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Abstract 
In this work, we establish relations between DNA sequences with missing 
subsequences (the forbidden words) and the generalized Cantor sets. Various 
examples associated with some generalized Cantor sets, including Hao’s 
frame representation and the generalized Sierpinski Set, along with their 
fractal graphs, are also presented in this work. 
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1. Introduction 

Researchers have been interested in the relationships between fractals and DNA 
structures for years. Just recently, Anitas and Slyamov [1] studied multiscale 
fractal representing DNA sequences using small-angle scattering analysis. Catta-
ni and Pierro [2] conducted a multifractal analysis of binary images of DNA in 
order to define a methodological approach to the classification of DNA se-
quences. Badea and her collaborators [3] characterized the geometry of some 
medical images of tissues in terms of complexity parameters such as the fractal 
dimension (FD). Carlo Cattani presented analysis of DNA based on the indica-
tor matrix together with some elementary approach to a fractal estimate of DNA 
sequences in the book [4] edited by Elloumi and Zomaya. Albrecht-Buehler [5] 
identified explicitly the GA-sequences as a class of fractal genomic sequences. 
Ainsworth [6] investigated how the cell’s nucleus holds molecules that manage 
human’s DNA in the right location. In a book edited by Crilly, Earnshaw and 
Jones, Voss applied standard spectral density measurement techniques to dem-
onstrate the ubiquity of low frequency noise and long range fractal correlations. 
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The study of the genome or DNA sequences through fractal analysis is very 
interesting. DNA sequences can be seen as sequences over the alphabet 

{ }, , ,a c g tΣ = . Subsequences that do not appear in DNA are considered as for-
bidden words. A visualization method of the forbidden words in [7] [8] [9] [10] 
[11] has been designed by B.-L. Hao since 2000. This method is now called Hao’s 
frame representation. Recently, C.-X. Huang and S.-L. Peng discussed this me-
thod in detail, and many beautiful graphics were provided in [12] [13]. From 
these geometric intuitions, it can be observed that these forbidden words dem-
onstrate certain fractal properties. In fact in this work we generated some amaz-
ing fractal graphs associated with DNA sequences with forbidden words as 
shown in Figure 1. 

It is important to explore the fractal generating mechanism that is associated 
with the forbidden words in the sequence. H. J. Jeffrey [14] [15] and P. Tiňo [16] 
[17] tried to associate the forbidden words with the IFS (Iterated Functions Sys-
tems) using chaos game algorithm. Denote ∗Σ  as the set of all finite sequences 
over Σ . Then how to find a generating formula or the mapping : wσ ∗Σ → ∈Σ , 
where w is a sequence that does not contain forbidden subsequences, or corres-
ponding iteration method? As was pointed out by P. Tiňo, the IFS is a multi-
fractal and therefore the generating formula would be relatively complicated. 

In order to detect the structures of some symbolic sequences, one has to find 
the properties of their topology and metric and be able to visualize these se-
quences. To do this, we have to provide a type of graphical representation to-
gether with their topology and metric properties so that we can directly reveal 
their corresponding fractal graphs. This kind of representation method is im-
portant and necessary. 

For an alphabet with cardinal 3, the well known CGR method (that is, Chaos 
Game Representation method) was first introduced by M.F. Barnsley by consi-
dering the points in an equilateral triangle. The substrings of a string were 
shown graphically (see [18]). For an alphabet { }, , ,a c g tΣ =  with cardinality 4, 
the CGR method was later generalized by H.J. Jeffrey so that the DNA sequences 
can be visualized (see [14] [15]). The authors have transformed the DNA se-
quences into pseudo random walk in a 2-dimensional plane or in a 3-dimensional 
space [19] [20] [21]. We notice here that an iterated function system can be ap-
plied to construct a graphical representation of some DNA sequences [16] [17]. 
The points in the unit square [ ] [ ]0,1 0,1×  can be used to denote the substrings 
of the DNA sequences. Consequently, the four vertices of the unit square are la-
belled as , , ,a c g t . 

In application, the frame representation method proposed by Hao et al. is 
more intuitive and visual [9] [10]. The unit square [ ] [ ]0,1 0,1×  is divided 
equally with vertical and horizontal lines so that there are 4k  congruent small 
squares with side length 2 k−  and area 4 k− . For the alphabet { }, , ,a c g tΣ =  
with cardinality 4, each small square of side length 2 k−  is used to denote the 
string in kΣ  ( )1,2,3,k =   regularly (See 1-, 2- and 3-frame graphs in Figures 
2(a)-(c)). 

https://doi.org/10.4236/jamp.2019.78115


Z. W. Yang, P. Wang 
 

 

DOI: 10.4236/jamp.2019.78115 1689 Journal of Applied Mathematics and Physics 
 

 

Figure 1. Graphs of some forbidden words. 
 

 
(a)                    (b)                   (c) 

Figure 2. The frame representation method of B.L. Hao et al. (a) 
1-frame graph; (b) 2-frame graph; (c) 3-frame graph. 

 
With the frame representation method of B.L. Hao, the repetition topology 

structure of the subsequences (i.e. the strings in kΣ ) of a DNA sequence can be 
easily visualized and efficiently drawn. The avoided or the under-represented 
short strings in the genome sequence form the forbidden words. These forbid-
den words are the reasons or the basis of the constructed fractals. 

P. Tino [16] [17] proved the equivalence of the CGR method and the frame 
representation method of B.L. Hao et al. He noted that the cardinality of an al-
phabet can be generalized to a square integer ( 2bΣ =  simultaneously for some 
integer b). We will in this paper extend the above methods and relax the restric-
tion to the cardinality of an alphabet. 

The order of this paper is as follows. In Section 2, we will first convert the 
problem into the discussion on certain type of generalized Cantor set, which can 
naturally correspond to multifractals, and then in Section 3, we will induce 
Hao’s frame representation according to the principle that the correspondence 
between line segment and unit square is one-to-one [22]. Several examples, 
along with their fractal graphs, of some generalized Cantor sets are given at the 
end of this paper. 

2. Forbidden Words and the Generalized Cantor Set 

Rewrite the alphabet as { }0,1, 2,3Σ = . We first give the following definition.  
Definition 2.1 Let { }0,1,2,3Σ = . Denote B as the set consist of l finite se-

quences with length ( )1k ≥ :  

{ }11 1 21 2 1, , , , , 1, , , 1, , .k k l lk ijB t t t t t t t i l i k= ∈Σ = =            (1) 

Then call the infinite sequences over Σ   
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1 2 1 1 1, , and , 1,2n n i i ks a a a a a a a B i+ + −= ∈Σ ∉ =            (2) 

the DNA sequence with no forbidden words B, a.k.a. allowed sequence.  
It is known that when [ ]0,1x∈  is expanded in ternary representation, the 

subset in [ ]0,1   

{ }{ }3 1 20 . , 0, 2nC x x x x x= = ∈   

is called the Cantor set. Similarly, with quaternary expansion, we give the fol-
lowing definition.  

Definition 2.2 When [ ]0,1x∈  is represented in quaternary expansion  

4 1 2
1

0 . , ,
4

n
n nn

n

a
x a a a a

∞

=

= = ∈Σ∑                   (3) 

we call  

{ }4 1 2 1 10 . , , , 1, 2, , 1G n n i i i kC x a a a a a a a B i k+ + −= = ∈Σ ∉ = ≥      (4) 

the generalized Cantor set.  
Apparently, the discussions on DNA sequences (1) (2) that contain no for-

bidden words B can be converted into the discussion on the generalized Cantor 
set GC . 

Let 1
1 14 4i k

k i ik ikb t t t−
−= + + + , { }0,1, , 4 1i k

kb ∈ − , 1,2, ,i l=  , and  

{ }1 2, , , ,l
k k kB b b b′ =                          (5) 

Then, the condition 1 1 , 1, 2,i i i ka a a B i+ + − ∉ =   in Definition 2.2 can be re-
written as  

1 2
14 4 , 1,2,k k

i i i ka a a B i− −
+ + ′+ + + ∉ =   

Theorem 2.1 The generalized Cantor set GC  can be inducted by using an 
iteration method.  

Proof. In fact, for the ( )1k − th step of the quaternary expansion of [ ]0,1x∈ , 
there is  

1 11
1 11 1= , 0 1, , , .

4 4 4
k k

k kk k

a xax x a a− −
−− −+ + + ≤ ≤ ∈Σ          (6) 

Let  

1
1 1= , 0 1, and 4 .

4 4
kk k

k k k k
a x

x x a a a B−
− ′+ ≤ ≤ ∈Σ + + ∉         (7) 

Substitute (7) into (6),  

11
1, 0 1, 4 .

4 4 4
kk k

k kk k

a xax x a a B− ′= + + + ≤ ≤ + + ∉          (8) 

In general, we let  

1
1 , 0 1, and 4 .

4 4
ki k i k

i k i k i k i k i
a x

x x a a a B−+ +
− + + + + ′= + ≤ ≤ ∈Σ + + ∉     (9) 

and as i →∞ , we obtain the generalized Cantor set GC  (2.2).  

1 1

1,
4 4 4

k k
j j
j j k

j j

a a

= =

 
+ 

 
∑ ∑ , ja ∈Σ  are 4k  intervals in [ ]0,1  with length 1

4k . 
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From the iteration Equation (7) in the theorem, the iteration acts differently on 
the l subintervals than on the 4k l−  intervals. Hence we have [11]. 

Corollary 2.3 The generalized Cantor set GC  is multifractal.  
Proof. In the construction of the generalized Cantor sets GC , measures on 

removed portions are redistributed to the neighboring sections repeatedly. Thus 

GC  is multifractal.  
Obviously, the generalized Cantor sets are applicable for all p-carry represen-

tation (p is an integer). 

3. The Hao’s Frame Representation of the Generalized  
Cantor Set CG 

The theoretic foundation of the construction of DNA sequences can be seen in 
[12]. The subintervals in the quaternary expansion of [ ]0,1x∈  can be 
one-to-one corresponding to the subsquares that are obtained by repeatedly 
equally dividing the unit square (and its subsquares) into 4 smaller subsquares. 
Cantor sets are created in one dimension in [ ]0,1  while Sierpinski sets are con-
structed in two dimension within [ ] [ ]0,1 0,1× . Using the corresponding rela-
tionship between the unit interval and the unit square, we can convert the dis-
cussion on the generalized Cantor sets into the discussion on the generalized 
Sierpinski sets on the unit square.  

Let 0 , 1ξ η≤ ≤ . The binary expansion of ( ),ξ η  is  

( ) { }
1 1

, , , , 0,1 .
2 2

n n
n nn n

n n

c d
c dξ η

∞ ∞

= =

 = ∈ 
 
∑ ∑                 (10) 

The expansion can be related to the quaternary expansion of [ ]0,1x∈  as 
follows:  

( ) ( )
( ) ( )
( ) ( )
( ) ( )

0 : , 0,0
1 : , 1,0

2
2 : , 0,1
3 : , 1,1

i i

i i
i i i

i i

i i

c d
c d

a c d
c d
c d

 =
 == + =  =
 =

                (11) 

Thus the forbidden words i
kb  in B′  can be represented as  

( ) ( ) ( )
{ }

1 1 1 1

1 1

14 2 4 2 2 ,

, , , , 0,1 , 1, 2, ,
k k k k

k k

i k
k i i i i i i

i i i i

b c d c d c d

c d c d i l
− −

−= + + + + + +

∈ =



 

        (12) 

Definition 3.1 Let 0 , 1ξ η≤ ≤  and the binary expansion of ( ),ξ η  is (10). 
Then call  

( ) { }

( ) ( ) ( )1 1 1 1

1 1

1

, , , , 0,1 ,
2 2

4 2 4 2 2
k k k k

n n
G n nn n

n n

k
i i i i i i

c d
S c d

c d c d c d B

ξ η

− −

∞ ∞

= =

−

  = = ∈  
 

′+ + + + + + ∉ 


∑ ∑



    (13) 

the generalized Sierpinski set that corresponds to the the generalized Cantor set 
( )4GC .  
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Theorem 3.1 The generalized Sierpinski set GS  can be inducted by iterating 
method.  

Proof. The ( )1k − th binary expansion of ( ),ξ η  is  

( )
1 1

1 1
1 11 1

1 1
, , , 0 , 1.

2 2 2 2

k k
n k n k

k kn k n k
n n

c dξ η
ξ η ξ η

− −
− −

− −− −
= =

 = + + ≤ ≤ 
 
∑ ∑          (14) 

Let  

( ) { }

( ) ( ) ( ) { }

1 1

1
1 1 1 1

, , , , 0,1 , 0 , 1,
2 2 2 2

4 2 4 2 2 , , 0,1

k k k k
k k k k k k

k
k k k k k k

c d
c d

c d c d c d B c d

ξ η
ξ η ξ η− −

−
− −

 = + + ∈ ≤ ≤ 
 

′+ + + + + + ∉ ∈

    (15) 

Substitute (15) into (14), we have  

( )

( ) ( ) ( )
1 1

1
1 1 1 1

, , ,
2 2 2 2

4 2 4 2 2

k k
n k n k
n k n k

n n

k
k k k k

c d

c d c d c d B

ξ η
ξ η

= =

−
− −

 = + + 
 

′+ + + + + + ∉

∑ ∑



 

Generally, let  

( ) { }

( ) ( ) ( )

1 1

1
1 1

, , , 0 , 1, , 0,1 ,
2 2 2 2

4 2 4 2 2

k i k i k i k i
k i k i k i k i k i k i

k
i i k i k i k i k i

c d
c d

c d c d c d B

ξ η
ξ η ξ η+ + + +

+ − + − + + + +

−
+ − + − + +

 = + + ≤ ≤ ∈ 
 

′+ + + + + + ∉

 

Noticing the corresponding relationship between numbers and the subsquares, 
naturally we have Hao’s frame representation. The second-order Hao’s frame 
representation can be inducted from the corresponding relationship illustrated 
in Figure 3. 

The next few examples illustrate analytic structure of some DNA sequences 
along with the fractal graphs of the relevant generalized Cantor sets. 

Example 3.2 Let { }0,1, 2,3Σ = , { }00,11,22B = . Then { }0,5,10B′ = . Hence 
the arithmetic expression of the generalized Cantor set is  

{ }4 1 2 10 . , 0,1, 2,3 and 4 0,5,10, 1,2,n n i ix a a a a a a i+= ∈ + ≠ =    

And the symbolic sequence is  

1 2 1, , , 1, 2,n n i ia a a a a a B i+∈Σ ∉ =    

which is shown graphically in Figure 4.  
Example 3.3 Let { }0,1,2,3Σ = , { }10,20,30B = . Then { }4,8,12B′ = . 

Hence the arithmetic expression of the generalized Cantor set is  

{ }4 1 2 10 . , 0,1, 2,3 and 4 4,8,12, 1,2,n n i ix a a a a a a i+= ∈ + ≠ =    

And the symbolic sequence is  

1 2 1, , , 1, 2,n n i ia a a a a a B i+∈Σ ∉ =    

with graphs Figure 5:  
Example 3.4 Let { }0,1,2,3Σ = , { }011,022,100,133,200,233,311,322B = . 

Then { }5,10,16,31,32,47,53,58B′ = . Hence the arithmetic expression of the 
generalized Cantor set is  

{ } 2
4 1 2 10 . , 0,1, 2,3 and 4 4 , 1,2,n n i i ix a a a a a a a B i+ ′= ∈ + + ∉ =    
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And the symbolic sequence is  

1 2 1, , , 1, 2,n n i ia a a a a a B i+∈Σ ∉ =    

which are shown below 
Similarly, we could produce the following amazing fractal graphs shown in 

Figure 6, Figure 7, of different DNA sequences with various forbidden words. 
 

 

Figure 3. Hao’s frame representation of 2k = .  
 

 

Figure 4. { }0,5,10B′ = . 

 

 

Figure 5. { }4,8,12B′ = .  

 

 

Figure 6. { }5,10,16,31,32,47,53,58B′ = .  
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Figure 7. Other examples.  

4. Conclusion 

We established relations between the generalized Cantor sets and some DNA 
sequences with missing words. And we have associated Hao’s frame representa-
tions and the generalized Sierpinski set with the generalized Cantor sets. The 
authors are interested in applying the analytical representation method to study 
the graphical results of space filling research works (cf. [23] [24] [25]). 
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Abstract 
In this work we study the perturbation and the change in the orbital elements 
due to the earth’s magnetic field and the gravitational waves. The acceleration 
components are derived in the radial, transverse to it and normal to the or-
bital plane. The equation for the rates of variation of the elements is formed 
and solved to find the secular variation in the element for polar and equatori-
al satellites. 
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1. Introduction 

One of the forces acting on an artificial satellite is the Earth’s magnetic field 
(Roy, 1982) [1]. If the satellite has metal in its construction the Earth’s magnetic 
field induces eddy currents in the satellite; in addition, a slight retardation acts 
on the satellite. The changes in the orbit due to this force are small; in any real 
situation the effect of the small force is to cause small departures from Keplerian 
motion, but these deviations can hardly give rise to large-scale changes of the ef-
fect of another force, like as in our work the force arising from gravitational 
waves. To gain concept of the concentration of charged particles in space that 
might lead to electromagnetic forces on a satellite, it is useful to estimate the flux 
and energy of those particles in the field of the Earth associated the aurorally 
zone, solar flares, solar winds, cosmic rays, and the inner and outer Van Allen 
radiation belts, and recently the gravitational waves. The question of the effect of 
such particles and the associated magnetic fields on satellite dynamics is yet to 
be resolved. As noted by (Bourdeau et al., 1961) the motion of a satellite through 
a magnetic field B, produces an induced potential that is a function of position 
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on the satellite surface; that is, a function of a vector R from the satellite center 
to any point on the satellite surface [2]. The magnetic field strongly affects the 
motion of charged particles and the gravitational waves interact with magnetic 
field producing other effects on the motion of an orbiter in the Earth’s gravita-
tional field. The influence of the geo-magnetic field in satellite charging is quite 
important and should be taken into account in any detailed treatment [3]-[8]. In 
this work we investigate the perturbation on the elements of the satellite’s orbit 
moving with velocity V through a magnetic field and existing of gravitational 
waves, considering the propagation of the gravitational waves in the same direc-
tion of the magnetic field. 

2. The Acceleration Components of Magnetic field 

A force arises from the interaction of the Earth’s magnetic field and any electric 
charge of an orbiting body given by (Gelying and Westerman, 1971) [9] 

e eq= ×F V B                          (1) 

where eq  the charge is acquired by the satellite, V  its velocity and B  is the 
magnetic induction of the Earth’s field. In MKS units 

= ×B A∇                           (2) 

where the vector potential is 

0 1
4π e r
µ  = ∇


×  


A M                        (3) 

eM  is the magnetic moment of the Earth, and 0µ  is the permeability of free 
space, carrying out the operations indicated in (1) through (3), we obtain 

0
24

e e
e

M vq
m rmr

µ
=

π

F
                       (4) 

where m is the mass of satellite. As a first step to analyze effect of the magnetic 
field on the Kaplerian elements (a, e, i, ω , Ω , τ ), it is necessary to represent 
the acceleration exerted by the magnetic field on a satellite as a function of the 
radial, orthogonal, and normal, perturbing components (Baker, 1967) [10]. This 
can be done in terms of either the true anomaly f, or eccentric anomaly E. The 
resolving components of the disturbing force in the direction of the satellite ra-
dius-vector S, tangential to the orbit T and perpendicular to it W, are given as 

( )

( )

30
7

40
7

sin 1 cos

1

0

4

cos
4

e
e

e
e

M
S q e f e f

m P
M

T q e f
m P

W

µ µ

µ µ

= +
π

+
π

=

=                 (5) 

where ( )21P a e= −  is the parameter, a is the semi-major axis, e is the eccen-
tricity of the orbit, µ  is the Earth’s gravitational constant and f is the true 
anomaly. 
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3. The Change of the Orbital Elements 

According to Gauss form of Lagrange planetary equations under the action of 
the geomagnetic field and normal incident of gravitational waves the changes of 
the osculating elements for an elliptical orbit have the form 

( ) ( )
2

d 2 cos
d 1

mg gw mg gw
a pe S S f T T
t rn e

 = + + + 
 −  

( ) ( )( ){ }
2d 1 sin cos cos

d mg gw mg gw
e e f S S f E T T
t na

−
= + + + +
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2 2
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r f
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= +

−  
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d 1 cos 1 sin
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sin
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e rf S S f T T
t nae p

r f
i W W

na e

ω

ω

  −  = − + + + +  
   
+

− +
−

      (6) 

where ( mgS , mgT , mgW ) and ( gwS , gwT , gwW ) are referred to the acceleration 
components for the magnetic field and gravitational waves in the radial direction 
S, the transverse direction T at right angle to S in the orbital plane and perpen-
dicular to the orbital plane W as in Figure 1. 

