primarily, the benefits of
ESs to end users include:

Reasoning engine: Inference mechanisms for ma-
nipulating the symbolic information and knowledge in
the knowledge base to form a line of reasoning for solv-
ing a problem. The inference mechanism can range from
simple modus pones backward chaining of IF-THEN
rules to case-based reasoning. A speed-up of human professional or semi-professional

Knowledge acquisition subsystem: A subsystem to
help experts build knowledge bases. Collecting knowl-
edge needed to solve problems and build the knowledge
base continues to be the biggest bottleneck in building
expert systems.

work—typically by a factor of ten and sometimes by a
factor of a hundred or more.

 Within companies, major internal cost savings. For
small systems, savings are sometimes in the tens or hun-
dreds of thousands of dollars; but for large systems, often
in the tens of millions of dollars and as high as hundreds
of millions of dollars. These cost savings are a result of
quality improvement, a major motivation for employing
expert system technology.

Explanation subsystem: A subsystem that explains
the system’s actions. The explanation can range from
how the final or intermediate solutions were arrived at to
justifying the need for additional data.

User interface: The means of communication with the
user. The user interface is generally not a part of the ES
technology, and was not given much attention in the past.
However, it is now widely accepted that the user inter-
face can make a critical difference in the perceived utility
of a system regardless of the system’s performance.

 Improved quality of decision making. In some cases,
the quality or correctness of decisions evaluated after the
fact show a ten-fold improvement.

 Preservation of scarce expertise. ESs are used to pre-
serve scarce know-how in organizations, to capture the
expertise of individuals who are retiring, and to preserve

Figure 2. Basic components of expert system tools

Designing a Fuzzy Expert System to Evaluate Alternatives in Fuzzy Analytic Hierarchy Process414

5. Comparison between Expert System and
Fuzzy AHP

Expert system has been applied for ranking [29]. Expert
system in comparison with fuzzy AHP has the following
advantages:

 The alternatives are analyzed using quantitative and
qualitative criteria without normalization process

 More than seven alternatives can be processed
against AHP which encountered problems in pairwise
comparisons [30].

 By entrance of new alternatives, the ranking of the
alternatives do not change

 The fuzzy expert system is able to consider a stan-
dard in evaluating the alternatives

 It is possible to apply group decision making of the
experts in evaluating the alternatives

 The capability of sensitivity analysis for all the al-
ternatives

 No limitation for evaluating many criteria
 The mistakes in computations such as the zero result

will not occur in expert system
 The possibility of evaluating the alternatives using

both quantitative and qualitative criteria
 The possibility of evaluating the alternatives while

some information about some criteria are missing
 The possibility of keeping the same membership

during the process of decision making [31].
In an expert system a membership function is pro-

posed for criteria regarding to the experts idea. To pro-
pose an expert system the following steps should be tak-
en:

1) Determining the objective, alternatives and criteria
2) Identifying the input and output variables
3) Proposing membership functions for input and out-

put variables
4) Proposing rules to determine the relations between

inputs and outputs
5) Selecting an appropriate inference mechanism
6) Placement of alternatives corresponding to each

criteria
7) Extracting the evaluation result by the proposed

expert system
8) Sensitivity analysis of evaluated alternatives
Net section presents a numerical illustration to indicate

the application of the proposed expert system.

6. Numerical Illustrations

Here, we illustrate the proposed expert system in priori-
tizing four brands of mobile phone. We analyze HAD, IC,
TA, HAM as alternatives using the criteria services,
power of antenna, prestige, and price. The hierarchy of
the model is shown in Figure 3.

The linguistic variables for criteria and their corresponded
membership functions are as follows (Figures 4-9).

Figure 3. The hierarchy of the model

Figure 4. The inputs and outputs

Considering the experts the price has a Gaussian
membership function with minimum price of 5000 and
maximum of 700000.

For the power of antenna linguistic triangular fuzzy
number (high, medium, low) is considered.

M
em

be
rs

hi
p

V
al

ue

Figure 5. Price membership function

M
em

be
rs

hi
p

V
al

ue

Figure 6. The power of antenna membership function

M
em

be
rs

hi
p

V
al

ue

Figure 7. Services membership function

Copyright © 2010 SciRes JSEA

Designing a Fuzzy Expert System to Evaluate Alternatives in Fuzzy Analytic Hierarchy Process

Copyright © 2010 SciRes JSEA

415

5-If services is low Then rating low.

6-If services is high Then rating high.
7-If the_power_of_antenna is high Then rating
high.

M

em
be

rs
hi

p
V

al
ue

8-If the_power_of_antenna is low Then rating
low.
9-If the_power_of_antenna is medium Then rat-
ing low.
10-If price is medium Then rating high.
11-If price is very high Then rating low.

Figure 8. Prestige membership function
12-If price is low Then rating high.
13-If prestige is very low Then rating low.

14-If prestige is medium Then rating me-
dium.

M

em
be

rs
hi

p
V

al
ue

15-If prestige is very high Then rating high
Regarding to the proposed rules of the expert system,

we evaluate the alternatives as follows. To facilitate the
computations MATLAB package has been applied (Ap-
pendix A).
TA
Price: 200
Services: medium

Figure 9. Rating membership function Power of antenna: high
Prestige: medium The output of the system which is the evaluation result,

is a combined linguistic fuzzy number with a Gaussian
membership function for medium and triangular fuzzy
membership function for high and low.

Output: 0.518
The graphical presentation is shown in Figure 10.

IC
Price: 15 Regarding to the experts and taking the criteria into

considerations, the following rules are derived: Services: low
Power of antenna: high 1-If price is high Then rating medium.
Prestige: low 2-If price is very low Then rating low.
Output: 0.51 3-If services is high Then rating high.

The graphical presentation is shown in Figure 11. 4-If services is medium Then rating low.

Figure 10. The rule viewer for TA

Designing a Fuzzy Expert System to Evaluate Alternatives in Fuzzy Analytic Hierarchy Process 416

Figure 11. The rule viewer for IC

Figure 12. The rule viewer for HAD

Figure 13. The rule viewer for HAM

Copyright © 2010 SciRes JSEA

Designing a Fuzzy Expert System to Evaluate Alternatives in Fuzzy Analytic Hierarchy Process 417

HAD
Price: 500
Services: high
Power of antenna: high
Prestige: very high
Output: 0.654

The graphical presentation is shown in Figure 12.
HAM
Price: 200
Services: high
Power of antenna: high
Prestige: high
Output: 0.641

The graphical presentation is shown in Figure 13.
The ranking indicates the importance degree of each mo-
bile brand.

7. Conclusions

In this paper, we developed a fuzzy expert system on the
basis of rule base fuzzy logic to overcome the problems
in AHP and Fuzzy AHP. The advantages of using expert
system to prioritize the alternatives in comparison with
fuzzy AHP are discussed. To present the validity and
effectiveness of the proposed expert system a numerical
example is illustrated.

REFERENCES
[1] T. L. Saaty, “Multicriteria Decision Making: The Ana-

lytic Hierarchy Process,” RWS Publications, Pittsburgh,
1988.

[2] O. S. Vaidya and S. Kumar, “Analytic Hierarchy Process:
An Overview of Applications,” European Journal of Op-
erational Research, Vol. 169, 2006, pp. 1-29.

[3] P. J. M. Van Laarhoven and W. Pedrycz, “A Fuzzy Ex-
tension of Saaty’s Priority Theory,” Fuzzy Sets and Sys-
tems, Vol. 11, 1983, pp. 229-241.