Where Ω , ω , ( )u f ω= +  and i are the angles of longitude of ascending 
node, argument of perigee, true anomaly and inclination respectively. ( mgS , mgT , 

mgW ) are the resolving acceleration components of geomagnetic force which de-
rived in Equation (5). The resolving acceleration components of gravitational 
waves force are 

 

 
Figure 1. The disturbing force of gravitational waves in (S, T, W) directions. 
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gw x x y yS P F P F= +  
gw x x y yT Q F Q F= +  

gw x x y yW W F W F= +                        (7) 

where 

1 2xF h x h y= +  
2 1yF h x h y= −  

0zF =                             (8) 

xF , yF  and zF  are the components of the acceleration of normal ancient 
gravitational waves in (x, y, z) coordinates and 

2
11

1 2

1
2

hh
t

∂
=

∂
; 

2
12

2 2

1
2

hh
t

∂
=

∂
                    (9) 

( )11 1cos gh h n t α+= +  

( )12 2cos gh h n t α×= +                      (10) 

where gn  is the frequency of the wave, 1α  and 2α  are the phase difference, 
h+  and h×  are the amplitude of the wave in the two orthogonal directions in 
the transverse plane [11]. Therefore 

( )2
1 1

1 cos
2 g gh n h n t α+− +=

 

( )2
2 2

1 cos
2 g gh n h n t α×= − +                    (11) 

We have ^ ^,P Q  and ^W  are the unit vectors in the direction of r, normal 
to r in the orbital plane and normal to the orbital plane respectively, 

cos cos sin sin cosxP u u i= Ω − Ω  
sin cos cos sin cosyP u u i= Ω + Ω  
sin sinzP u i=  
cos sin sin cos cosxQ u u i= − Ω − Ω  
sin sin cos cos cosyQ u u i= − Ω + Ω  

cos sinzQ u i=  
sin sinxW i= Ω  

cos sinyW i= − Ω  
coszW i=                             (12) 

It follows that 

( )cos cos sin sin cosx r u u i= Ω − Ω  
( )sin cos cos sin cosy r u u i= Ω + Ω  

sin sinz u i=                                  (13) 

Therefore from Equations ((8) to (13)) Equation (7) yield to 
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( ) ( ){ }1 2 3cos 2 sin 2gwS r A A u A u= + +
 

( ) ( ){ }2 3sin 2 cos 2gwT r A u A u= − +
 

( ) ( ){ }1 2cos sin singwW r C u C u i= +                (14) 

where 

{ }2
1 1 2

1 sin cos 2 sin 2
2

A i h h= Ω+ Ω
 

{ }
2

2 1 2
1 cos cos 2 sin 2

2
iA h h+

= Ω+ Ω
 

{ }3 1 2cos sin 2 cos 2A i h h= − Ω+ Ω  
1 1 2sin 2 cos 2C h h= Ω− Ω  

{ }2 1 2cos cos 2 sin 2C i h h= Ω+ Ω                   (15) 

For the approximate integration of Equations (6), we expand all the functions 
of the orbital coordinates on the right sides in series in powers of e. The coeffi-
cients in these series will be trigonometric functions of the mean anomaly 

( ) M n t τ= −  
( ) ( )cos cos cos 1 cos 1kf kM ke k M k M= + + − −    
( ) ( )sin sin sin 1 sin 1kf kM ke k M k M= + + − −   ; 1,2,3,K =   

( )cos cos cos 2 1
2
eE M M= + −  

( )1 cosr a e M= −                                          (16) 

where n the mean angular velocity of satellite, t the initial time of the motion, 
and τ  is the time of perigee passage. Without loss of generality, we can take 
the satellite lies on the line of nodes at the initial time, so 0ω τ= =  and Equa-
tions (6) become in the form 
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 (17) 
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where 
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µ µ
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0 2 3 7sin 2 cos 2 1 4 cos

4
e

e
M

T A M A M q e M
m P

µ µ
= − + + +
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0 1 2cos sinW C M C M= +  

( ){ }1 1 2
1 cos 2 3 sin 2
2
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Because of the smallness of the eccentricity e, it is of interest to consider such 
effects only for small powers of e. Therefore Equation (17) is represented the 
first order approximations of Equation (6) and the effect of geomagnetic and 
GW on the orbital elements. A general analysis of Equation (17) shows that the 
semi-major axis a and the position of the orbital plane in space determined by 
the angles Ω  and i, change for a wave frequency, wave amplitude and mass ratio  

of satellite 
q
m

 due to the induction of Earth’s magnetic field. For 
2

i π
= , the 

plane of orbit of which is parallel to the direction of the gravitational waves and 

the direction of magnetic field given by the quantities 0h× =  and 1 2
α π

= ± , in 

this case only the longitude of ascending node Ω  changes and the shape of the 
orbit is constant. If the initial data for the orbit and the waves are defined by 

2
i π
= , 0Ω = , 0h× =  and 1 2

α π
= ±  then the position of the orbital plane is 

constant in space and only the semi-major axis a changes without a change in 

the other parameters. For the initial data 
2

i π
= , 1 0h α× = =  and 

4
π

Ω =  there 

is only a deviation of the orbital plane from the wave direction, determined by 

the angle i. For the case 0i h×= =  and 1 2
α π

= ±  only eccentricity changes. In 

case 0i h×= =  and 1 0α = , this time only the angular distance ω  changes. 

4. Numerical Simulation 

A numerical simulation is developed to test several of the above results. The si-
mulation is a Runge-Kutta 4th order integration of system defined by Equations 
(17) with respect to the mean anomaly M performed by MATHEMATICA V10. 
The simulation is valid for any orbit for charged satellite in a non-tilted dipole field 
with GW. The results of two different situations are presented here for polar and 
equatorial orbits. Considering the period of satellite is four hours  and with 
semi-major 12,600 km. The effects of the magnetic field and the gravitational  
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waves are proportional to the charge to mass ratio 
q
m

 and the frequency of the 

gravitational waves. Considering the wave’s frequency gn  of the same order of 
magnitude of the magnetic field 10−9, wave’s amplitude of order 10−21 as coming 

from the bursts sources, and the mass ratio 0.0393 C kgq
m
=  for satellite has  

mass 300 kg and 117 Cq = . This means that with two parameters we deter-
mined the perturbations on the orbital motion and we can control on it. Also 
due to the interaction of GW with magnetic field the variation on the orbital 
element will periodic with the time. 

Figure 2 displays the variation in the orbital plane due the perturbation of Ω  
in radian for polar orbits with inclination 90i =  , 0ω =   or 180° or 360° and 

4
π

Ω = . 

Figure 3 displays the variation of the semi-major a in radians for the polar 

circular orbit with  0Ω =  , 0h× =  and 1 2
α π

= ± . 

Figure 4 displays the variation of the inclination i in radian for the polar cir-

cular orbit with 
4
π

Ω = , 0h× =  and 1 0α =  . 

 

 
Figure 2. The variations of the orbital plane by angle Ω for polar orbit. 

 

 

Figure 3. The variations of the semi-major α for polar orbit. 
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Figure 5 displays the variation of the eccentricity e for equatorial orbit with 

the case 0i h×= =  and 1 2
α π

= ± . 

Figure 6 displays the variation of the angular distance ω  in radian for 
equatorial orbit with the case 0i h×= =  and 1 0α =  . 

 

 

Figure 4. The variations of the inclination i for polar orbit. 
 

 
Figure 5. The variations of the eccentricity e for equatorial orbit. 

 

 
Figure 6. The variations of the angular distance ω for equatorial orbit. 
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5. Discussion and Conclusion 

Summarizing the results we conclude that there is secular effect due to geomag-
netic and gravitational waves on the orbital plane of polar orbits (the longitude 
of node Ω and inclination i) and on the shape (the semi-major axis a) according 
to phase and phase difference of gravitational waves. For equatorial orbits the 
secular effect will on the size on the orbit (the eccentricity e and the argument of 
perigee ω). The amount of the variation of the orbital elements depends on the 
direction of propagation of gravitational waves and on the frequency and its 
phase difference which changes the amount of charges on the satellite and con-
sequently the perturbations on the orbital elements. This effect is small but it is 
important for studying the effect of GW with the magnetic field of the Earth 
during interval of time and their effects on artificial satellites. 
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Abstract 
In this paper, we investigate the global stability of an SEIR (Suscepti-
ble-Exposed-Infected-Remove) epidemic model with infectious force under 
intervention strategies. To address this issue, we prove that the basic repro-
duction number 0R  plays an essential role in determining whether the dis-
ease extincts or persists. If 0 1R ≤ , there is a unique disease-free equilibrium 
point of the model which is globally asymptotically stable and the disease dies 
out, and if 0 1R > , there exists a unique endemic equilibrium point which is 
globally asymptotically stable and the disease persists. 
 

Keywords 
SEIR Epidemic Model, Intervention Strategies, Basic Reproduction Number, 
Global Stability 

 

1. Introduction 

As we all know, infectious disease has been ravaging human beings for thou-
sands of years. In the long history, infectious disease has brought many disasters 
to human beings. For a long time, people have been fighting various infectious 
disease, and many methods have been used to study the spread of infectious 
disease, such as to control and eliminate infectious disease. Since the pioneer 
work of Kermack and McKendrick [1], mathematical models have been contri-
buting to improve our understanding of infectious disease dynamics and helping 
us develop preventive measures to control infection spread qualitatively and quan-
titatively [2] [3]. The effect of intervention strategies, such as border screening, 
mask wearing, quarantine, isolation or communications through the mass media, 
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plays an important role in administering efficient interventions to control dis-
ease spread and hopefully eliminate epidemic disease [4]-[9]. 

In recent years, a number of mathematical models have been formulated to 
describe the impact of intervention strategies on the dynamics of infectious dis-
ease [4]-[11]. Tang and Xiao indicate that strict interventions have been taken in 
mainland of China to slow down the initial spread of the disease [10] [12], and 
awareness through media and education plays an important role in changing 
behavior or contact patterns, and hence in limiting the spread of infectious dis-
ease [9]. 

In particular, Wang [4] formulates and analyzes an SIRS (Suscepti-
ble-Infected-Remove-Susceptible) epidemic model to study the impact of inter-
vention strategies on the spread infectious disease and find that intervention 
strategies decrease endemic levels and tend to simplify diseases. In this article, 
we analyze the SEIR epidemic model to study the impact of intervention strate-
gies on the spread of infectious disease. 

In real life, epidemic tends to have an incubation period, as susceptible to in-
fection after contacting with infected people. First of all, carrying virus, the virus 
is not immediately, but after a period of time, to onset and into the herd of in-
fected people. In this paper, we mainly focus on the global stability analysis of 
the steady states for an SEIR epidemic model with infectious force under inter-
vention. 

We consider the global properties of this SEIR model and show that if the ba-
sic reproduction number 0 1R ≤ , the disease-free equilibrium point is globally 
asymptotically stable, while if 0 1R > , the disease-free equilibrium point is un-
stable and the unique endemic equilibrium point is globally asymptotically sta-
ble. 

The rest organization of this article is arranged as follows: In Section 2, we 
present the model. In Section 3, we illustrate the main results and proof the main 
results in details. In Section 4, we provide the application of the results to SEIR 
model with infection force under intervention policy to support our findings. In 
the last section, we provide a brief discussion and summary of the results.  

2. Model Derivations 

We propose a deterministic SEIR epidemic model with infectious force. The 
model is given by  

( )

( ) ( )

( )

d ,
d
d ,
d
d ,
d
d ,
d

S A S H I S
t
E H I S q E
t
I qE I
t
R I R
t

µ

µ

µ δ γ

γ µ

 = − −

 = − +

 = − + +


 = −


                    (1) 
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where S, E, I and R denote the number of susceptible, exposed, infective and re-
covered individuals at time t, respectively, and ( ) ( ) ( ) ( ) ( )N t S t E t I t R t= + + + . 
All parameters are positive with 

A: the recruitment rate of the population; 
µ : the nature death rate of the population; 
q: the constant rate such that the exposed individuals become infective; 
δ : the disease inducing death rate; 
γ : the natural recovery rate of the infective individuals. 
The infective force ( )H I  in (1) is a function of infective individuals which 

plays a key role in determining the transmission of disease. There are several 
different nonlinear transmission functions proposed by researchers, see more 
details, we refer to [4] [5] [13] [14] and the reference therein. 

Model (1) includes the adaption of individuals behavior under intervention 
polices. For example, ( )H I  may decrease as the number of infective individu-
als increase due to the fact that the population may tend to reduce the number of 
contacts per unit time under intervention polices. This has been interpreted as 
the psychological effect [5]. Mathematically, this phenomenon can be modeled 
as the infection force ( )H I  which is increasing when I is small and decreasing 
when I is large. For simplicity in notations, we suppose that the infection force  

( )H I  can be factorized into 
( )
I

f I
β , where 

( )
1

f I
 represents the effect of  

intervention strategies on the reduction of valid contact coefficient β  [4]. It is 
worthy to note that, in the absence of intervention strategies, i.e. ( ) 1f I = , the 
incidence rate becomes the well-known bilinear transmission rate SIβ . To en-
sure a nonmonotonic infection force, we make the following assumptions [2]: 

(H1) ( )0 0f >  and ( ) 0f I′ >  for 0I > . 

(H2) There is ζ  such that 
( )

0I
f I

′ 
>  

 
 for 0 I ζ< <  and 

( )
0I

f I

′ 
<  

 
  

for I ζ> . 

In epidemiology, these assumptions describe the effects of intervention strate-
gies determining by a critical value ζ : if 0 I ζ< < , the incidence rate is in-
creasing, while if I ζ> , the incidence rate is decreasing. Thus we can establish 
the following SEIR epidemic model: 

( )

( ) ( )

( )

d ,
d
d ,
d
d ,
d
d .
d

S IA S S
t f I
E I S q E
t f I
I qE I
t
R I R
t

βµ

β µ

µ δ γ

γ µ

 = − −



= − +

 = − + +

 = −

                     (2) 

Since R does not appear in the first three equations of system (2), it can be 
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reduced to the following three-dimensional system  

( )

( ) ( )

( )

d ,
d
d ,
d
d .
d

S IA S S
t f I
E I S q E
t f I
I qE I
t

βµ

β µ

µ δ γ

 = − −



= − +


 = − + +


                    (3) 

where the state space is in the first quadrant ( ){ }3 , , : 0, 0, 0R S E I S E I+ = > > > .  
It follows from system (3) that:  

( ) d .
d
MA M A M
t

µ δ γ µ− + + ≤ ≤ −  

where M S E I= + + . 
Hence, by integrating the above inequality, there is  

( ) ( ) ( )0 e 0 e .t tA A A AM M Mµ δ γ µ

µ δ γ µ δ γ µ µ
− + + −   

+ − ≤ ≤ + −   + + + +   
 

Then let t →∞ , we can get  

( ) ( )lim inf lim sup .t t
A AM M

µ δ γ µ→∞ →∞≤ ≤ ≤
+ +

 

That is  

.A AS E I
µ δ γ µ

≤ + + ≤
+ +

 

The feasible region for system (3) is thus a bounded set Γ :  

( ) 3 3, , : 0 .AS E I R S E I R
µ+ +Γ = ∈ < + + ≤ ⊂  

The region Γ  is a positive invariant set for model (3). Moreover, every tra-
jectory of model (3) eventually stays in a compact subset of Γ . 

3. Main Results and Proof of Main Results 

In this section, we give main results and the proof of main results. 

Notice that model (3) has a disease-free equilibrium point 0 ,0,0AP
µ

 
=  
 

 for  

all parameter. A main concern of deterministic epidemic model is to find condi-
tions when a disease introduced into a community can develop into a large out-
break, and if it does the disease may become endemic. A useful threshold in this 
regard for deterministic models is called basic reproduction number 0R . 

Let ( )T, ,X E I S= , system (3) can be written as [15]  

( ) ( )d ,
d
X F X V X
t
= −  

where  
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( )
( )

( )
( )
( )

( )

0 , .
0

IS
f I q E

F X V X qE I
ISA S

f I

β
µ
µ δ γ

βµ

   
   +   
   = = − + + +
   
   − + +     

 

The jacobian matrices of (9) at the disease-free equilibrium point are 

( ) ( )0 0
1 2

00
, ,

0 0
VF

DF P DV P
J J
  

= =   
   

 

where  

( )
0 0

0 , .
0 0

A
q

fF V
q

β
µ

µ
µ δ γ

 
+  = =    − + +   

 

So the next generation matrix of model (3) is  

( )( )( ) ( )( )1 0 0 .
0 0

Aq A
f q fFV

β β
µ µ µ δ γ µ µ δ γ−

 
 + + + + +=  
  

 

and the spectral radius of 1FV −  is  

( ) ( )( )( )
1 .

0
AqFV

f q
βρ

µ µ µ δ γ
− =

+ + +
 

Therefore the basic reproduction number 0R  [16] is  

( )( )( )0 .
0

AqR
f q

β
µ µ µ δ γ

=
+ + +

 

The epidemic model (3) has two equilibrium points: one is the disease-free 

equilibrium point 0 ,0,0AP
µ

 
=  
 

 which exists for all parameter values; and the 

second is the endemic equilibrium point ( )* * * *, ,P S E I=  which is a positive 

solution of the following system 

( )

( )
( )

*
* *

*

*
* *

*

* *

0,

( ) 0,

0.

IA S S
f I

I S q E
f I

qE I

βµ

β µ

µ δ γ


− − =



 − + =

 − + + =

                   (4) 

From (4),  

( )( ) ( )* * * *, .
q

S f I E I
q q

µ µ δ γ µ δ γ
β

+ + + + +
= =  

and 

( )( ) ( )( ) ( )* * 0.
q q

A I f I
q q

µ µ δ γ µ µ µ δ γ
β

+ + + + + +
− − =  
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Set 

( ) ( )( ) ( )( ) ( ).
q q

Q I A I f I
q q

µ µ δ γ µ µ µ δ γ
β

+ + + + + +
= − −  

It follows from the assumption (H1) that  

( ) ( )( ) ( )( ) ( ) 0.
q q

Q I A f I
q q

µ µ δ γ µ µ µ δ γ
β

+ + + + + +
′ ′= − − <  

Hence ( )Q I  is a decreasing function. 
Note that  

( ) ( )( ) ( ) ( )0

0
0 1 .

q f
Q R

q
µ µ µ δ γ

β
+ + +

= −  

If 0 1R > , we can know that ( )0 0Q > , and because ( )Q I  is a decreasing 
function so ( ) 0Q I =  has a unique positive solution *I , then model (3) has a 
unique endemic equilibrium ( )* * * *, ,P S E I=  with  

( )( ) ( )* * * *, .
q

S f I E I
q q

µ µ δ γ µ δ γ
β

+ + + + +
= =  

So we know that the unique endemic equilibrium point ( )* * * *, ,P S E I=  of 
model (3) exists when 0 1R > . 

Theorem 3.1. The disease-free equilibrium point 0 ,0,0AP
µ

 
=  
 

 of model (3) 

is globally asymptotically stable if 0 1R ≤  or unstable if 0 1R > . 