[4] Y. M. Wang, T. M. S. Elhag and Z. S. Hua, “A Modified
Fuzzy Logarithmic Least Squares Method for Fuzzy Ana-
lytic Hierarchy Process,” Fuzzy Sets and Systems, Vol.
157, 2006, pp. 3055-3071.

[5] J. J. Buckley, “Fuzzy Hierarchical Analysis,” Fuzzy Sets
and Systems, Vol. 17, 1985, pp. 233-247.

[6] D. Y. Chang, “Applications of the Extent Analysis Me-
thod on Fuzzy AHP,” European Journal of Operational
Research, Vol. 95, 1996, pp. 649-655.

[7] R. Xu, “Fuzzy Least-Squares Priority Method in the
Analytic Hierarchy Process,” Fuzzy Sets and Systems, Vol.
112, 2000, pp. 359-404.

[8] L. Mikhailov, “Deriving Priorities from Fuzzy Pairwise
Comparison Judgments,” Fuzzy Sets and Systems, Vol.
134, 2003, pp. 365-385.

[9] R. Csutora, and J. J. Buckley, “Fuzzy Hierarchical Analy-
sis: The Lamda-Max Method,” Fuzzy Sets and Systems,
Vol. 120, 2001, pp. 181-195.

[10] F. T. Bozbura and A. Beskese, “Prioritization of Organ-
izational Capital Measurement Indicators Using Fuzzy
AHP,” International Journal of Approximate Reasoning,
Vol. 44, 2007, pp. 124-147.

[11] F. T. Bozbura, A.Beskese and C. Kahraman, “Prioritiza-
tion of Human Capital Measurement Indicators Using
Fuzzy AHP,” Expert Systems with Applications, Vol. 32,
2007, pp. 1100-1112.

[12] C. E. Bozdag, C. Kahraman and D. Ruan, “Fuzzy Group
Decision Making for Selection among Computer Inte-
grated Manufacturing Systems,” Computers in Industry,
Vol. 51, 2003, pp. 13-29.

[13] G. Bu¨yu¨ko¨zkan, “Multi-Criteria Decision Making for
E-Marketplace Selection,” Internet Research, Vol. 14, No.
2, 2004, pp. 139-154.

[14] G. Bu¨yu¨ko¨zkan, T. Ertay, C. Kahraman and D. Ruan,
“Determining the Importance Weights for the Design
Requirements in the House of Quality Using the Fuzzy
Analytic Network Approach,” International Journal of
Intelligent Systems, Vol. 19, 2004, pp. 443-461.

[15] G. Bu¨yu¨ko¨zkan, C. Kahraman and D. Ruan, “A Fuzzy
Multi-Criteria Decision Approach for Software Devel-
opment Strategy Selection,” International Journal of
General Systems, Vol. 33, 2004, pp. 259-280.

[16] F. T. S. Chan and N. Kumar, “Global Supplier Development
Considering Risk Factors Using Fuzzy Extended AHP
Based Approach,” Omega, Vol. 35, 2007, pp. 417-431.

[17] T. Ertay, G. Bu¨yu¨ko¨zkan, C. Kahraman and D. Ruan,
“Quality Function Deployment Implementation Based on
Analytic Network Process with Linguistic Data: An Ap-
plication in Automotive Industry,” Journal of Intelligent
and Fuzzy Systems, Vol. 16, 2005, pp. 221-232.

[18] Y. C. Erensal, T. O¨ ncan and M. L. Demircan, “Deter-
mining Key Capabilities in Technology Management Us-
ing Fuzzy Analytic Hierarchy Process: A Case Study of
Turkey,” Information Sciences, Vol. 176, 2006, pp. 2755-
2770.

[19] C Kahraman, U. Cebeci and D. Ruan, “Multi-Attribute
Comparison of Catering Service Companies Using Fuzzy
AHP: The Case of Turkey,” International Journal of
Production Economics, Vol. 87, 2004, pp. 171-184.