Proof. Define the Lyapunov function 

( ) ( )2
1, , .
2

A qA AV S E I S E I
q

µ
µ µ µ

+ 
= − + + 

 
 

Take derivative of V along the solution of model (3), there is  

( )

( ) ( ) ( )

( ) ( )( )

( ) ( )
( )( )

( )

( )( ) ( )

2

2

d d d d
d d d d

A qV A S A E IS
t t t q t

A IS A ISS A S q E
f I f I

A q
qE I

q

A qA A IS A ISS S I
f I f I q

f I
A q

I A A qS
f I

µ
µ µ µ

β βµ µ
µ µ

µ
µ δ γ

µ

µ µ δ γβ βµ
µ µ µ µ

β µ µ µ δ γ
βµ

µ µ µ

+ 
= − + + 
 

    
= − − − + − +           

+
+ − + +

+ + +   
= − − − − + −   

   

− + + +  
= − + − +      ( )

.I
f I

 

Note that ( ) ( ) ( ) ( )0 0f I f f I o I′= + + , we have  

( )( ) ( )

( )( ) ( ) ( ) ( )( )0 0

f I
A q

q
q

A f f I o I
q

β µ µ µ δ γ

µ µ µ δ γ
β

− + + +

+ + +
′= − + +
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( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )( ) ( )0

0 0

0
1 0

0.

q q
A f f I

q q
q f q

R f I
q q

µ µ µ δ γ µ µ µ δ γ
β

µ µ µ δ γ µ µ µ δ γ

+ + + + + +
′≤ − −

+ + + + + +
′≤ − − −

≤

 

when 0 1R ≤ . 
So  

( )
( )( ) ( )( ) ( )

( )

2

2
0

d
d

0 1 0

< 0.

V I AS
t f I

f R I f IqA
q f I

βµ
µ

µ µ µ δ γ
µ µ

  
≤ − + −     

′− ++ + +
−  

By applying the Lyapunov-LaSall asymptotic stability theorem [17] [18], we 
conclude that 0P  is globally asymptotically stable if 0 1R ≤ . 

When 0 1R > , the Jacobian matrix of model (3) evaluated at 0P  is  

( )

( )

( )
( )

0

0
0

0 ,
0

0

A
f
AJ P q

f
q

βµ
µ
βµ

µ
µ δ γ

 − − 
 
 

= − − 
 
 − + +
 
 

 

which has an eigenvalue 0µ− < . Denoted by  

( )0 .
Aq

fB
q

βµ
µ
µ δ γ

 − − =  
 − − − 

 

We find that when 0 1R > , ( )( )( )0det 1 0B R qµ µ δ γ= − + + + < ,  
( ) 0trB qµ µ δ γ= − + + + + < , so the matrix B must have a positive eigenvalue. 

Thus, the disease-free equilibrium point 0P  is unstable whenever 0 1R > . This 
ends the proof. 

Theorem 3.2 If 0 1R > , the unique endemic equilibrium point  
( )* * * *, ,P S E I=  of model (3) is globally asymptotically stable. 

Proof. The Jacobia matrix of model (3) evaluated at *P  is  

( )

( )
( )( ) ( ) ( )( )

( )

( )
( )( ) ( ) ( )( )

( )

* * **

* *

* * **
*

* *

0

.

0

q I f I f II
f I qf I

q I f I f IIJ P q
f I qf I

q

µ µ δ γβµ

µ µ δ γβ µ

µ δ γ

 ′+ + + −
 − −
 
 
 ′+ + + − = − − − 
 
 − − −
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The characteristic polynomial of ( )*J P  is 3 2
1 2 3 0c c cλ λ λ+ + + = , where  

( )

( ) ( )
( )( ) ( )

( )
( )( )( )( )

( )

*

1 *

**
*

2 * *

*
*

3 *

3 0,

2 0,

0.

Ic q
f I

q f IIc q I
f I f I

f I q
c I

f I

βµ δ γ

µ µ δ γβµ µ δ γ

β µ µ µ δ γ


 = + + + + >


   ′+ + +  = + + + + + >    


′ + + + +
 = >


 

Clearly 1 2 3 0c c c− > . Therefore, by the Routh-Hurwitz criterion we can con-
clude that *P  is locally asymptotically stable. 

Next, we need to prove that *P  is globally asymptotically stable. Define a 
Lyapunov function  

( ) * * *, , .V S E I S S E E I I= − + − + −  

Obviously, ( )* 0V P = , and when *P P≠ , ( ) 0V P ≠ . Remember that *P  is 
the solution of system (3), the upper right derivative of V can be estimated:  

( )( ) ( )( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )( )

* * * * * *

* *
* *

*

* *
* *

*

* * *

sgn sgn sgn

sgn

sgn

sgn ,

D V S S S S E E E E I I I I

IS I SS S A S A S
f I f I

IS I SE E q E q E
f I f I

I I qE I qE I

β βµ µ

β βµ µ

µ δ γ µ δ γ

+ = − − + − − + − −

  
  = − − − − − −
  

  
  
  + − − + − − +
  

  

+ − − + + − − + +

(5) 

where  

( )
1, 0,

0, 0,sgn
1, 0.

x
x x

x

− <
= =
 >

 

In (5), there are 8 kinds of situations for the size of S and *S , E and *E , I 
and *I . It is enough to analyze the situation of *S S> , *E E>  and *I I>  
since the other situations are similar. 

Firstly there is  

( )* * *

* * *

.

D V S S E E I I

S S E E I I

V

µ µ µ δ γ

µ µ µ

µ

+ ≤ − − − − − + + −

< − − − − − −

< −              

(6) 

Integrating from 0t  to t on both sides of (6), we have  

( ) ( )
0

0d .
t

t

V t V t V tµ+ ≤ < +∞∫  

Since the front set Γ  has a boundary, S, E and I must have boundaries, and 
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their derivatives are bounded, which means that V is uniformly continuous. 
By Barbalat Lemma, there is ( )lim 0

t
V t

→∞
= , so  

0.D V Vµ+ < − <  

Thus, the unique endemic equilibrium point *P  of model (3) is globally 
asymptotically stable. This completes the proof. 

4. Applications and Numerical Simulations 

In this section, we choose the function ( )f I  as  

( ) 21 .f I α= +  

which was proposed by Xiao and Ruan [5]. 
Then the model(3) becomes  

( )

( )

2

2

d ,
d 1
d ,
d 1
d .
d

S IA S S
t
E I S q E
t
I qE I
t

βµ
α

β µ
α

µ δ γ

 = − − +
 = − +

+


= − + +

                   (7) 

It is easy to verify that the function ( ) 21f I α= +  satisfies assumption 
( )1H  and ( )2H , at the same time,  

( )( )0 .AqR
q
β

µ µ µ δ γ
=

+ + +
 

The model (7) has a disease-free equilibrium point 0 ,0,0AP
µ

 
=  
 

 and an 

endemic equilibrium point ( )* * * *, ,P S E I=  with  

( )( ) ( )

( )

* 2

* *

2 2
0*

1 ,

,

4 1
,

2

q
S

q

E I
q

R
I

µ µ µ δ γ
α

β
µ δ γ

β αµ β

µα

∗
 + + + = +



+ + =

 + − − =

 

when 0 1R > . 
Using the arguments in section 3, we can obtain the following results. 
Theorem 4.1 The disease-free equilibrium point 0P  of (7) is globally 

asymptotically stable if 0 1R ≤  and unstable if 0 1R > . 
Theorem 4.2 The endemic equilibrium point *P  of (7) is globally asymptot-

ically stable if 0 1R > . 
We know that , , , ,qµ β δ γ  are greater than 0 and less than 1, so we selected 

some data for numerical simulation. After many numerical simulation experi-
ments, we have selected the following data with good interpretation. 

Let 1A = , 0.15µ = , 0.2β = , 0.1q = , 0.05δ = , 0.1γ = , 0.01α =  in 
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Figure 1, we have 0 1.333 1R = > . As is shown in Figure 1, the curve S starts to 
go up very quickly, goes down at a certain value and then tends stabilize. The 
curves E and I go up at a certain value and flatten out. This suggests that the 
disease is present. Figure 1 shows that when 0 1R > , the endemic equilibrium 
point *P  exists and is globally asymptotically stable, which is consistent with 
the previous conclusion. 

Next, we choose some other parameter values: 1A = , 0.2µ = , 0.2β = , 
0.1q = , 0.05δ = , 0.1γ = , 0.01α = . We have 0 0.9523 1R = < . As shown in 

Figure 2, the curve S rises rapidly, reaches a certain value and then flattens out. 
While the curves E and I monotonically decrease and go to zero which indicate 
that the disease disappears over time. Figure 2 reflects that the disease dies out 
and the disease-free equilibrium point 0P  is globally asymptotically stable. 

 

 

Figure 1. The path of ( ) ( ) ( ), ,S t E t I t  for the model (7) 

with initial values ( )0.7,0.2,0.1 , 0 1.333 1R = > .  

 

 

Figure 2. The path of ( ) ( ) ( ), ,S t E t I t  for the model (7) 

with initial values ( )2,1,0.5 , 0 0.953 1R = < .  
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5. Brief Summary 

In this paper, we consider the global stability of an SEIR epidemic model with 
infection force under intervention strategies. We suppose that the infection force 

can be factorized into 
( )
I

f I
β , where ( )f I  satisfies some conditions, and we  

use the regeneration matrix to obtain the basic reproductive number 0R . We 
also proved the existence of the equilibrium point. 

We prove that if 0 1R ≤ , there exists only the disease-free equilibrium point 
which is globally asymptotically stable; if 0 1R > , there is a unique endemic 
equilibrium point and the endemic equilibrium point is globally asymptotically 
stable. 
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Abstract 
This paper aims to present, in a unified manner, algebraic techniques for li-
near equations which are valid on both the algebras of quaternions and split 
quaternions. This paper, introduces a concept of v-quaternion, studies the 
problem of v-quaternionic linear equations by means of a complex represen-
tation and a real representation of v-quaternion matrices, and gives two alge-
braic methods for solving v-quaternionic linear equations. This paper also 
gives a unification of algebraic techniques for quaternionic and split quater-
nionic linear equations in quaternionic and split quaternionic mechanics. 
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1. Introduction 

A quaternion, which was found in 1840 by William Rowan Hamilton [1], is in 
the form of 1 2 3 4i j kq q q q q= + + + , 2 2 2i j k 1= = = − , ijk 1= − , where 

1 2 3 4, , ,q q q q ∈R , and ij ji k= − = , jk kj i= − = , ki ik j= − = . Quaternion al-
gebra has been playing a significant role recently in geometric and physical ap-
plications, many geometric problems can be represented by quaternions. In pa-
per [2], the authors showed that a unit timelike quaternion represents a rotation 
in the Minkowski 3 space, and expressed Lorentzian rotation matrix generated 
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with a time like quaternion. In paper [3], the authors studied the problem of us-
ing quaternions in unconstrained nonlinear optimization of 3-D rotations, and 
gave an easy and accurate method for applying the quaternion representation of 
3-D rotations. 

A split quaternion (or coquaternion), which was found in 1849 by James 
Cockle [4], is in the form of 1 2 3 4i j kq q q q q= + + + , 2i 1= − , 2 2j k 1= = , 
ijk 1= , where 1 2 3 4, , ,q q q q ∈R , and ij ji k= − = , jk kj i= − = − , ki ik j= − =  
and denotes the sets of quaternions and split quaternions respectively by H  
and sH . The quaternion ring H  and the split quaternion ring sH  are two 
associative and noncommutative 4-dimensional Clifford algebras, and the split 
quaternion ring sH  contains zero divisors, nilpotent elements and nontrivial 
idempotents. In paper [5], the authors stated the rotations in Minkowski 3 space 
by split quaternions. In paper [6], the authors studied dual split quaternions and 
screw motion in 3-dimensional Lorentzian space, and obtained the components 
of a dual split quaternion by replacing the L-Euler parameters with their split 
dual versions. In paper [7], the authors studied eigenvalue problem of a rotation 
matrix in Minkowski 3 space by using split quaternions, and gave the characte-
rizations of eigenvalues of a rotation matrix in Minkowski 3 space according to 
only first component of the corresponding quaternion. Quaternions and split 
quaternions in the study of geometry and physic are more than those, e.g. 
[8]-[13]. 

A v-quaternion is in the form of  
2 2

1 2 3 4i j k, i 1, j , ij ji k,q q q q q v= + + + = − = = − =          (1.1) 

in which 0 v≠ ∈R , 1 2 3 4, , ,q q q q ∈R , and 2k ijk v= = , jk kj iv= − = − , 
ik ki j= − = − . Let vH  denote the set of v-quaternion. Obviously, the set of all 
v-quaternion is also a noncommutative 4-dimensional Clifford algebra. Specially, 
when 1v = − , the ring of the v-quaternion vH  is the ring of the quaternion H ; 
when 1v = , the ring of the v-quaternion vH  is the ring of the split quaternion 

sH . 
In the geometry research and physical application of quaternion and split qu-

aternion, the problems of solving quaternionic and split quaternionic equations 
are often encountered. In paper [14], by means of a complex representation of 
quaternion matrices, the authors studied the problems of quaternionic linear 
equations, and gave an algorithm for quaternionic linear equations. In paper 
[15], by means of a complex representation and a real representation of split qu-
aternion matrices, the authors studied the split quaternionic least squares prob-
lem, and derived two algebraic methods for finding solutions of the problems in 
split quaternionic mechanics. For the problems of quaternions and split quater-
nions, the scholars need to discuss by classification. However, as two special cas-
es of four-dimensional algebra, it is of theoretical and practical significance to 
solve them in a unified way. This paper aims to present, in a unified manner, al-
gebraic techniques for linear equations which are valid on both the algebras of 
quaternions and split quaternions. This paper, by means of a complex represen-

https://doi.org/10.4236/jamp.2019.78118


G. Wang et al. 
 

 

DOI: 10.4236/jamp.2019.78118 1720 Journal of Applied Mathematics and Physics 
 

tation and a real representation of v-quaternion matrices, studies the problem of 
v-quaternionic linear equations, and gives two algebraic methods for solving 
v-quaternionic linear equations. This paper also gives a unification of algebraic 
techniques for quaternionic and split quaternionic linear equations in quater-
nionic and split quaternionic mechanics. 

Let R  be the real number field, i= ⊕C R R  the complex number field. If 

1 2 3 4i j k vq q q q q= + + + ∈Η , 1 2 3 4i j kq q q q q= − − −  is the conjugate of q. For 
any matrix ( ) m n

st vA a ×= ∈H , ( )stA a= , ( )T
tsA a= , ( )*

tsA a= , 1A−  denote 
the conjugate, the transpose, the conjugate transpose and the inverse of the ma-
trix A, respectively. 

This paper is organized as follows. In Section 2, we give two new matrix re-
presentations of v-quaternion matrix, and discuss some properties and conclu-
sions of complex representation and real representation of v-quaternion matric-
es. In Section 3, we present the complex representation method for solving 
v-quaternionic linear equations and some numerical examples. In Section 4, we 
present the real representation method for solving v-quaternionic linear equa-
tions and some numerical examples. In Section 5, we summarize this paper. 

2. Complex Representation and Real Representation of  
V-Quaternion Matrices  

For any v-quaternion matrix  
( ) ( )1 2 3 4 1 2 3 4 1 2i j k i i j j m n

vA A A A A A A A A B B ×= + + + = + + + = + ∈H ,  

1 2 3 4, , , m nA A A A ×∈R , 1 2, m nB B ×∈C , the complex representation CA  of the 
v-quaternion matrix A is defined to be  

1 2

2 1

,C B vB
A

B B
 

=  
 

                       (2.1) 

and the real representation RA  of the v-quaternion matrix A is defined to be  

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

.R

A A vA vA
A A vA vA

A
A A A A
A A A A

− 
 − =
 −
 

− 

                 (2.2) 

For any v-quaternion matrix , m n
vA B ×∈H , n p

vC ×∈H , a∈R , for  
{ },C Rσ ∈ , it is easy to prove the following equalities by direct calculation.  

( ) ( ) ( ), , ,A B A B aA aA AC A Cσ σ σσ σ σ σ σ+ = + = =         (2.3) 

and  
1 ,C C

m nQ A Q A− =                       (2.4) 

where 
0

0
t

t
t

vI
Q

I
 

=  
 

. 

Similarly, by direct calculation we get the following results.  
1 1 1, , ,R R R R R R

m n m n m nP A P A R A R A S A S A− − −= = =           (2.5) 
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where 

0 0 0
0 0 0

0 0 0
0 0 0

t

t
t

t

t

I
I

P
I

I

− 
 
 =
 
 

− 

, 

0 0 0
0 0 0

0 0 0
0 0 0

t

t
t

t

t

vI
vI

R
I

I

 
 
 =
 
 
 

,  

0 0 0
0 0 0
0 0 0

0 0 0

t

t
t

t

t

vI
vI

S
I

I

 
 − =
 −
 
 

, and 1
t tP P− = − , 1 1

t tR R
v

− = , 1 1
t tS S

v
− = . 

Lemma 2.1 For two special cases of quaternion ( )1v = −  and split quater-
nion ( )1v =  matrices, clearly by (2.1) and (2.2) the complex representation and 
the real representation are respectively to be 

1 2 3 4

2 1 4 31 2

3 4 1 22 1

4 3 2 1

, , .C R m n

A A A A
A A A AB B

A A A
A A A AB B
A A A A

×

− − − 
 −−   = = ∈   − 
 

− 

H      (2.6a) 

1 2 3 4

2 1 4 31 2

3 4 1 22 1

4 3 2 1

, , .C R m n
s

A A A A
A A A AB B

A A A
A A A AB B
A A A A

×

− 
 −   = = ∈   − 
 

− 

H       (2.6b) 

For any v-quaternion matrix m n
vA ×∈H , the rank ( )rank A  of the matrix A is 

defined to be  

( ) ( )1rank rank ,
2

CA A≡                     (2.7) 

or  

( ) ( )1rank rank .
4

RA A≡                     (2.8) 

By the definition of rank and (2.3), it is easy to get the following results by di-
rect calculation. If , m n

vA B ×∈Η , n p
vC ×∈Η , then  

( ) ( ) ( )rank rank rankA B A B+ ≤ +  and ( ) ( ) ( ){ }rank min rank , rankAC A C≤ . 

3. Algebraic Method of Complex Representation  

If ,m n m p
v vA B× ×∈ ∈H H , then by the definition of complex representation and 

(2.3), AX B=  if and only if C C CA X B= . That is AX B=  has a solution X if 
and only if C CA Y B=  has a solution CY X= . 

Theorem 3.1 For ,m n m p
v vA B× ×∈ ∈H H . Then 

1) V-quaternionic linear equations AX B=  have a solution if and only if 

( ) ( )rank rank ,A A B= , i.e. AX B=  has a solution if and only if C CA Y B=  
has a solution, and if ( ) ( )rank rank ,A A B n= = , then v-quaternionic linear eq-
uations AX B=  have a unique solution. 

2) If Y is a solution to C CA Y B= , then the following v-quaternion matrix is a 
solution to AX B= , 
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[ ]( )11 , j ,14 j

p

n n n p
p

I
X I I Y Q YQ

I
v

−
 
 = +
 
  

             (3.1) 

in which 
0

0
t

t
t

vI
Q

I
 

=  
 

. 

Proof: If Y is a solution of C CA Y B= , by (2.4),  

( ) ( )1 1 ,C C C C C C
n p n pA Y B A Q YQ B A Q YQ B− −= ⇔ = ⇔ =       (3.2) 

i.e. 1
n pQ YQ−  is a solution of C CA Y B= , therefore  

( )11ˆ
2 n pY Y Q YQ−= +                      (3.3) 

is also a solution of C CA Y B= . Let  

11 12 2 2

21 22

, , , 1, 2.n p n p
ts

z z
Y z s t

z z
× × 

= ∈ ∈ = 
 

C C             (3.4) 

It is easy to get, by direct calculation,  

1 2 2 2

2 1

ˆ ˆˆ ,
ˆ ˆ

n pz vz
Y

z z
× 

= ∈ 
 

C                   (3.5) 

in which  

( )1 11 22 2 12 21
1 1 1ˆ ˆ, .
2 2

z z z z z z
v

 = + = + 
 

              (3.6) 

By (3.5), we construct a v-quaternion matrix.  

[ ]1 2
1 ˆˆ ˆ j , j .12 j

p

n n
p

I
X z z I I Y

I
v

 
 = + =
 
  

              (3.7) 

Clearly ˆCX Y= . This means that ˆCX Y=  is a solution of C CA Y B= , so X 
is a solution of AX B= . 

From the statement above we get following results. When the v-quaternionic 
linear equations AX B=  have a solution, we can find a solution by a solution 
of complex representation equation C CA Y B=  from the formula (3.1). 

The following two special cases about quaternions and split quaternions come 
from Theorem 3.1 respectively with 1v = −  and 1v = . 

Corollary 3.2 For ,m n m pA B× ×∈ ∈H H . Then 
1) The quaternionic linear equations AX B=  have a solution if and only if 

( ) ( )rank rank ,A A B= , i.e. AX B=  has a solution if and only if C CA Y B=  
has a solution, and if ( ) ( )rank rank ,A A B n= = , then quaternionic linear equa-
tions AX B=  have a unique solution. 

2) If Y is a solution to C CA Y B= , then the following quaternion matrix is a 
solution to AX B= ,  

[ ]( )11 , j ,
j4

p
n n n p

p

I
X I I Y Q YQ

I
−  

= +  − 
              (3.8) 
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in which 
0

0
t

t
t

I
Q

I
− 

=  
 

. 

Corollary 3.3 For ,m n m p
s sA B× ×∈ ∈H H . Then 

1) The split quaternionic linear equations AX B=  have a solution if and 
only if ( ) ( )rank rank ,A A B= , i.e. AX B=  has a solution if and only if 

C CA Y B=  has a solution, and if ( ) ( )rank rank ,A A B n= = , then split quater-
nionic linear equations AX B=  have a unique solution. 

2) If Y is a solution to C CA Y B= , then the following split quaternion matrix 
is a solution to AX B= ,  

[ ]( )11 , j ,
j4

p
n n n p

p

I
X I I Y Q YQ

I
−  

= +  
 

            (3.9) 

in which 
0

0
t

t
t

I
Q

I
 

=  
 

. 

In the similarly way, we have the following result. 
Theorem 3.4 For , ,m n p q m q

v v vA C B× × ×∈ ∈ ∈H H H . Then 
1) V-quaternionic matrix equation AXC B=  has a solution if and only if 

( ) ( )rank rank ,A A B=  and ( )rank rank
C

C
B

 
=  

 
, i.e. AXC B=  has a solution 

if and only if C C CA YC B=  has a solution, and if ( ) ( )rank rank ,A A B n= = , 

( )rank rank
C

C p
B

 
= = 

 
, then v-quaternionic matrix equation AXC B=  has a 

unique solution. 

2) If Y is a solution to C C CA YC B= , then the following v-quaternion matrix 
is a solution to AXC B= , 

[ ]( )11 , j ,14 j

p

n n n p
p

I
X I I Y Q YQ

I
v

−
 
 = +
 
  

            (3.10) 

in which 
0

0
t

t
t

vI
Q

I
 

=  
 

. 

The proof process is similar to the Theorem 3.1. 
Remark 1 The above theorems and corollaries not only give the necessary and 

sufficient conditions for quaternion and split quaternion matrix equations 
,AX B AXC B= =  to have a solution, but also a unification of representation 

for a solution. 
Example 3.1 
Let  

i 1 j i
and .

1 j k 1
A B

+   
= =   − + − −   

 

Find all solutions of the v-quaternionic linear equations AX B= . 
By the complex representation of the v-quaternion matrix, we know  
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i 1 0 i 0
1 0 i 1 0

, ,
0 1 i 1 0 i
1 i 1 0 0 1

C C

v
v v

A B

   
   − − −   = =
   − −
   

− −   

 

and if 7 45
2

v ±
≠ , then ( ) ( )rank rank , 4C C CA A B= = , i.e.  

( ) ( )rank rank , 2A A B= = , then the v-quaternionic linear equations AX B=  
have a unique solution. 

For the matrix equation C CA Y B= , the unique solution is easily found to be  

( )

( )
2 2

2 2

2 2

2 2

1 25 1
7 1 7 1

13 i i
7 1 7 1 .

1 2 5 1
7 1 7 1

1 3i i
7 1 7 1

v vv
v v v v

v vv
v v v vY

v v
v v v v

v v
v v v v

− − +
 − + − + 
 − −−
 

− + − + =
 − − +
 − + − + 

+ 
 − + − + 

 

By (3.1), we easily find the unique solution X of v-quaternionic linear equa-
tions AX B= , and  

[ ]( )1
2 2

T

2 2 2 2

1
1 , j 14 j

5 1 1 2 3 1j i k .
7 1 7 1 7 1 7 1

n pX I I Y Q YQ
v

v v v v
v v v v v v v v

−
 
 = +
 
  

− + − − + = + − − + − + − + − + 

 

The following two examples are special cases of the above conclusion. 
Case 1: For quaternionic linear equations AX B=  with 1v = − . It is easy to 

know CA  and CB  by (2.6a),  

i 1 0 1 i 0
1 0 1 i 1 0

,
0 1 i 1 0 i
1 i 1 0 0 1

C CA B

−   
   − − −   = =
   − −
   

− −   

 

and ( ) ( )rank rank , 4C C CA A B= = . Clearly, the linear equations C CA Y B=  
have a unique solution. The unique solution is easily found to be  

2 1
3 3
1 i 0
3 .
1 2
3 3

10 i
3

Y

 − 
 
 
 

=  
 
 
 
 −
 

 

By (3.8), we easily find the unique solution X of quaternionic linear equations 
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AX B= , and  

[ ]( )
T

1
2 2

11 2 1 1, j j i .
j4 3 3 3n pX I I Y Q YQ−    = + = +   −   

 

Case 2: For split quaternionic linear equations AX B=  with 1v = . It is easy 
to know CA  and CB  by (2.6b),  

i 1 0 1 i 0
1 0 1 i 1 0

,
0 1 i 1 0 i
1 i 1 0 0 1

C CA B

   
   − − −   = =
   − −
   

− −   

 

and ( ) ( )rank rank , 4C C CA A B= = . Clearly, the linear equations C CA Y B=  
have a unique solution. The unique solution is easily found to be  

4 1
5 5
3 2i i
5 5 .
1 4
5 5
2 3i i
5 5

Y

 
 
 
 
 

=  
 
 
 
 − −
 

 

By (3.9), we easily find the unique solution X of split quaternionic linear equa-
tions AX B= , and  

[ ]( )
T

1
2 2

11 4 1 3 2= , j j i k .
j4 5 5 5 5n pX I I Y Q YQ−    + = + +     

 

4. Algebraic Method of Real Representation  

If ,m n m p
v vA B× ×∈ ∈H H , then by the definition of real representation, AX B=  if 

and only if R R RA X B= . That is AX B=  has a solution X if and only if 
R RA Y B=  has a solution RY X= . 
Theorem 4.1 For ,m n m p

v vA B× ×∈ ∈H H . Then 
1) V-quaternionic linear equations AX B=  have a solution if and only if 

( ) ( )rank rank ,A A B= , i.e. AX B=  has a solution if and only if R RA Y B=  
has a solution, and if ( ) ( )rank rank ,A A B n= = , then v-quaternionic linear eq-
uations AX B=  have a unique solution. 

2) If Y is a solution to R RA Y B= , then the following v-quaternion matrix is a 
solution to AX B= , 

[ ]
i

1 1 1 1, i, j, k .j16
1 k

p

p

n n n n n p n p n p p

p

I
I

X I I I I Y P YP R YR S YS Iv v v

I
v

 
 − 

   = − + +      
 
  

    (4.1) 

Proof: If Y is a solution of R RA Y B= , by (2.5),  
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( ) ( )1 1 1 1 ,R R R R R R
m n n p m p n pA Y B P A P P YP P B P A P YP B− − − −= ⇔ = ⇔ =    (4.2) 

i.e. 1
n pP YP−  is a solution of R RA Y B= . Similarly, 1 1,n p n pR YR S YS− −  are also so-

lution of R RA Y B= .  

( )1 1 11ˆ
4
1 1 1
4

n p n p n p

n p n p n p

Y Y P YP R YR S YS

Y P YP R YR S YS
v v

− − −= + + +

 = − + + 
 

              (4.3) 

is also a solution of R RA Y B= . Let  

11 12 13 14

21 22 23 24 4 4

31 32 33 34

41 42 43 44

, , , 1, 2,3, 4.n p n p
ts

z z z z
z z z z

Y z s t
z z z z
z z z z

× ×

 
 
 = ∈ ∈ =
 
 
 

R R      (4.4) 

It is easy to get, by direct calculation,  

1 2 3 4

2 1 4 3 4 4

3 4 1 2

4 3 2 1

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆˆ = ,
ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

n p

z z vz vz
z z vz vz

Y
z z z z
z z z z

×

− 
 − ∈
 −
 

− 

R                (4.5) 

in which  

( ) ( )1 11 22 33 44 2 21 12 43 34
1 1ˆ ˆ, ,
4 4

z z z z z z z z z z= + + + = − + −      (4.6a) 

3 31 42 13 24 4 41 32 23 14
1 1 1 1 1 1ˆ ˆ, .
4 4

z z z z z z z z z z
v v v v

   = − + − = + + +   
   

   (4.6b) 

By (4.5), we construct a v-quaternion matrix.  

[ ]1 2 3 4

i
1 1ˆˆ ˆ ˆ ˆi j k , i, j, k .j4

1 k

p

p

n n n n p

p

I
I

X z z z z I I I I Y I
v

I
v

 
 − 
 = + + + =  
 
 
  

        (4.7) 

Clearly ˆRX Y= . This means that ˆRX Y=  is a solution of R RA Y B= , so X 
is a solution of AX B= . 

From the statement above we get following results. 
The following two special cases about quaternions and split quaternions come 

from Theorem 4.1 respectively with 1v = −  and 1v = . 
Corollary 4.2 For ,m n m pA B× ×∈ ∈H H . Then 
1) The quaternionic linear equations AX B=  have a solution if and only if 

( ) ( )rank rank ,A A B= , i.e. AX B=  has a solution if and only if R RA Y B=  
has a solution, and if ( ) ( )rank rank ,A A B n= = , then quaternionic linear equa-
tions AX B=  have a unique solution. 

2) If Y is a solution to R RA Y B= , then the following quaternion matrix is a 
solution to AX B= ,  
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[ ]( ) i1 , i, j, k .
j16
k

p

p
n n n n n p n p n p

p

p

I
I

X I I I I Y P YP R YR S YS
I
I

 
 − = − − −
 −
 
−  

     (4.8) 

Corollary 4.3 For ,m n m p
s sA B× ×∈ ∈H H . Then 

1) The split quaternionic linear equations AX B=  have a solution if and 
only if ( ) ( )rank rank ,A A B= , i.e. AX B=  has a solution if and only if 

R RA Y B=  has a solution, and if ( ) ( )rank rank ,A A B n= = , then split quater-
nionic linear equations AX B=  have a unique solution. 

2) If Y is a solution to R RA Y B= , then the following split quaternion matrix 
is a solution to AX B= ,  

[ ]( ) i1 , i, j, k .
j16
k

p

p
n n n n n p n p n p

p

p

I
I

X I I I I Y P YP R YR S YS
I
I

 
 − = − + +
 
 
  

     (4.9) 

In the similarly way, we have the following result. 
Theorem 4.4 For , ,m n p q m q

v v vA C B× × ×∈ ∈ ∈H H H . Then 
1) V-quaternionic matrix equation AXC B=  has a solution if and only if 

( ) ( )rank rank ,A A B=  and ( )rank rank
C

C
B

 
=  

 
, i.e. AXC B=  has a solution 

if and only if R R RA YC B=  has a solution, and if ( ) ( )rank rank ,A A B n= = , 

( )rank rank
C

C p
B

 
= = 

 
, then v-quaternionic matrix equation AXC B=  has a 

unique solution. 
2) If Y is a solution to R R RA YC B= , then the following v-quaternion matrix 

is a solution to AXC B= , 

[ ]
i

1 1 1 1, i, j, k .j16
1 k

p

p

n n n n n p n p n p p

p

I
I

X I I I I Y P YP R YR S YS Iv v v

I
v

 
 − 

   = − + +      
 
  

   (4.10) 

The proof process is similar to the Theorem 4.1. 
Remark 2 The above theorems and corollaries not only give the necessary and 

sufficient conditions for quaternion and split quaternion matrix equations 
,AX B AXC B= =  to have a solution, but also a unification of representation 

for a solution. 
Example 4.1 
For two v-quaternion matrices A and B in Example 3.1, find solutions of the 

v-quaternionic linear equations AX B= . 
By the real representation of the v-quaternion matrix, we know  
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0 1 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0

1 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0

, ,
0 1 0 0 0 1 1 0 0 0 0 1
1 0 0 1 1 0 0 0 0 0 1 0
0 0 0 1 1 0 0 1 0 0 1 0
0 1 1 0 0 0 1 0 0 0 0 1

R R

v
v v

v
v v

A B

− −   
   − − −   
   −
   

− − − −   = =   − −
   

− − −   
   −   

− − − −      

 

and if 7 45
2

v ±
≠ , then ( ) ( )rank rank , 8R R RA A B= = , i.e.  

( ) ( )rank rank , 2A A B= = , then the v-quaternionic linear equations AX B=  
have a unique solution. 

For the matrix equation R RA Y B= , the unique solution is easily found to be  

( )
( )
( )

( )
2

5 1 0 1 2 0
0 3 0 1
0 5 1 0 2 1
3 0 1 01 .

1 2 0 5 1 07 1
0 1 0 3
0 2 1 0 5 1

1 0 3 0

v v v
v v v

v v v
v v v

Y
v vv v

v v
v v

v v

− + − 
 − − 
 − + −
 
− − − =  − − +− +

 
− − 

 − − + 
 − − − 

 

By (4.1), we easily find the unique solution X of v-quaternionic linear equa-
tions AX B= , and  

[ ]2 2 2 2

T

2 2 2 2

1
i

1 1 1 1, i, j, k j16
1 k

5 1 1 2 3 1j i k .
7 1 7 1 7 1 7 1

n p n p n pX I I I I Y P YP R YR S YS
v v v

v
v v v v

v v v v v v v v

 
 − 

   = − + +      
 
  

− + − − + = + − − + − + − + − + 

 

The following two examples are special cases of the above conclusion. 
Case 1: For quaternionic linear equations AX B=  with 1v = − . It is easy to 

know RA  and RB  by (2.6a),  

0 1 1 0 0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 1 1 0 0 0

1 0 0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 1 1 0 0 1 0 0

, ,
0 1 0 0 0 1 1 0 0 0 0 1
1 0 0 1 1 0 0 0 0 0 1 0
0 0 0 1 1 0 0 1 0 0 1 0
0 1 1 0 0 0 1 0 0 0 0 1

R RA B

− − −   
   − − −   
   
   

− −   = =   − −
   

− − −   
   −   

− − − −      
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and ( ) ( )rank rank , 8R R CA A B= = . Clearly, the linear equations R RA Y B=  
have a unique solution. The unique solution is easily found to be  

6 0 3 0
0 3 0 0
0 6 0 3
3 0 0 01 .
3 0 6 09
0 0 0 3
0 3 0 6
0 0 3 0

Y

− 
 − 
 
 
 =  
 

− 
 − 
  

 

By (4.8), we easily find the unique solution X of quaternionic linear equations 
AX B= , and  

[ ]( )2 2 2 2

T

1
i1 , i, j, k
j16
k

2 1 1j i .
3 3 3

n p n p n pX I I I I Y P YP R YR S YS

 
 − = − − −
 −
 
− 

 = +  

 

Case 2: For split quaternionic linear equations AX B=  with 1v = . It is easy 
to know RA  and RB  by (2.6b),  

0 1 1 0 0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 1 1 0 0 0

1 0 0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 1 1 0 0 1 0 0

,
0 1 0 0 0 1 1 0 0 0 0 1
1 0 0 1 1 0 0 0 0 0 1 0
0 0 0 1 1 0 0 1 0 0 1 0
0 1 1 0 0 0 1 0 0 0 0 1

R RA B

− −   
   − − −   
   −
   

− − − −   = =   − −
   

− − −   
   −   

− − − −      

 

and ( ) ( )rank rank , 8R R RA A B= = . Clearly, the linear equations R RA Y B=  
have a unique solution. The unique solution is easily found to be  

4 0 1 0
0 3 0 2
0 4 0 1
3 0 2 01 .
1 0 4 05

0 2 0 3
0 1 0 4
2 0 3 0

Y

− − 
 − 
 −
 
− − = −  − −
 

− 
 − 
− −  

 

By (4.9), we easily find the unique solution X of split quaternionic linear equa-
tions AX B= , and  
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[ ]( )2 2 2 2

T

1
i1 , i, j, k
j16
k

4 1 3 2j i k .
5 5 5 5

n p n p n pX I I I I Y P YP R YR S YS

 
 − = − + +
 
 
 

 = + +  

 

5. Conclusion 

The goal of this paper is to solve the quaternion and split quaternion linear equ-
ations in a unified manner. First, we give the definition of the v-quaternion and 
two new matrix representations of v-quaternion matrix. Then we derive two al-
gebraic methods for solving the linear equations of v-quaternion. It is notewor-
thy that this paper not only gives algebraic techniques for solving the linear equ-
ations over v-quaternion algebras, but also a unification of algebraic techniques 
for linear equations in quaternionic and split quaternionic theory. 
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Abstract 
We present in this text the research carried out on the dynamic behavior of 
non-inertial systems, proposing new keys to better understand the mechanics 
of the universe. Applying the field theory to the dynamic magnitudes cir-
cumscribed to a body, our research has achieved a new conception of the 
coupling of these magnitudes, to better understand the behavior of solid rigid 
bodies, when subjected to multiple simultaneous, non-coaxial rotations. The 
results of the research are consistent with Einstein’s theories on rotation; 
however, we propose a different mechanics and complementary to classical 
mechanics, specifically for systems accelerated by rotations. These new con-
cepts define the Theory of Dynamic Interactions (TDI), a new dynamic mod-
el for non-inertial systems with axial symmetry, which is based on the prin-
ciples of conservation of measurable quantities: the notion of quantity, total 
mass and total energy. This theory deduces a general equation of motion for 
bodies endowed with angular momentum, when they are subjected to succes-
sive non-coaxial torques. 
 

Keywords 
Mechanics, Dynamic Interactions, Non-Inertial Systems, Dynamic Coupling, 
Celestial Mechanics 

 

1. Introduction 

The observation of the dynamic equilibrium of the universe, together with the 
verification of the simultaneous orbitation and rotation of the celestial bodies, 
generated doubts about the accepted rotational mechanics. 

This secular dynamic equilibrium did not seem to comply with a Newtonian 
physics in which the forces generate movements of constantly accelerated trans-
lation. The balance that we can observe in our universe, and its dynamics, did 
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not seem to reconcile with the conceptual structure of Classical Mechanics. 
With these doubts we began, from the outset of our speculations about the 

incoherence of the dynamic orthodox paradigm. First, we conducted a historical 
study on the concept of rotation in physics, published in the book: The flight of 
the Boomerang [1], whose prologue was written by Professor Federico Gar-
cia-Moliner [2]. Later we published in a new book our initial concerns and hy-
pothesis: A world in rotation [3]. 

After observing the behavior of celestial bodies, we concluded that the appli-
cation of Newtonian mechanics to mobile systems in non-inertial frames, gave 
conceptually wrong results. 

After analyzing the physical phenomenon of a rigid solid body, free in space, 
subjected to multiple simultaneous non-coaxial rotations, we concluded that the 
current dynamics did not adequately justify the behaviors that could be ob-
served. 