[20] C. Kahraman, U. Cebeci and Z. Ulukan, “Multi-Criteria
Supplier Selection Using Fuzzy AHP,” Logistics Infor-
mation Management, Vol. 16, No. 6, 2003, pp. 382-394.

[21] C. Kahraman, T. Ertay, and G. Bu¨yu¨ko¨zkan, “A Fuzzy
Optimization Model for QFD Planning Process Using
Analytic Network Approach,” European Journal of Op-
erational Research, Vol. 171, 2006, pp. 390-411.

[22] C. Kahraman, D. Ruan and I. Dogan, “Fuzzy Group De-
cision-Making for Facility Location Selection,” Informa-
tion Sciences, Vol. 157, 2003, pp. 135-153.

[23] O. Kulak and C. Kahraman, “Fuzzy Multi-Attribute Se-
lection among Transportation Companies Using Axio-
matic Design and Analytic Hierarchy Process,” Informa-
tion Sciences, Vol. 170, 2005, pp. 191-210.

[24] C. K. Kwong, and H. Bai, “Determining the Importance

Copyright © 2010 SciRes JSEA

Designing a Fuzzy Expert System to Evaluate Alternatives in Fuzzy Analytic Hierarchy Process

Copyright © 2010 SciRes JSEA

418

Weights for the Customer Requirements in QFD Using a
Fuzzy AHP with an Extent Analysis Approach,” IIE
Transactions, Vol. 35, 2003, pp. 619-626.

[25] Y. C. Tang and M. Beynon, “Application and Develop-
ment of a Fuzzy Analytic Hierarchy Process within a
Capital Investment Study,” Journal of Economics and
Management, Vol. 1, 2005, pp. 207-230.

[26] E. Tolga, M. L. Demircan and C. Kahraman, “Operating
System Selection Using Fuzzy Replacement Analysis and
Analytic Hierarchy Process,” International Journal of
Production Economics, Vol. 97, 2005, pp. 89-117.

[27] F. Tu¨ysu¨ z, and C. Kahraman, “Project Risk Evaluation
Using a Fuzzy Analytic Hierarchy Process: An Applica-
tion to Information Technology Projects,” International
Journal of Intelligent Systems, Vol. 21, No. 6, 2006, pp.
559-584.

[28] K. J. Zhu, Y. Jing and D. Y. Chang, “A Discussion on
Extent Analysis Method and Application of Fuzzy AHP,”
European Journal of Operational Research, Vol. 116,
1999, pp. 450-456.

[29] S. Malagoli, C. A. Magni and G. Mastroleo, “The Use of
Fuzzy Logic and Expert Systems for Rating and Pricing
Firms,” Social Science Research Network, Vol. 33, No.
11, 2007, pp. 77-120.

[30] E. Turban, J. E. Aronson and T. P. Liang, “Decision
Support Systems and Intelligent Systems,” 7th Edition,
Prentice Hall of India, New Delhi, 2007.

[31] Y. M. Wang, Y. Luo and Z. Hua, “On the Extent Analysis
Method for Fuzzy AHP and its Applications,” European
Journal of Operational Research, Vol. 186, 2008, pp.
735-747.

Appendix A

Here, some useful MATLAB commands to work with the
proposed fuzzy inference system (FIS) which is based on
Mamdani are presented:

[System]
Name='AHP mobile'
Type='mamdani'
Version=2.0
NumInputs=4
NumOutputs=1
NumRules=15
AndMethod='min'
OrMethod='max'
ImpMethod='min'
AggMethod='max'
DefuzzMethod='centroid'

	jsea 3.4 cover 1
	jsea 3.4 cover 2
	JSEA 3.4 Table of Contents
	journal information jsea
	1_9301022
	2_9300127
	3_ 9301024
	4_9301023
	5_9301012
	6_9301014
	7_9300170
	8_9300198
	9_9301016
	10_9301020
	11_9300108
	jsea 3.4 cover 3
	jsea 3.4 cover 4