In making a detailed analysis, it could not be considered that the resulting 
motion was chaotic; however, the true response of nature was complex and far 
removed from the accepted argument in the field of Classical Mechanics. 

It is clear that this theory determines an ideal model for inertial systems, but is 
not able to justify moving systems subjected to accelerations, such as all the 
movements with rotation. 

Therefore, it was about analyzing the existing physical-mathematical model 
for inertial systems and to determine a new modeling for non-inertial systems, 
establishing its true equation of motion [4]. 

The challenge was to define a new celestial mechanics based on a Dynamic of 
Non-Inertial Systems. 

2. Incoherences: Identification of Errors 

It is hard to believe that to date the true behavior of bodies subject to multiple, 
non-coaxial rotations has not been identified and that these have been assigned a 
mathematically unsolvable equation, even in analytical mechanics, which makes 
it further hard to believe that nature can behave in such a manner: without a re-
solvable, exact and predictive result. After our analyses, we pointed to the incon-
sistency in the accepted Newton-Euler equations in their application to different 
bodies subject to diverse non-coaxial rotations [5]. 

But it is also astonishing to see that the accepted calculation procedure deter-
mines a trajectory for these bodies, which does not coincide at all with what can 
be observed in nature (see Figure 1). This lack of coherence between the results 
of the formulas applied, and the true trajectory that is observed, makes us think 
that in all these years, no experimental tests or verifications have been carried 
out to confirm if those algorithms responded to reality, or if they were simple 
mathematical structures, alien to the authenticity of nature. 

3. Non-Inertial Systems 

Classical Mechanics has been formulated for inertial references and it does not  
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Figure 1. Trajectory I predicted by classical mechanics and trajectory II 
deduced by means of the Theory of Dynamic Interactions (TDI). We have 
observed and confirmed the second case repeatedly by experiments [6]. 

 
say anything and it does not relate to rotation cases. Nevertheless, creating a 
mechanics available for any stage is possible if we include their inertial reactions 
and we define a Fields Inertial Dynamic. In this way the inertial phenomena 
would be structured rationally, and incorporate a unified mechanics. 

In order to include the inertial phenomena in the physics knowledge structure, 
it is necessary to analyze the movement in non holonomous coordinates and the 
axial reactions which are produced. We understand that a classical mechanics 
based on holonomous coordinates and polar reactions, will only represent a li-
mited and partial natural view. 

The proposed generalization does not say that the classical mechanics is out-
dated or wrong, but it that it is limited and partial, because it is only referred to 
inertial systems. We can be more aspiring and search more general dynamical 
laws which regulate the movement bodies behavior under rotations or, support-
ing multiple and non-coaxial rotations. 

The Theory of Dynamic Interactions generalizes the gyroscopic couple con-
cept and other inertial phenomena concepts and it includes into a unified struc-
ture of the new rotational non inertial dynamic [7]. 

3.1. Matching Orbiting and Rotation Movements 

However, the fact is that, in general, celestial bodies in addition to orbiting also 
rotate about their main axis of symmetry. Nevertheless, this peculiar feature fails 
to have attracted the attention of astronomers until our day. 

At the beginning of our project, we came to the conclusion that there could be 
a nomological, physical-mathematical correlation between the simultaneous ro-
tation and orbiting movements that we observe in celestial bodies [4]. 

In our studies it was confirmed that it is easy to see simultaneous movements 
of intrinsic rotation and orbitation in nature, when until now there was no 
physical or mathematical model that established a scientific correlation between 
both movements [8]. 

Julio Cano has expressed: By observing in nature the constancy of the relationship 
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between orbiting and intrinsic rotation, Gabriel Barceló deduced the principle 
that: Everything that orbits, rotates [9]; or rather, everybody that moves through 
an orbit simultaneously rotates on an intrinsic axis. He deduced this principle 
from observing the planetary system, the rings of Saturn and also the behaviour 
[10] of the spinning top. 

He understood, however, the need for empirical checks to confirm or rectify 
the new dynamic hypotheses deduced from the aforementioned principle and, 
where appropriate, to be able to explain that behaviour by formulating a new 
dynamic theory that would simultaneously resolve other Rotational Dynamics 
phenomena and generalize inertial phenomena [6]. 

The Theory of Dynamic Interactions allows to justify this constant coincidence 
between orbiting and intrinsic rotation, and to develop a specific dynamics for 
bodies in rotation, subjected to successive non-coaxial torques, in which the se-
quence of the action of the forces is decisive, and their behavior, does not exactly 
coincide with the laws of Classical Mechanics. 

3.2. New Hypotheses 

Guided along by our curiosity and the intellectual concerns that our teacher 
Miguel A. Catalán shared with us, we have tried, over this last sixty years to seek 
for explanations to our doubts and aporias, trying to transform our conjectural 
baggage into a logical structure of knowledge to better understand the behavior 
of nature, to be able to accurately explain it and to come up with the mathemat-
ical tools that will make it possible to predict it [5].  

To achieve this, it was necessary to observe the singular behavior of the ma-
terial when subjected to successive accelerations by rotation, not coaxial, and in-
fer their true behavior in non-inertial conditions. 

From determinate dynamics assumptions and based on a new interpretation 
of the bodies with intrinsic angular momentum, when they are supporting suc-
cessive non-coaxial torques, we have developed new dynamics hypothesis which 
allows us to reach the conclusion to create a new mathematical model in the ro-
tation dynamics fields. 

This new model would allow us to justify dynamic natural behaviors that until 
now have not been sufficiently understood. With this new conceptual model, 
new results for determinate cases are obtained based on a new interpretation of 
the composition of movements originated by external momentums [7]. 

Our research project was born of physical observation, the search for a dy-
namic for accelerated systems based on the Scientific Method, and the reflection 
on the validity of classical mathematical models, which accept to apply vector 
algebra to angular magnitudes. Therefore, from the beginning, our new differen-
tiating hypotheses were: 
• The mathematical model for the development of the classical movement eq-

uations admits the vectorial algebra, although the rotational dynamical mag-
nitudes are neither commutative nor associative. 
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• In Classical Mechanics it is accepted from Poinsot, the discriminant principle 
of non-overlap between the movements of translation and rotation, and that 
the effects of the forces do not match the effects of the torques, without this 
supposed rule had been experimentally tested. 

3.3. New Deductions 

Dissatisfied as we were with the criteria of conventional rotational dynamics, we 
tried to come up with new approaches to determine the equation of motion of 
accelerated systems and to better understand and explain their behavior. After a 
first analysis, we became convinced that: 
• Whenever a solid rigid body with intrinsic rotation is subject to an external, 

non-coaxial momentum, dynamic interactions are generated that cause a 
variation in the dynamic behavior of the body, which is not provided for in 
classical mechanics. 

• Solid bodies with intrinsic angular momentum and a quantity of movement, 
when they are subject to a new, non-coaxial momentum with its rotation, 
change their path in accordance with a defined regularity [5]. 

3.4. The New Equation of Motion 

Based on the axioms put forward in this deductive process, we came to a new 
formulation [11] for the movement of accelerated systems: the motion equation 
would be determined by the translational velocity of the body’s center of mass, 
which has not varied in magnitude and therefore will be equal to the initial 
translational velocity of the body subjected to the spatial rotation mentioned 
above:  

0v V= Ψ ⋅


 



                          (1) 

The no discriminating coupling proposed in my hypothesis is hence identified 
as a spatial rotation of velocity:  

0
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Thus, the equation of motion can be written as 
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In a single rotation, the rotational operator Ψ




 transforms the initial velocity 

0V


 into the velocity v , both situated in the same plane. We find that the rota-
tional operator Ψ





 is a function of sine or cosine of tΩ , which clearly indi-
cates the relation between the angular velocity Ω



 of the orbit and the torque 
M ′


 and the initial angular velocity ω


. Thus, I have derived a simple mathe-
matical relation between the angular velocity ω



 of the body and its translation-
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al velocity v . Equation (3) is a general equation of motion for bodies with an-
gular momentum that are subjected to successive noncoaxial torques. For this 
equation, the rotational operator Ψ





 serves as a matrix that transforms the ini-
tial velocity, by means of rotation, into the velocity that corresponds to each 
successive dynamic state [12]. 

This new equation of motion makes it possible to learn of the true and real 
behavior of nature for non-inertial systems. It can be understood as a scientific 
realization that explains and predicts the behavior of accelerated dynamic sys-
tems.  

… This new conception of dynamics requires an interpretative sensitivity to 
rotational phenomena, to which the criteria of translational dynamics cannot be 
applied. Perhaps it corresponds to that necessary subtle change of perspective, 
something that we all have misse … [13], referred to by Penrose [5]. 

3.5. Dynamic Coupling 

To arrive at the different results from the physical-mathematical model ob-
tained, we worked off the basis of a new interpretation the concept of dynamic 
coupling. We put forward new criteria with respect to the compounding or su-
perposition of the movements originated by the acting forces [4]. 

On the basis of the Principle of Conservation of Momentum, we can infer that 
the field of inertial reactions generated in the rotating space by a new 
non-coaxial momentum, upon a moving body with a rotational movement ω 
and an inertial momentum I upon that rotation axis, and thus with an angular 
momentum, will oblige the moving body to acquire a precession rate Ω. 

This precession rate Ω can be observed simultaneously with the initial ω, 
which stays constant within the body. Beyond this, and as a discriminant hy-
pothesis, in the case of the translational movement of the body, we propose the 
dynamic hypothesis of the coupling of this field of translation velocities with the 
anisotropic field of inertial velocities caused by the second non-coaxial momen-
tum, obtaining as a resultant movement, an orbiting that is simultaneous with 
the intrinsic rotation of the moving body. This new orbiting movement, gener-
ated by a non-coaxial momentum, defines itself through the rotation of the 
speed vector, the latter being kept constant in module. 

Consequently, dynamic effects can be associated with speed, thus highlighting 
the clear mathematical correlation between rotation and translation. This 
mathematical correlation allows us to identify a physical relationship between 
the transfer of kinetic rotational energy to kinetic translational energy, and vice 
versa [4]. 

This is the concept of dynamic coupling used in our analysis: they are our 
working hypotheses. We do not understand that other possible coupling con-
cepts should be analyzed. In this new non-inertial rotational dynamics based on 
the Theory of Dynamic Interactions, we have developed laws and corollaries [14] 
(see Treaty), which allow us an unknown number of new technological applica-
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tions. 

3.6. Brief Summary of the Theory 

In the Treaty in two volumes: New paradigm in Physics [15], we propose this 
new physico-mathematical model for bodies subjected to multiple actions that 
generate non-coaxial rotations, proposing a new structure of this knowledge. 

We also state the laws that determine the behavior of systems in accelerated 
motion, for example, when they are subjected to non-coaxial moments, and 
multiple examples of assumptions and phenomena of nature that respond to 
these laws are proposed. 

The Theory of Dynamic Interactions (TDI) explains the behavior of rotating 
bodies; the reason why, when these bodies are subject to new stimuli that do not 
share their axis of rotation, an intriguing, different and simultaneous movement 
is generated. This refers to a behavior that remained unexplained by the conven-
tional laws of physics known until then [16].  

Figure 2 illustrates an imaginary field of vectors that represent a supposed 
dynamic magnitude, for example, the speed of translation of a body, in each of 
its points. 

It is necessary to emphasize that the fields of velocities that are the object of 
our analysis will be within the mobile under study, and represent that specific 
magnitude, in each point of the body. If the mobile is subject to a simple transla-
tion, without any rotation, the field will be uniform and isotropic, and all the 
vectors that represent the magnitude of that field will be equal and parallel. 

On the other hand, a torque or external moment creates a new velocity field 
within the mobile. This field will be anisotropic, if the body already has another 
non-coaxial rotation, since the speed of each point will depend on its geometric 
position with respect to the axis, in the body that rotates. 

Our dynamic hypothesis is that the velocity field of the initial rotation re-
mains constant, but instead, the field of translation speeds is coupled with the 
field of translation speeds generated by the second rotation, not coaxial. 

In this way, after this superposition of fields, the body changes trajectory, and 
if the external action remains constant, it will describe an orbit. 

 

 
Figure 2. Example of a geometric interpretation of a field of vector 
dynamic magnitudes generated at the core of the mobile [4].  
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The conclusion of our proposed theory is that for this assumption, the mobile, 
will gradually change its trajectory, as shown in Figure 3 [17].  

As we can see in Figure 3, we can assume a body with rectilinear trajectory, 
equipped with translational velocity and intrinsic rotation on its principal axis of 
inertia, which is subjected to a new non-coaxial moment with the intrinsic rota-
tion, for example in the figure, a flotation/weight torque, contained in the draw-
ing plane, as in our submarine experiment [18] [19] [20].  

In such case, the anisotropic velocity field, generated by this flotation/weight 
torque, forces the mobile to rotate about a vertical axis, perpendicular to that of 
the external torque acting on it (See Figure 3). In red is the displaced mobile, but 
with the previous orientation, and in blue, the new orientation of the mobile, 
due to the dynamic coupling taking place. The result is the coupling of both the 
translational and the anisotropic fields and, consequently, the change in the mo-
bile trajectory, describing an orbit, if its initial velocity was constant [4]. 

4. Experimental Tests 

This new logical structure was contrasted with experimental tests and computer 
simulation models, obtaining a full coherence between the results of the simula-
tions and the observation of the results of the empirical evidences. These tests 
were carried out by the Advanced Dynamics research team, but also by inde-
pendent third parties [21], who designed their own experimental testing proto-
types [22]. 

These tests can be visualized in the videos that appear in the annex I. The last 
video made [23], shows one of the multiple experimental examples of the Theory 
of Dynamic Interactions, but it is possibly one of the simplest and most striking: 
a cylinder operated by a finger, which acts on one of its edges. When you push 
the boat or cylinder with your finger, you rotate it on its longitudinal axis (main 
torque), and simultaneously also, on a vertical axis (secondary torque). 

In the video you can see the velocity fields that are generated. There is a main 
angular momentum (shown with arrows), a secondary angular torque perpendi-
cular to the previous one (shown with arrows), and a rectilinear velocity of the 
 

 
Figure 3. Trajectory of a body equipped with translational speed 
and intrinsic rotation on its principal axis of inertia, when it is 
subjected to a new non-coaxial moment with the intrinsic rotation.  
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center of mass of the boat (shown with arrows). Both rotations, and the transla-
tion of the center of mass of the boat cause it to rise, without the need for an ex-
ternal force. 

The boat rises with a tendency to become vertical; it can even stand supported 
on its base, in a stable position on the flat surface of the ground, but without the 
need for any external force acting in that direction. When the second rotation 
enters into action, the velocity distribution in the cylinder particles no longer 
remains constant, but is variable, in accordance with what is stated in the Theory 
of Dynamic Interactions. The generation of a variable velocity field implies the 
appearance of accelerations. 

The velocity field generated by the second pair will have a vertical component 
that is coupled with the field of the speed of translation, and forces the center of 
mass of the cylinder to rise, that is, the movement observed is opposite to the ac-
tion of the weight on the cylinder, whose tendency would be to fall. This video is 
an evident proof of the theory that is sustained, and we recommend its visualiza-
tion: https://www.youtube.com/watch?v=hJSbVOHRfrU. 

These experimental references, and many others that may arise, infer the exis-
tence of another rotational dynamics, not Newtonian, necessary for the identifi-
cation of the behavior of bodies in rotation, when they are subjected to new 
non-coaxial stimuli, and to which their behavior. Currently, in many cases, it is 
understood as anomalous, paradoxical or chaotic, since the laws available to us 
do not allow us to identify and predetermine it [24].  

4.1. Verification and Falsifiability 

We understand that, whatever the case, our theory, as an alternative to the other 
classical paradigm, must be subject to independent checks and tests, owing to 
the clear conceptual discrepancy that exists between them. We believe it neces-
sary to revise this niche of knowledge from a new mindset; one which discards 
preconceived ideas of a translational scenario and accepts the rotational reality 
of matter and our environment. Indeed, that has been the main reason that led 
us to establishing more general axioms to analyze the dynamics of bodies subject 
to accelerations and, especially, to acceleration by rotation, and to propose a 
mechanics for non-inertial systems [5]. 

Both the experimental tests carried out are easily reproducible according to 
the scientific method. Advanced Dynamics has convened three successive com-
petitions for the possible refutation or antithesis of the proposed theory, without 
obtaining an answer. The last call for antithesis ended on June 15, 2019 [25].  

4.2. Justification 

Through repeated experimental tests [26], they reliably saw how certain accepted 
mathematical formulations do not faithfully show the true dynamic behavior of 
bodies subject to accelerations by simultaneous non-coaxial rotations [8]. 

On the contrary, the sustained theory justifies and explains many scientific 
concepts that could not be understood using Classical Mechanics. 
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TDI fully explains the planar orbits Kepler proposed. In the laws of classical 
mechanics, there is no mathematical correlation which relates the movements of 
orbit and rotation of the planets around the Sun. However, the question of the 
existence of a physical relation between both movements, which has to date not 
been mathematically shown can be raised; … the TDI can even explain it. 

For example, TDI also explains how flat rings with multiple satellites are often 
formed in our solar system, such as Saturn ones … Newton was also unable to 
explain the reason why Saturn’s rings, and the many other ring systems in our 
Solar System, are flat. 

Our theory can also explain the reason for its formation and even the ripples 
that occur in Saturn rings, and all the ring systems in general, owing to changes 
or disturbances in the acting momenta [4].  

Also, the same reasoning could be applied to understand the behavior of many 
solid elements in rotation such as the boomerang [27] [28], spinning top [29], 
hoop, gyroscopic pendulum [30], or wheel. The Advanced Dynamics team has 
made multiple analyzes of these behaviors, especially in the case of the boome-
rang [31], having published publishing some of the results of these investigations 
[32]. 

5. New Paradigm 

In the Treaty New paradigm in Physics, as a summary of our investigations, a 
new mechanical theory has been proposed for bodies subjected to accelerations; 
also exposing its content, and remembering how this new niche of scientific 
knowledge has been managed. 

After this process of deduction and inference, we have built a knowledge 
structure for non-inertial systems that incorporates a causal demonstration of 
accelerated phenomena, without having knowledge to date, as we have stated, of 
any explicit refutation or antithesis to our reasoning. By means of a pondered 
management of this knowledge, based on established principles and axioms, we 
have structured our end thesis, which we call the Theory of Dynamic Interac-
tions (TDI). 

We believe that our theory provides a clear, satisfactory and scientific expla-
nation of the rotational phenomena of bodies with axial symmetry [5].  

Numerous articles [33] and papers have been published in congresses [34]. 
Also a Web on the content of the treaty: https://newparadigminphysics.com.  

Different videos have been developed to describe its content: 
https://www.youtube.com/watch?v=GapMJEfHJjUç;  
https://www.youtube.com/watch?v=45kUpdAXICw;  
https://www.youtube.com/watch?v=Gbx5wdQqTTs;  
https://www.youtube.com/watch?v=Gbx5wdQqTTs. 

6. Innovations and Conclusions 

The result of our research project is the proposal of multiple conceptual and 
technological innovations for accelerated systems, based on the new equations, 
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which we have deduced for the movement accelerated by rotations, in non-inertial 
dynamics.  

We maintain that, in the case of systems subject to accelerations, the laws of 
Classical Mechanics, foreseen for inertial systems, cannot be applied, and new 
axioms and laws of dynamic behavior, which have been enunciated, are neces-
sary. 

6.1. Renovating Proposals 

Below we list some of the ideas expressed in this work, that we believe could 
prove innovative: 

1) Non-discriminating coupling 
As a result of the new axioms and proposed laws, we deduce that in rotational 

dynamics, it is necessary to admit the non-discriminative coupling of dynamic 
magnitudes expressed in Section 3.4, which is represented in Figure 1, and 
which generates the orbital movement, simultaneous with the intrinsic rotation 
of the mobile. 

But this dynamic, we understand that it is applicable to the cosmos, since in it, 
celestial bodies, in addition to having movement of translation, rotate and orbit. 
In addition, the rotational inertia will maintain that constant rotation, while 
other external actions do not prevent it: This is the reason for the secular rota-
tion of the celestial bodies. Any new non-coaxial external action will generate 
orbiting movements, and not a translational expansion. 

2) Law of simultaneity of orbiting and rotation movements 
In our investigation we have observed and enunciated a regularity in the be-

havior of the celestial bodies, proposing a law of simultaneity of orbit and rota-
tion. We reiterate that the Theory of Dynamic Interactions allows to justify that 
constant coincidence between orbiting and intrinsic rotation. 

3) Immutable dynamic balance 
One of the characteristics of our new conception of the cosmos is its constant 

and lasting dynamic equilibrium, because of the real behavior of matter, when 
bodies are endowed with intrinsic rotation. 

It is the balance that the human being has perceived, when observing the ce-
lestial dome, for millennia. 

4) Flat celestial systems and Spiral structures 
The theory justifies the reason for the formation of rings, and in general of all 

the celestial plane systems that we observe in our universe. 
If we look closely at the universe, we see that it is constituted by flat celestial 

systems. The galaxies have a flat structure, solar systems like ours, Saturn’s rings, 
the asteroid belt, Kuiper’s belt or the Scattered Disk. Precisely, the dynamic 
model of the TDI, justifies a flat image of the universe, in which galaxies and 
systems also tend to develop in flat structures [36].  

The theory also justifies spiral structures, such as the arms of galaxies (See 
Figure 4), or tornadoes [37]. It can be understood that these structures are the 
expression of numerous bodies with accelerated speed and intrinsic rotation, 
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subjected to non-coaxial moments. 
5) Oriented point 
In Classical Mechanics the abstract concept of “point” of Euclidean geometry 

is used, however, this concept is not ideal, and it is not enough to identify the 
behavior of bodies in rotational dynamics. 

It is necessary to accept the use of a new concept of oriented point, to be able 
to integrate the inertial behavior of the matter in rotational dynamics, and to 
incorporate, in addition to its situation, and its orientation, the variation of this. 
This oriented point of the rotational dynamics is identified with 10 coordinates: 
x1, x2, x3, φ1, φ2, φ3, θ1, θ2, θ3, and time t, thus having 10 degrees of freedom. 

6) Fictitious forces and phenomenological effects 
In our research project we have repeatedly rejected the conceptual use of ficti-

tious forces. We do not understand that in the structure of mechanical know-
ledge fictitious, apparent or supposed forces must be incorporated, nor that the 
observed behaviors can be justified with phenomenological examples, such as 
the gyroscopic effect. 

To the current Classical Mechanics, it has been adding unstructured and 
phenomenological effects, which are not deduced from the initial axioms. We 
understand that Mechanics must constitute a structure of complete knowledge, 
without it being necessary to explain it with phenomenological effects, or with 
fictitious forces. 

TDI justifies gyroscopic phenomena by field theory. The gyroscopic torque 
and the gyroscopic reactions are not a special and singular phenomenology of 
mechanics, but part of the deductive structured knowledge, of the non-inertial 
mechanics of accelerated systems. 

7) Adding angular momenta 
The increase in angular momentum may generate a new movement, different 

and simultaneous with the existing one, which we will call the precession 
movement, see Figure 5. We can remember the words expressed by Alejandro 
Álvarez Martínez: On observing the behavior of moving objects in rotation, 
when they are exposed to new non-coaxial rotations, Dr. Barceló reaches the 
conclusion that angular movements of non-coaxial momenta do not necessarily 
couple [36]. 

This would be the case of the top and the gyroscope, and in the case of a body 
in space, without ligatures such as the boomerang, the body will initiate an orbit, 
without the necessary existence of a central force. 

8) Physical-mathematical model: Inertial reactions 
In the rotational dynamics, inertial reactions within the mobile are generated, 

defined and regular, which have been incorporated into the logical and scientific 
structure of the TDI. 

These reactions are incorporated by analyzing the fields of the generated dy-
namic magnitudes. For example, the field of translation speeds that each external 
action generates in the body is determined, and the real coupling of the fields 
that occur in nature is allowed. 
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Figure 4. Spiral galaxy NGC 6814, whose arms, according to the provisions of the TDI, 
will be constituted by celestial bodies in rotation and accelerated translation [35].  

 

 
Figure 5. Precession is the response of the mobile to any external action non-coaxial 
with its own spin. The consequence of this reaction is that the mobile with previous 
intrinsic rotation modifies the result of the action, apparently displacing the point of 
application of the force by 90˚, in direction of rotation of the object [17]. 

 
From these concepts, a new physical-mathematical model in rotational dy-

namics has been designed to understand the behavior of nature under accelerated 
conditions, including simultaneous non-coaxial rotations. This model is com-
plemented with axioms, laws and corollaries, and with a new deduced move-
ment equation. 

The initial dynamic hypotheses, and the new physico-mathematical model 
proposed in rotational dynamics, were confirmed with the experimental tests 
carried out. 

9) Energy transfer 
The TDI confirms that it is possible to associate dynamic effects to speed and 

justifies a clear mathematical correlation between rotation and translation. This 
mathematical coupling allows us to identify a physical relationship between the 
kinetic rotational energy transfers to kinetic energy of translation, and vice versa. 

10) Contributions to the Theory of Relativity 
According to the General Theory of Relativity, we can estimate that the mass 

of the Earth distorts space-time in its surroundings. In this case, we can assume 
the analogy that the Moon makes a rolling movement on the curved surface of 
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the space-time deformed by the Earth, generating a new rotation of the satellite, 
which we can suppose is not coaxial to the intrinsic rotation that it already has.  

In this case, the dynamic interactions predicted by the TDI would be generat-
ed, resulting in the closed and flat orbit of the Moon that we see. In this way, we 
justify the behavior of the celestial bodies, in accordance with the criteria of rela-
tivity, without needing torques or forces. 

In this same area, the second Law of Kepler can also be justified, since, in the 
case of an elliptical orbit, it must have a cause according to the TID, in a varia-
tion of the orbital velocity, which is consistent with the greater distortion of 
space-time in the vicinity of the central mass [38].  

However, according to the TDI: We suggest that an observer can identify 
whether or not a body was previously in a state of absolute rest or absolute ab-
sence of rotation, and this leads us to the conclusion that movement does not 
necessarily have to be a relative concept.  

This all leads us to propose that the Equivalence Principle is fully valid for the 
situation put forward by Albert Einstein, but cannot be generalised to all other 
cases of moving bodies [39].  

We propose a revision of the mathematical models deduced from the General 
Theory of Relativity, incorporating the dynamic criteria of the TDI and its equa-
tion of the movement. 

11) Planck constant 
The concept of Planck radiation quantization, and its constant, understood as 

the smallest amount of energy that can be transmitted, could be related to the 
notion of spin, and be explained with the help of the TDI. 

We have even proposed that this minimum value of the physical quantities 
could be justified by the value of the angular momentum of the atomic particles. 
We suggest a detailed analysis of this proposal, even applying a geometric anal-
ogy, and assuming an intrinsic rotation speed of these atomic particles, in such a 
way that the constant is proportional to the time necessary for a complete rota-
tion, or even a fraction of rotation. 

Therefore, TDI … can influence the quantization concept of Planck radiation, 
and its constant, … We even proposed that this minimum value of physical 
quantities can be justified by the angular momentum value of atomic particles 
[17]. This could be a new line of research based on the results obtained in this 
project. 

12) A new Celestial Mechanics 
It is thus, according to the TDI, an observable universe in which we find our-

selves, with celestial bodies in constant rotation and describing orbits in space, 
but maintaining a dynamic equilibrium, except for exceptional situations. 

This new vision of the universe, we exposed it in Imago Universi [40], and in 
the article: Proposal of New Criteria for Celestial Mechanics [41]. It is a new 
conception of Celestial Mechanics based on dynamic non-inertial hypotheses, 
for bodies accelerated by rotations. 
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6.2. Applications 

In previous texts, we have proposed that, through this analysis, the nature of any 
movement in space can be determined and predicted, defining its relativity. The 
movement equation that is proposed, and the laws that are formulated, permit 
the initiation of the structuring of a rational mechanics and of a rotational dy-
namics based on principles and axioms, for bodies submitted to accelerations by 
rotations, clearly differentiated from classical mechanics. 

In this new rational structure, phenomena that are paradoxical or alien to the 
main structure should not be present as happens in classical mechanics with the 
so called gyroscopic torque or fictitious forces. 

The Theory of Dynamic Interactions is a logical-deductive system constituted 
from some dynamic hypotheses. By means of the observation of nature, the es-
tablishing of some initial hypotheses, and starting from axioms and postulates, 
we have constructed a structure of knowledge in relation to rigid solid bodies, 
when submitted to successive accelerations by rotation.  

The physical-mathematical model obtained allows us to interpret the observa-
ble behavior of these bodies, subject to successive non coaxial torques, according 
to deduced laws, as well as to extract new consequences, inferences and predic-
tions. For example, the theory allows justifying the deviation that undergoes the 
horizontal curvilinear trajectory of a ball, when it is submitted to non-coaxial 
moments (See Figure 6) [38].  

This text and the videos that accompany it, provide only a brief summary of 
the work and studies carried out to propose a Rotational Dynamics of Interac-
tions applicable to accelerated bodies, even those subjected to multiple succes-
sive moments of force, not coaxial [42].  

 

 
Figure 6. Horizontal curvilinear trajectory of a ball with effect, whose 
deviation can be justified by the Theory of Dynamic Interactions [4].  
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6.2.1. Scientific Applications 
The Theory of Dynamic Interactions can have a transcendental effect on the 
foundations of dynamics [43], but also on mechanics, atmospheric dynamics, 
atomic physics, etc. It generalizes the concept of gyroscopic torque, and that of 
other inertial phenomena, incorporating them into the unified structure of a 
new non-inertial rotational dynamics. 

Through this model of dynamic interactions, one could justify how a body in 
rotation can initiate an elliptical, circular or even helical trajectory, without the 
existence of a true central force. According to this dynamic model, the application 
of a torque of forces to a body with intrinsic rotation, generates a stable system, 
and in constant dynamic equilibrium. 

The result of this project is the conception of an innovative dynamic, but also 
the demonstration of a rational theory of fields, which allows a new understand-
ing of the behavior of matter [38]. The application of these dynamic hypotheses 
to astrophysics [44], astronautics [45] and other fields of physics and technology 
will possibly allow new and stimulating advances in research [46]. 

6.2.2. Technological Applications 
This theory can also have numerous technological applications in the control of 
movement, in astronautics, in nuclear fusion plants [47] or to interpret climato-
logical phenomena with masses of fluids in rotation, such as typhoons or torna-
does [37].  

With the help of the Theory of Dynamic Interactions, a ship without a spade 
rudder, with energy savings, or a spaceship could be governed [48]. This theory 
can also be applied in the confinement of plasma, in nuclear fusion reactors [49].  

Also has numerous and significant … applications, especially in orbital dy-
namics, orbit determination, and orbit control. For instance: 
- Variation of the affecting torque, arises when subjecting intrinsic angular 

momentum bodies to new non-coaxial momentums.  
- To conceive an intrinsic rotating mobile solid, which could be exclusively 

controlled due to Dynamic Interactions.  
- To calculate the trajectory of any intrinsic angular momentum solid in space. 
- To propose a new steering system independent from a rudder or any other 

external element [38].  
We can suggest advances in the studies and application related to orbital me-

chanics, guidance, navigation, and control of single or multi-spacecraft systems 
as well as space robotics and rockets [24].  

6.3. Conclusions 

It is necessary to admit the existence of a rotational dynamics of interactions 
with real results and which modifies the behavior of bodies in accordance with 
some specific and universal dynamic Laws. 

We want to suggest that interest should arise in physics in the exploration of 
non-inertial accelerated systems, and also to express a call for the need to devel-
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op scientific investigation projects for their evaluation and analysis, as well as 
technological projects based on these hypotheses. In our opinion, these hypo-
theses suggest new keys to understand the dynamics of our environment and the 
harmony of the universe. A universe composed not only of forces, but also of 
their momentums; and when these act constantly upon rigid rotating bodies, 
with an also constant translation speed, the result is a closed orbiting movement, 
thus a system which is moving, but within a dynamic equilibrium.  

The application of these dynamic hypotheses to astrophysics, astronautics and 
to other fields of physics and technology possibly allows new and stimulating 
advances in investigation. 

The result of this project is the conception of an innovative dynamic theory, 
which specifically applies to rigid rotating physical systems and which has nu-
merous and significant scientific and technological applications.  

The Theory of Dynamic Interactions establishes new conceptual criteria, of a 
more general description, to understand the behavior of nature, meaning that 
the current laws of dynamics could be considered special and specific cases of 
this theory. For example, Newton’s laws would apply to the case of a physical 
model of behavior, without force momentums [38].  

We have also referred to examples in nature, which support the Theory of 
Dynamic Interactions, supporting the proposed laws [14].  

Next, we will list, a series of characteristics of the physical theory that is pro-
posed. It can be understood that this relationship is a proposal of conclusions, 
without pretending to be exhaustive: 

1) Criteria 
The initial hypotheses of the theory are based on new interpretative criteria, 

for example, on speed coupling and rotational inertia, and on a new mathemati-
cal model, which allows the simulation of the real behavior of the bodies sub-
jected to these excitations. 

As we have already expressed, our hypotheses have been confirmed by expe-
rimental tests. 

2) Content 
The Theory of Dynamic Interactions is a logical-deductive ordering of know-

ledge, based on certain dynamic hypotheses. Through the observation of nature, 
the establishment of initial hypotheses, and the statement of principles, axioms 
and postulates, we have constructed a structure of knowledge in relation to rigid 
solid bodies, when subjected to successive accelerations by rotation. 

The mathematical physical model obtained allows us to interpret the observa-
ble behavior of these bodies, subjected to successive non-coaxial pairs, according 
to deduced laws, as well as to extract new consequences, inferences and predic-
tions. 

3) Harmony of the Universe 
We have tried to imagine the trajectory of a body in rotation in space, when it 

is forced to make new rotations on new axes, obtaining as a result the orbital iti-
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nerary that we observe in the celestial bodies, and a balance and secular harmony 
of our universe. A universe that is not necessarily expanding, according to the TDI 
[43].  

4) Field theory 
The result of this research project is the conception of an innovative dynamic, 

and the exposition of a rational field theory, which provides a new understanding 
of the behavior of matter. 

Our research can be expanded, in addition to the study of Field Theory, with a 
deep relativistic analysis, which allows knowledge of the dynamics of new physi-
cal systems of space, and the potential future achievement of numerous and re-
levant new technological developments. 

5) Consistency with classical mechanics 
This theory does not intend to challenge Newton’s laws; since with them a 

conceptual structure of proven reliability has been developed. We propose a dif-
ferent and complementary mechanics to Classical Mechanics, specifically for 
systems accelerated by rotations. Therefore, both theories do not come into con-
flict, as they do not refer to the same domain of knowledge. They are theories of 
specialization, in their respective fields of action. 

We propose a new Celestial Mechanics based on a specific rotational algebra 
for non-inertial areas, in which the initial hypotheses of the laws of the transla-
tional movement of Classical Mechanics are not respected. We propose the ex-
ploration of a new knowledge niche for specific dynamic conditions, but not tri-
vial, because they can be observed repeatedly in our universe. 

It is necessary to admit the existence of a rotational dynamics of interactions, 
with real results, and that modifies the behavior of bodies according to universal 
dynamic laws that were not known to date. 

6) Correlation 
In our research project, a total coherence can be found between the initial 

speculations, the original hypotheses, the principles and axioms applied, the 
physical laws deduced, even causal laws that justify the observed behavior, the 
mathematical physical models corresponding to the equations of movement 
which result from the dynamic laws deduced, the simulation models achieved, 
and the experimental tests carried out. There are videos with these experimental 
tests (See Appendix). 

We believe that with this new model that we propose, it will facilitate the un-
derstanding of our observational universe, and of the physical phenomena that 
we notice in it. 

We want to suggest the interest that the exploration of accelerated non-inertial 
systems should have in physics, and express a call to the need to develop scien-
tific research projects in this field, for their evaluation and analysis, as well as 
technological projects based on these hypotheses. 

To obtain more information about this theory, we suggest going to the books 
and texts referred to and also visiting the following portals: 
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Appendix 

Experimental Tests and Videos 
Several test experiments have been conducted over recent years, the results of 

which have been fully satisfactory. These tests serve to confirm the dynamic hy-
potheses that underpin the Theory of Dynamic Interactions. Videos have been 
recorded of these tests that can be seen at the following links:  

Barceló, G.: Theory of Dynamic Interactions. Videos, 2002. 
http://www.youtube.com/watch?v=P9hGgoL5ZGk&list=PL3E50CF6AEBEED

47B  
http://www.youtube.com/watch?v=XzTrGEtJGXU&list=PL3E50CF6AEBEED

47B  
http://www.youtube.com/watch?v=dtMqGSU9gV4&list=PL3E50CF6AEBEED

47B  
http://www.youtube.com/watch?v=qK5mW2j2nzU&list=PL3E50CF6AEBEED47
B  

Bauluz, E.: New Dynamic Hypotheses. Madrid, 2011. This video showed the 
experiments carried out by Advanced Dynamics S. A. to prove and justify the 
http://www.youtube.com/watch?v=vSUkd4slHGQ  

Sanchez Boyer, J.: Imago Universi. Video, Madrid, 2013. 
https://vimeo.com/62247544  
Pérez, L. A.: Reflecting New Evidence on Rotational Dynamics, 2013. Video. 
http://vimeo.com/68763196  
Sanchez Boyer, J.: The Flight of the Boomerang II, Video. 2015. 
https://www.youtube.com/watch?v=mGfrGW5fhOg&feature=youtu.be  
https://vimeo.com/129383447  
Pérez, L. A.: The Pendulum of Dynamic Interactions. Video. 2015.  
https://vimeo.com/160873005  
Pérez, L. A.: The Dance of the Spinning Top. Video, Valladolid, 2015. 
www.advanceddynamics.net/spinning-top-video/  
Pérez, L. A.: Cylinder Subjected to Two Non Coaxic Rotations. 2018. 
https://www.dropbox.com/s/wgb6oztjvdcnziy/EBP_EN.mp4?dl=0  
Web Advanced Dynamics: Animations and Videos 
http://advanceddynamics.net/en/medios-audiovisuales/ 
3.0 Submarine Simulation. 
3.1 Submarine Prototype I. 
3.2 Submarine Anisotropic Field. 
3.3 Resultant Field. 
3.4 Prototype II. 
3.5 Prototype II Simulation. 
3.6 Prototype Prototipo II navigation. 
3.7 Catamaran. 
4.0 Translation Velocity Field. 
4.1 Generating a New Field. 

https://doi.org/10.4236/jamp.2019.78119
http://www.youtube.com/watch?v=P9hGgoL5ZGk&list=PL3E50CF6AEBEED47B
http://www.youtube.com/watch?v=P9hGgoL5ZGk&list=PL3E50CF6AEBEED47B
http://www.youtube.com/watch?v=XzTrGEtJGXU&list=PL3E50CF6AEBEED47B
http://www.youtube.com/watch?v=XzTrGEtJGXU&list=PL3E50CF6AEBEED47B
http://www.youtube.com/watch?v=dtMqGSU9gV4&list=PL3E50CF6AEBEED47B
http://www.youtube.com/watch?v=dtMqGSU9gV4&list=PL3E50CF6AEBEED47B
http://www.youtube.com/watch?v=qK5mW2j2nzU&list=PL3E50CF6AEBEED47B
http://www.youtube.com/watch?v=qK5mW2j2nzU&list=PL3E50CF6AEBEED47B
http://www.youtube.com/watch?v=vSUkd4slHGQ
https://vimeo.com/62247544
http://vimeo.com/68763196
https://www.youtube.com/watch?v=mGfrGW5fhOg&feature=youtu.be
https://vimeo.com/129383447
https://vimeo.com/160873005
http://www.advanceddynamics.net/spinning-top-video/
https://www.dropbox.com/s/wgb6oztjvdcnziy/EBP_EN.mp4?dl=0
http://advanceddynamics.net/en/medios-audiovisuales/
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4.2 Resultant Field. 
4.3 Velocity Coupling. 
4.4 End Velocity Field. 
5.0 1st Simulation. 
5.1 2nd Simulation. 
The Pendulum of Dynamic Interactions 
Theory of Dynamic Interactions: The Flight of the Boomerang II 
Dynamic Interaction Theory Presentation Videos (4) 
New Dynamic Hypotheses 
New Evidential Proof of Rotational Dynamics 
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Abstract 
In this paper, we firstly derive the stability conditions of high-order stag-
gered-grid schemes for the three-dimensional (3D) elastic wave equation in 
heterogeneous media based on the energy method. Moreover, the plane wave 
analysis yields a sufficient and necessary stability condition by the von Neu-
mann criterion in homogeneous case. Numerical computations for 3D wave 
simulation with point source excitation are given. 
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1. Introduction 

Numerical simulation of wave propagation has important applications in many 
scientific fields such as geophysics and seismic inversion. There are several types 
of numerical methods to solve the wave equations, for example, the finite dif-
ference method, the finite element method [1] [2] [3] [4], the spectral element 
method [5], the discontinuous Galerkin method [6] [7] and the finite volume 
method [8] [9]. Each of the above numerical methods has its own advantages 
and disadvantages. In this paper, we consider the finite difference method. 

The finite difference method is a very popular method because of high com-
putational efficiency. In fact, it has been applied to wave simulation for several 
decades [10] [11] [12] [13]. Since perfect numerical simulation depends on both 
stability and the order of accuracy, the high-order schemes and the corresponding 
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stability are an important research topic of this field. In particularly, we may list a 
few here. In [14], Cohen and Joly construct and analyses a family of fourth-order 
schemes for the acoustic wave equation in nonhomogeneous media. In [15], Sei 
analysis the stability of high-order difference schemes for the 2D elastic wave 
equation in heterogeneous media. The stable difference approximation for the 
3D elastic wave equation in the second-order formulation in heterogeneous me-
dia has been investigated in [16]. In [17], a new family of locally one-dimensional 
schemes with fourth-order accuracy both in space and time for the 3D elastic 
wave equation is constructed and the stability is derived. The constructed new 
schemes in [17] only involve a three-point stencil in each spatial direction to 
achieve fourth-order accuracy. In this paper, based on the energy method, we 
study the stability analysis for the high-order staggered-grid schemes of the 3D 
elastic wave equation in heterogeneous media. To our knowledge, there is no 
work in this respect and our result is new. 

The reminder of the paper is organized as follows. In Section 2, we present the 
governing equation and the high-order difference schemes in heterogeneous on 
staggered-grid grids. In Section 3, the stability analysis for the high-order dif-
ference schemes in heterogeneous is presented. In Section 4, the plane wave 
analysis in homogeneous case is investigated. In Section 5, we present numerical 
comparisons for 3D elastic wave simulation. Finally the conclusion and discus-
sions are given in Section 6. 

2. High-Order Spatial Discretization  

We consider the following three-dimensional (3D) elastic wave equations in iso-
tropic heterogeneous media  
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where ( )( ), , ,u v w tx  are the displacement vector at location ( ), ,x y z=x  and 
time t, ( )ρ x  is the density, ( ) 0λ >x  and ( ) 0µ ≥x  are the Lamé parame-
ters, ( )1 2 3, ,f f f=f  is the external force. 

Using the stress tensor, we can formulate the above system (1) as a first order 
in the following ways  
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where  
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Let x∆ , y∆  and z∆  be the spatial steps of , ,x y z  directions respectively. 
Now discretization of (2) with the second-order accuracy in space gives  
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For computing this, we need the values of u, v, and w at the grid 
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. One convenient way is to choose averaging the corres-

ponding vales. For example,  
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However, such choices have no physical meaning. Another way is to compute 
, ,u v w  directly on staggered grids. In particular, we replace Equations (4)-(6) 

with Equations (7)-(9):  
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Obviously, the schemes (7)-(9) are the second-order accuracy in space. In or-
der to construct high-order accuracy scheme in space, we first define the follow-
ing functional spaces. Now we introduce the differentiation operator xD  on 
half integer grids with ( )2LO x∆  order as follows:  
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where lβ  is difference coefficients on the staggered grids, which can be calcu-
lated by a fast algorithm [18] [19] [20] by Matlab tool. Obviously, the approxi-
mation (10) or (11) has ( )2LO x∆  order accuracy. For example, when 1 1β =   

for 1L =  it has the second-order accuracy ( )2O x∆ . And when 1
9
8

β =  and 

2
1
24

β =  for 2L =  it has the fourth-order accuracy ( )4O x∆ . The general  

analytical expression of lβ  is given in Appendix. Similarly, we can define the 
operators yD  and zD . Here, the subscript of the operator refers to the direc-
tion of differentiation. 

Now, we can construct the semi-discrete schemes of system (1)  
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Applying the central difference approximation for time with the second-order 
accuracy, we obtain the full-discrete schemes of system (1), we obtain  
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where n denotes the time index and t∆  the time step. 

3. Stability Analysis  

We now turn to the study of the numerical stability of the schemes (15)-(17). We 
are going to proceed by the energy method in analogy with continuous energy 
given by:  
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We have conservation of the discrete energy, that is: 
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Obviously, ( )1 2 32I I I I≤ + + . In the following we estimate 1I , 2I  and 3I  
respectively. Since  

( ) ( )

( )

( )

2

11 , , 1, ,, ,
2, , 1

2

1 , , , 1,, ,, , 12
2

1 , , , , 1, ,, , 12

,

L
l

i l j k i l j ki j k
i j k l

L
l

i j l k i j l ki j ki j k l

L
l

i j k l i j k li j ki j k l

I u u x y z
x

u u x y z
y

u u x y z
z

β
λ µ

β
µ

β
µ

+ − ++
=

+ − +
+ =

+ − +
+ =

 = + − ∆ ∆ ∆ ∆ 

 
+ − ∆ ∆ ∆ ∆ 

 + − ∆ ∆ ∆ ∆ 

∑ ∑

∑ ∑

∑ ∑

 

we have the following estimates for 1I :  

( ) ( )

( )

2 2
11 , , 1, ,, ,
21 , , 1

2 2
1 , , , , 1, ,1 , , 1 2

2
1 , , , 1,, ,1 , , 1 2

2

2

2

L L
l l

i l j k i l j ki j k
l i j k l

L L
l l

i j k l i j k li j kl i j k l

L L
l l

i j l k i j li j kl i j k l

I u u x y z
x x

u u x y z
y y

u u
z z

β β
λ µ

β β
µ

β β
µ

+ − ++
= =

+ − +
+= =

+ − +
+= =

 
≤ + + ∆ ∆ ∆ ∆ ∆ 

 
+ + ∆ ∆ ∆ 

∆ ∆ 
 

+ + ∆ ∆ 

∑ ∑∑

∑ ∑∑

∑ ∑∑ ( )2 ,k x y z∆ ∆ ∆

 

or  

( ) ( )1 1, , , ,
22 2

1 , , , ,
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1 1, , , ,
22 2

, , , ,
1 , , 1 , , , ,

4
2 2

4
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L L i l j k i l j k
l l

i j k i j k
l i j k l i j k i j k

L L i j k l i j k l
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i j k i j k
l i j k l i j k i j k
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x x

u x y z
z z

λ µ λ µβ β
ρ

ρ ρ

µ µ
β β

ρ
ρ ρ

+ − − +

= =

+ − − +

= =
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   + + ∆ ∆ ∆   ∆ ∆    

∑ ∑∑

∑ ∑∑

1 1, , , ,
22 2

, , , ,
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4 ,
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l i j k l i j k i j k
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β β

ρ
ρ ρ
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= =

 
   + + ∆ ∆ ∆   ∆ ∆    

∑ ∑∑

 

or  

( ) ( )
( )

( )

1 1, , , ,
2 2

1 2 000
1 , , 1 , , , ,

1 1, , , ,
2 2

2 000
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2
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ρ ρ

β

+ − − +

= =

+ − − +

= =

= =
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   + +   ∆     

 +  ∆  

∑ ∑∑

∑ ∑∑

∑ ∑ ( )
1 1, , , ,
2 2

000
1 , , , ,

, .
2 2

L i j l k i j l k

l
i j k i j k

u u
µ µ

β ρ
ρ ρ

+ − − +
 
 + 
  

∑

 

Thus we obtain  
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( )

( )
( )

1 , ,
2

1 2 2 2 , ,1 1 , ,

1 1 1 1 1, , , , , , , , , ,
2 2 2 2 2

000
, , , , , , , , , ,

4 4 4 max
2

, .
2 2 2 2 2

L L i l j k

l li j kl l i j k

i l j k i j k l i j k l i j l k i j l k

i j k i j k i j k i j k i j k

I
x y z

u u

λ µ
β β

ρ

µ µ µ µλ µ
ρ

ρ ρ ρ ρ ρ

+ −

= =

− + + − − + + − − +

+   ≤ + + ×   ∆ ∆ ∆    
+
+ + + + + 


∑ ∑

 

Set  

( ) ( )1 1 1, , , ,
2 2 2
1 , ,1 1 , , , ,

1 1 1 1, , , , , , , ,
2 2 2 2

, , , , , , , ,

max
2 2

.
2 2 2 2

L L i l j k i l j k

l li j kl l i j k i j k

i j k l i j k l i j l k i j l k

i j k i j k i j k i j k

c
λ µ λ µ

β β
ρ ρ

µ µ µ µ

ρ ρ ρ ρ

−
+ − − +

= =

+ − − + + − − +

+ +
  = +   



+ + + + 


∑ ∑

        (20) 

Then for 3
000u L∀ ∈ , we have  

( )
2

2 3
1 1 0002 2 2 000

1

4 4 4 , , .
L

l
l

I c u u u L
x y z

β ρ
=

  ≤ + + ⋅ ⋅ ∀ ∈  ∆ ∆ ∆   
∑         (21) 

Similarly, we have  

( )
2

2 3
2 2 02 2 2 0

1

4 4 4 , , ,
L

l
l

I c v v v L
x y z

β ρ ∗∗∗∗
=

  ≤ + + ⋅ ⋅ ∀ ∈  ∆ ∆ ∆   
∑         (22) 

where  

( ) ( )1 1 1, , , ,
2 2 2
2 , ,1 1 1 1 1 1, , , ,

2 2 2 2

1 1 1 1 1 1 1 1, , , , , , , ,
2 2 2 2 2 2 2 2

1 1 1 1 1 1 1, , , , , , ,
2 2 2 2 2 2 2

max
2 2

2 2 2 2

L L i j l k i j l k

l li j kl l
i j k i j k

i l j k i l j k i j k l i j k l

i j k i j k i j k i j

c
λ µ λ µ

β β
ρ ρ

µ µ µ µ

ρ ρ ρ ρ

−
+ + + −

= =
+ + + +

+ + − + + + + − + + − +

+ + + + + + + +

 + +
 = +    

+ + + +

∑ ∑

1 ,
2

.
k






        (23) 

And  

( )
2

2 3
3 3 02 2 2 0

1

4 4 4 , , ,
L

l
l

I c w w w L
x y z

β ρ ∗ ∗∗ ∗
=

  ≤ + + ⋅ ⋅ ∀ ∈  ∆ ∆ ∆   
∑         (24) 

where  

( ) ( )1 1 1, , , , 1
2 2 2
3 , ,1 1 1 1 1 1, , , ,

2 2 2 2

1 1 1 1 1 1 1 1 1, , 1, , , , , ,
2 2 2 2 2 2 2 2 2

1 1 1 1 1 1, , , , , ,
2 2 2 2 2 2

max
2 2

2 2 2 2

L L i j k l i j k l

l li j kl l
i j k i j k

i l j k i l j k i j l k i j l k

i j k i j k i j k

c
λ µ λ µ

β β
ρ ρ

µ µ µ µ

ρ ρ ρ ρ

−
+ + + − +

= =
+ + + +

+ + − + + + + + − + + − + +

+ + + + + +

 + +
 = +    

+ + + +

∑ ∑

1 1, ,
2 2

.
i j k+ +






       (25) 

Substituting (21), (22) and (24) into (19), we have  
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2
2 2

2 2 2
1

1 1 1 1 .
2

L

l
l

c t
x y z

β
=

  ∆ + + ≤  ∆ ∆ ∆   
∑              (26) 

where { }1 2 3max , ,c c c c= . Thus we obtain the sufficient stability condition for 
the numerical scheme (15)-(17). If the grid is uniform, i.e. x y z h∆ = ∆ = ∆ ≡ , 
then (26) gives  

1

1

6 .
6

L

l
l

c t h β
−

=

 ∆ ≤  
 
∑  

Therefore we summarize the conclusion above into the following theorem.  
Theorem 1. A sufficient stability condition for the numerical schemes 

(15)-(17) is  
1

2 2 2
1

1 1 1 2 ,
2

L

l
l

c t
x y z

β
−

=

 ∆ + + ≤  ∆ ∆ ∆  
∑             (27) 

If x y z h∆ = ∆ = ∆ ≡ , then it reduces to  
1

1

6 ,
6

L

l
l

c t h β
−

=

 ∆ ≤  
 
∑                    (28) 

where { }1 2 3max , ,c c c c= , and 1c , 2c  and 3c  are given by (20), (23) and (25) 
respectively.  

4. Plane Wave Analysis  

We turn to Fourier analysis [21] and we will derive the dispersion relation and 
by the von Neumann criterion we will get a necessary and sufficient stability 
condition. In homogeneous case for (12)-(14), the full-discrete schemes can be 
written as  

( ) ( ){
}( )

1 1 2 2

, ,

2 2

2 2

, , 0,

n n n n n n
x x y x zi j k

n n n n
y x y z z x

u u u t D u D D v D D w

D D v D u D u D D w i j k

ρ λ µ λ λ

µ µ µ µ

+ −− + + ∆ + + +

+ + + + =
   (29) 

( ) ( ){

}

1 1 2 2 2
1 1, ,
2 2

2

2 2

1 1, , 0,
2 2

n n n n n n
x x y yi j k

n n n n
y x y z z z y

v v v t D v D D u D v

D D u D D w D v D D w i j k

ρ µ µ λ µ

λ λ µ µ

+ −

+ +
− + + ∆ + + +

 + + + + + + = 
 

   (30) 

( ) {

( ) }

1 1 2 2
1 1, ,
2 2

2 2

2

1 12 , , 0.
2 2

n n n n n n
x z x y zi j k

n n n n
y z z x z y

w w w t D D u D w D D v

D w D w D D u D D v i j k

ρ µ µ µ

µ λ µ λ λ

+ −

+ +
− + + ∆ + +

 + + + + + + + = 
 

  (31) 

We assume that ( )ie tω − ⋅= k xu d  is a solution of Equation (29)-(31), where 
i 1= − , ω  is the angular frequency, ( )1 2 3, ,d d d=d  amplitude, and  

( ) ( )1 2 3, , cos sin ,sin sin ,cosk k k θ φ θ φ φ= ≡k k  

is the wave vector. Here θ  is the propagation angle and φ  the propagation 
azimuth. The two angles determine the movement direction of the plane wave in 
the 3D space. 

Substituting the plane wave solution into Equations (29)-(31), we obtain the 
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following relations:  

( )

( ) ( )

( ) ( )

2
1

22
1

2
1

22
32

1
1 1

2
1 2

2
1 1

sin
2

2 sin 2 1
2

sin 2 1 sin 2 1
2 2

sin 2 1 sin 2 1
2 2

L

l
l

L L

l l
l l

L L

l l
l l

td

k ht l
h

k hk hl l d

k h k ht l l
h

ω

λ µ β
ρ

µ µβ β
ρ ρ

λ µ β β
ρ

=

= =

= =

∆ 
 
 
  ∆ +  = −   

  
      + − + −      

       
 ∆ +    + − −    

   

∑

∑ ∑

∑ ∑

( ) ( )

2

2
31

32
1 1

sin 2 1 sin 2 1 ,
2 2

L L

l l
l l

d

k hk ht l l d
h

λ µ β β
ρ = =




 ∆ +   + − −    
    

∑ ∑

    (32) 

( )

( ) ( )

( ) ( )

2
2

22
2

2
1

22
31

2
1 1

2
1 2

2
1 1

sin
2

2 sin 2 1
2

sin 2 1 sin 2 1
1 2

sin 2 1 sin 2 1
2 2

L

l
l

L L

l l
l l

L L

l l
l l

td

k ht l
h

k hk hl l d

k h k ht l l
h

ω

λ µ β
ρ

µ µβ β
ρ ρ

λ µ β β
ρ

=

= =

= =

∆ 
 
 
  ∆ +  = −   

  
      + − + −      

       
 ∆ +    + − −    

   

∑

∑ ∑

∑ ∑

( ) ( )

3

2
32

12
1 1

sin 2 1 sin 2 1 ,
2 2

L L

l l
l l

d

k hk ht l l d
h

λ µ β β
ρ = =




 ∆ +   + − −    
    

∑ ∑

    (33) 

( )

( ) ( )

( ) ( )

2
3

22
3

2
1

2 2
2 1

3
1 1

2
32

2
1 1

sin
2

2 sin 2 1
2

sin 2 1 sin 2 1
2 2

sin 2 1 sin 2 1
2 2

L

l
l

L L

l l
l l

L L

l l
l l

td

k ht l
h

k h k hl l d

k hk ht l l
h

ω

λ µ β
ρ

µ µβ β
ρ ρ

λ µ β β
ρ

=

= =

= =

∆ 
 
 
  ∆ +  = −   

  
       + − + −       

       
 ∆ +   + − −    

   

∑

∑ ∑

∑ ∑

( ) ( )

1

2
31

22
1 1

sin 2 1 sin 2 1 .
2 2

L L

l l
l l

d

k hk ht l l d
h

λ µ β β
ρ = =




 ∆ +   + − −    
    

∑ ∑

    (34) 

By introducing the matrix B with elements ( )ijb  defined by  

( )

( ) ( )

22
1

11 2
1

22
32

1 1

2 sin 2 1
2

sin 2 1 sin 2 1 ,
2 2

L

l
l

L L

l l
l l

k htb l
h

k hk hl l

λ µ β
ρ

µ µβ β
ρ ρ

=

= =

  ∆ +  = −   
  

      + − + −      
       

∑

∑ ∑
 

( ) ( )
2

1 2
12 21 2

1 1
sin 2 1 sin 2 1 ,

2 2

L L

l l
l l

k h k htb b l l
h

λ µ β β
ρ = =

 ∆ +    = = − −    
    

∑ ∑  
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( )

( ) ( )

22
2

22 2
1

22
31

1 1

2 sin 2 1
2

sin 2 1 sin 2 1 ,
2 2

L

l
l

L L

l l
l l

k htb l
h

k hk hl l

λ µ β
ρ

µ µβ β
ρ ρ

=

= =

  ∆ +  = −   
  

      + − + −      
       

∑

∑ ∑
 

( ) ( )
2

31
13 31 2

1 1
sin 2 1 sin 2 1 ,

2 2

L L

l l
l l

k hk htb b l l
h

λ µ β β
ρ = =

 ∆ +   = = − −    
    

∑ ∑  

( ) ( )
2

32
23 32 2

1 1
sin 2 1 sin 2 1 ,

2 2

L L

l l
l l

k hk htb b l l
h

λ µ β β
ρ = =

 ∆ +   = = − −    
    

∑ ∑  

( )

( ) ( )

22
3

33 2
1

2 2
2 1

1 1

2 sin 2 1
2

sin 2 1 sin 2 1 ,
2 2

L

l
l

L L

l l
l l

k htb l
h

k h k hl l

λ µ β
ρ

µ µβ β
ρ ρ

=

= =

  ∆ +  = −   
  

       + − + −       
       

∑

∑ ∑
 

we can write the relations (32)-(34) as the following matrix form  

2sin .
2

tB ω∆ =  
 

d d                        (35) 

The eigenvalues of B then express ω  as a function of k , which is the dis-
persion relation. There are three eigenvalues for matrix B. One eigenvalue is 
corresponding to the longitudinal or compressional wave, the double eigenva-
lues are corresponding to the transverse or shear wave. Thus we have the fol-
lowing two different relations  

( ) ( ) ( )

( ) ( ) ( )

2 2 2
1 2 3

2 2 2
1 2 3

sin ,
2

sin ,
2

p

s

C tt A k A k A k
h

C tt A k A k A k
h

ω

ω

∆ ∆  = + +    


∆∆  = + +   

          (36) 

where  

( ) ( )
1

2sin 2 1 , , .
2

L

l p s
l

khA k l C Cλ µ µβ
ρ ρ=

+ = − = = 
 

∑  

here pC  and sC  are the velocities of compressional and shear waves. Note 
that pC  is always larger than sC . With the dispersion relations (36), we can 
apply the von Neumann stability criterion. A necessary stability is that the ei-
genvalues of B must be lower than 1. Thus we have  

( ) ( ) ( )2 2 2
1 2 3 1.pC t

A k A k A k
h
⋅ ∆

+ + ≤                (37) 

It is easy to verify that  

( ) ( ) ( )
1 2 3

2 2 2
1 2 3, ,

2 2 2

1

max

π π π 3 .

k k k

L

l
l

A k A k A k

A A A
h h h

β

∈

=

+ +

      = + + =              
∑



          (38) 
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Therefore we obtain the following theorem.  
Theorem 2. In the homogeneous case, a sufficient and necessary stability 

condition for the numerical schemes (29)-(31) is given by  
1

1

3 .
3

L

l
l

t β
−

=

 ∆ ≤  
 
∑                     (39) 

Proof Combining Equations (37) and (38), we obtain (39). Moreover, the ma-
trix B is symmetric in homogeneous case. So the condition (39) is a sufficient 
and necessary condition. The proof is complete.  

We now define the normalized phase error Eφ  as follow:  

( )
, ,

v

C C k
E C

C k
φ

φ φ

ω−
= =                  (40) 

which is a function of 
2π

h
H ≡

k
, where vC  indicates pC  or sC  which is re-

lated to different kinds of compressional wave and shear wave. 
The stability condition P C t h≡ ∆  is defined by Courant-Friedrichs-Lewy 

(CFL) condition which bounds the interval for stability. We plot some disper-
sion curves based on Equation (40). Without loss of generality, we present dis-
persion curves for some special propagation angle and azimuth. Figure 1 is the 
normalized phase error for fixed 45θ =   and 45φ =   with different values of 
CFL condition and it shows that the phase error drops as increasing the order of 
accuracy. Figure 2 shows the normalized phase error for 30θ =   and different 
values of φ  for different order or L. The figures for other propagation angle θ  
and azimuth φ  are similar we omit them for saving space. 

5. Numerical Computations  

Wave simulation ignited by a point source is usually adopted in geophysical ap-
plications. For convenience, we simulate 3D elastic wave propagation in a ho-
mogeneous cubic model. The computational domain is [ ]30, 2000 m . The source 
is located in the center of the model and its time function is given by  

( ) ( ) ( )3300sin 300 e ,ts t t −=                    (41) 

which is loaded on the u component. The compressional velocity is 4000 m/s 
and the shear velocity 2500 m/s. The time step is 0.001 st∆ =  and the space 
step is 10 mh = . Figure 3 shows the 3D snapshot of u component at propaga-
tion time 0.2 s. For brevity, we present some 2D slices of the 3D snapshots of u, v, 
and w components. The xz sections of 3D snapshots of u, v, and w components 
at propagation time 0.2 s are shown in Figures 4-6 respectively. We omit other 
sections for space. In our computations the scheme with fourth-order accuracy 
in space is applied. We remark that the comparisons between the numerical so-
lution and the exact solution can be found in [17]. From Figures 4-6, we can 
clearly see the two types of waves, i.e. the compressional wave and the shear 
wave, which is consistent with the physical phenomenon. 
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Figure 1. The normalized phase error for different CFL number at the stability 
limit maxP C t h= ∆ . The propagation angles 45θ =   and 45φ =   are fixed.  
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Figure 2. The normalized phase error for different CFL number at different 
propagation angle φ . The propagation angle 30θ =   is fixed. 
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Figure 3. The 3D snapshot of u 
component at propagation time 0.2 s. 

 

 

Figure 4. The xz-section of 3D snapshot of u component 
at propagation time 0.2 s. 

 

 

Figures 5. The xz-section of 3D snapshot of v component 
at propagation time 0.2 s. 
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Figure 6. The xz-section of 3D snapshot of w component 
at propagation time 0.2 s. 

6. Conclusion 

The staggered-grid difference method is a very important technique to solve 
wave equations numerically because of its high efficiency and the character of 
energy preservation. It has been well applied to seismic wave propagation for 
more than two decades. Based on the energy estimate method, we implement the 
stability analysis for the high-order staggered-grid schemes of the inhomogene-
ous 3D elastic wave equation. The stability result is controlled by the space va-
rying parameters and the difference coefficients. The plane wave analysis in ho-
mogeneous media is completed and by the von Neumann criterion a necessary 
and sufficient stability condition is obtained. The analysis is helpful to design the 
computational parameters such as the time step and the space steps. Numerical 
computations are given to verify the effectiveness of the schemes. The key point 
of this paper is the theoretical analysis. In the future, we will consider more nu-
merical computations for inhomogeneous media. 
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Appendix: Expression of the Coefficient lβ  

The calculation of difference coefficients on both regular and staggered-grid gr-
ids has been investigated by several authors [15] [18] [19] [20]. In this appendix 
we present the analytical expression of the difference coefficient lβ  in (10) or 
(11). In order to calculate the coefficient lβ , we consider an explicit stag-
gered-grid difference expression for a function ( )f x :  

1

1 1 1 ,
2 2

L

l
l

f f x lh h f x lh h
x h

β
=

∂     ≈ + − − − +    ∂     
∑  

where h is the step size, L is a positive number and lβ  are the difference coeffi-
cients. Now consider i

0e kxf f=  and 2khα = , where k is the wave number, 
i 1= −  and 0f  is a constant then we have  

( )( )
1

sin 2 1 .
L

l
l

lα β α
=

≈ −∑  

Then Taylor’s series expansion gives  

( )
( ) ( )

1
2 1 2 1

1 1

1
2 1 .

2 1 !

m L m m
l

m l
l

m
α β α

−∞
− −

= =

 −
≈ − 

−  
∑ ∑  

Now equating the coefficient of α  both sides we get  

( )
( ) ( )

1
2 1

1

1 1, 1,
2 1

0, 2,3, , .2 1 !

m L m
l

l

m
l

m Lm
β

−
−

=

− = − =   =− 
∑



 

We can rewrite this equation in the following form  

( )
( )

( ) ( )

00 0
1

22 2
2

2 22 1 2 2

1 3 2 1 1 1
3 01 3 2 1 .

2 1 01 3 2 1 LL L L

L

L

LL

β
β

β−− −

 … −          … −    =            −    … − 




   

 

Now solving the above system, we get the following solutions  

( ) ( )
( ) ( )

1 2

2 2
1 ,

1 2 1
, 1, , .

2 1 2 1 2 1

l

l
m L m l

m
l L

l l m
β

+

≤ ≤ ≠

− −
= =

− − − −
∏   
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Abstract 
We introduce the definition of non-Archimedean 2-fuzzy 2-normed spaces 
and the concept of isometry which is appropriate to represent the notion of 
area preserving mapping in the spaces above. And then we can get isometry 
when a mapping satisfies AOPP and (*) (in article) by applying the Benz’s 
theorem about the Aleksandrov problem in non-Archimedean 2-fuzzy 
2-normed spaces. 
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1. Introduction 

Let ,X Y  be two metric spaces. For a mapping :f X Y→ , for all 1 2,x x X∈ , 
if f satisfies,  

( ) ( )( ) ( )1 2 1 2, ,Y Xd f x f x d x x=  

where ( ) ( ), , ,X Yd d⋅ ⋅ ⋅ ⋅  denote the metrics in the spaces ,X Y , then f is called 
an isometry. It means that for some fixed number 0p > , assume that f pre-
serves distance p; i.e., for all 1 2,x x  in X, if ( )1 2,Xd x x p= , we can get 

( ) ( )( )1 2,Yd f x f x p= . Then we say p is a conservative distance for the mapping 
f. Whether there exists a single conservative distance for some f such that f is an 
isometry from X to Y, is the basic issue of conservative distances. It is called the 
Aleksandrov problem.  

Theorem 1.1. ([1]) Let ,X Y  be two real normed linear spaces (or NLS) with 
dim 1X > , dim 1Y >  and Y is strictly convex, assume that a fixed real number 

0p >  and that a fixed integer 1N > . Finally, if :f X Y→  is a mapping sa-
tisfies  
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1) ( ) ( )1 2 1 2x x p f x f x p− = ⇒ − ≤  

2) ( ) ( )1 2 1 2x x N p f x f x N p− = ⋅ ⇒ − ≥ ⋅  

for all 1 2,x x X∈ . Then f is an affine isometry. we can call Benz’s theorem.  
We can see some results about the Aleksandrov problem in different spaces in 

[2]-[10]. A natural question is that: Whether the Aleksandrov problem can be 
proved in non-Archimedean 2-fuzzy 2-normed spaces under some conditions. 
So in this article, we will give the definition of non-Archimedean 2-fuzzy 
2-normed spaces according to [11] [12] [13] [14], then by applying the Benz’s 
theorem to fix the value of p and N to solve problems. 

If a function from a field K to [ )0,∞  satisfies 
(T1) 0, 0 0a a a≥ = ⇔ = ; 
(T2) ab a b= ; 
(T3) { }max ,a b a b+ ≤ . 

for all ,a b K∈ , then the field K is called a non-Archimedean field. 
We can know 1 1 1− = = , 1a ≤  for all a N∈  from the above definition. 

An example of a non-Archimedean valuation (or NAV) is the function ⋅  tak-
ing 0 0=  and others into 1. 

In 1897, Hence in [15] found that p-adic numbers play a vital role in the com-
plex analysis, the norm derived from p-adic numbers is the non-Archimedean 
norm, the analysis of the non-Archimedean has important applications in physics. 

Definition 1.2. Let X be a vector space and dim 2X ≥ . A function 
[ ), : 0,X⋅ ⋅ → ∞  is called non-Archimedean 2-norm, if and only if it satisfies 

(T1) 1 2, 0x x ≥ , 1 2, 0x x =  iff 1 2,x x  are linearly dependent; 
(T2) 1 2 2 1, ,x x x x= ; 
(T3) 1 2 1 2, ,rx x r x x= ; 
(T4) { }1 2 1 2, max , , ,x x y x y x y+ ≤  

for all 1 2, , ,x x y X r K∈ ∈ . Then ( ), ,X ⋅ ⋅  is called non-Archimedean 
2-normed space over the field K.  

Definition 1.3. An NAV ⋅  in a linear space X over a field K. A function 
[ ]: 0,1F X × →  is said to be a non-Archimedean fuzzy norm on X, if and on-

ly if for all 1 2, ,x x x X∈  and ,s t∈ , 
(F1) ( ), 0F x s =  with 0s ≤ , 
(F2) ( ), 1F x s =  iff 0x =  for all 0s > , 

(F3) ( ), , sF cx s F x
c

 
=   

 
, for 0c ≠  and c K∈ , 

(F4) ( ) ( ) ( ){ }1 2 1 2, min , , ,F x x s t F x s F x t+ + ≥ , 
(F5) ( ),F x ∗  is a nondecreasing function of s R∈  and ( )lim , 1s F x s→∞ = . 
Then ( ),X F  is known as a non-Archimedean fuzzy normed space (or 

F-NANS).  
Theorem 1.4. Let ( ),X F  be an F-NANS. Assume the condition that: 
(F6) ( ), 0F x s >  for all 0s >  0x⇒ = . 
Define ( ){ } ( )inf : , , 0,1x s F x s

α
α α= ≥ ∈ . We call these α-norms on X or 

the fuzzy norm on X.  
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Proof: 1) Let 0x
α
= , it implies that ( ){ }inf : , 0s F x s α≥ = , then for all 

s R∈ , 0s > , ( ), 0F x s α≥ > , so 0x = ; 
Conversely, assume that 0x = , by (F2), ( ), 1F x s =  for all 0s > , then 

( ){ }inf : , 0s F x s α≥ =  for all ( )0,1α ∈ , so 0x
α
= . 

2) By (F3), if 0c ≠ , then  

( ){ }inf : , inf : , scx s F cx s s F x
cα

α α
   = ≥ = ≥      

 

Let 
st
c

= , then  

( ){ } ( ){ }inf : , inf : ,cx c t F x t c t F x t c x
α α

α α= ≥ = ≥ = ⋅  

If 0c = , then  

0cx c x
α α
= =  

3) We have  

{ }
( ){ } ( ){ }{ }

{ } ( ) ( ){ }
( ) { }( ){
( ) ( ){ } }

( ){ }

max ,

max inf , , , inf , ,

inf max , , , , ,

inf , , ,max ,

min , , ,

inf , ,

x y

s F x s t F x t

s t F x s F x t

s t F x y s t F x y s t

F x s F x t

r F x y r x y

α α

α

α α

α α

α α α

α

= ≥ ≥

= ≥ ≥

≥ + + + ≥ +

≥ ≥ ≥ ≥

≥ + ≥ = +

 

  
Example 1.5. Let ( ),X ⋅  be a non-Archimedean normed space. Define  

( )
, 0,

,
0, 0.

s s
s xF x s

s

 > += 
 ≤

 

for all x X∈ , Then ( ),X F  is a F-NANS.  
Definition 1.6. Let Z be any non-empty set and ( )Zℑ  be the set of all fuzzy 

sets on Z. For ( )1 2,Z Z Z∈ℑ  and Kλ ∈ , define  

( ) ( ) ( ){ }1 2 1 2 1 2 1 1 1 2 2 2, | , , ,Z Z z z z Z z Zµ µ µ µ+ = + ∧ ∈ ∈  

and  

( ) ( ){ }1 1 1 1 1 1, | ,Z z z Zλ λ µ µ= ∈  

Definition 1.7. A non-Archimedean fuzzy linear space ( ]ˆ 0,1X X= ×  over 
the field K, we define the addition and scalar multiplication operation of X as 
following: ( ) ( ) ( )1 1 2 2 1 2 1 2, , ,x x x xµ µ µ µ+ = + ∧ , ( ) ( )1 1 1 1, ,x xλ µ λ µ= , if for 

every ( )1 1,x Xµ ∈ , we have a related non-negative real numebr, ( )1 1,x µ  is 
the fuzzy norm of ( )1 1,x µ  in such that 

(T1) ( ) ( ]1 1 1 1, 0 0, 0,1x xµ µ= ⇔ = ∈ ; 
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(T2) ( ) ( )1 1 1 1, ,x xλ µ λ µ= ; 

(T3) ( ) ( ) ( ) ( ){ }1 1 2 2 1 1 2 2 1 2, , max , , ,x x x xµ µ µ µ µ µ+ ≤ ∧ ∧ ; 

(T4) ( ) ( )1 1, ,t tt tx xµ µ=∨ ∧  for all ( ]0,1tµ ∈ . 

for every ( ) ( )1 1 2 2, , , ,x x X Kµ µ λ∈ ∈ , then we say that X is an F-NANS.  

Definition 1.8. Let X be a non-empty non-Archimedean field set, ( )Xℑ  
be the set of all fuzzy sets on X. If ( )1f X∈ℑ , then  

( ) ( ]{ }1 1 1 1 1, : , 0,1f x x Xµ µ= ∈ ∈ . Clearly, ( )1 1 1f x ≤ , so 1f  is a bounded 
function. Let K ∈ , then ( )Xℑ  is a non-Archimedean linear space over the 
field K and the addition, scalar multiplication are defined as follows  

( ) ( ){ } ( ) ( ) ( ){ }1 2 1 1 2 2 1 2 1 2 1 1 1 2 2 2, , , | , , ,f f x x x x x f x fµ µ µ µ µ µ+ = + = + ∧ ∈ ∈  

and  

( ) ( ){ }1 1 1 1 1 1, | ,f x x fλ λ µ µ= ∈  

If for every ( )f X∈ℑ , there is a related non-negative real number f  
called the norm of f in such that for all ( ) ( ) ( )1 1 1 2 2 2, , ,f x f x Xµ µ= = ∈ℑ  

(T1) 0f =  iff 0f = . For  

( ){ }1 1, 0f x µ= =  

( ]1 10, 0,1x µ⇔ = ∈  

0.f⇔ =  

(T2) ,f f Kλ λ λ= ∈ . For  

( ){ } ( ){ }1 1 1 1, ,f x x fλ λ µ λ µ λ= = =  

(T3) { }1 2 1 2max ,f f f f+ ≤ . For  

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }
{ }

1 2 1 1 2 2

1 2 1 2

1 1 2 2 1 2

1 2

, ,

,

max , , ,

max ,

f f x x

x x

x x

f f

µ µ

µ µ

µ µ µ µ

+ = +

= + ∧

≤ ∧ ∧

≤

 

Then the linear space ( )Xℑ  is a non-Archimedean normed space.  
Definition 1.9. ([4]) A 2-fuzzy set on X is a fuzzy set on ( )Xℑ .  
Definition 1.10. A NAV ,⋅ ⋅  in a linear space ( )Xℑ  over a field K. If a 

function ( ) [ ]2: 0,1F Xℑ × →  is a non-Archimedean 2-fuzzy 2-norm on X 
(or a fuzzy 2-norm on ( )Xℑ ), iff for all ( )1 2 3, ,f f f X∈ℑ , ,s t∈ , 

(F1) ( )1 2, , 0F f f s =  for 0s ≤ ; 
(F2) ( )1 2, , 1F f f s =  iff 1 2,f f  are linearly dependent for all 0s > ; 
(F3) ( ) ( )1 2 2 1, , , ,F f f s N f f s= ; 

(F4) ( )1 2 1 2, , , , sF cf f s N f f
c

 
=   

 
, for 0c ≠  and c K∈ ; 

(F5) ( ) ( ) ( ){ }1 2 3 1 2 1 3, , min , , , , ,F f f f s t F f f s F f f t+ + ≥ ; 
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(F6) ( )1 2, ,F f f ∗  is a nondecreasing function of R and  
( )1 2lim , , 1s F f f s→∞ = ; 

Then ( )( ),X Fℑ  is called a non-Archimedean fuzzy 2-normed space (or 
FNA-2) or ( ),X F  is a non-Archimedean 2-fuzzy 2-normed space.  

Theorem 1.11. Let ( )( ),X Fℑ  be an FNA-2. Suppose the condition that: 
(F7) ( )1 2, , 0N f f s >  for all 0s >  1f⇒  and 2f  are linearly dependent. 

Define ( ) ( ){ }1 2 1 2, inf : , , , 0,1f f t N f f s
α

α α= ≥ ∈ . We call these α-2-norms 

on ( )Xℑ  or the 2-fuzzy 2-norm on X.  

Proof: It is similar to the proof of Theorem 1.4.    

2. Main Result 
From now on, if we have no other explanation, let ( )dim 2Xℑ ≥ ,  

( )dim 2Yℑ ≥ . ,f h g h
α

= − − , ( ) ( ) ( ) ( ),f h g h
β

ψ ψ ψ ψ= − −   

Definition 2.1. Let ( ) ( ),X Yℑ ℑ  be two FNA-2 and a mapping 
( ) ( ): X Yψ ℑ → ℑ . If for all ( ), ,f g h X∈ℑ  and ( ), 0,1α β ∈ , we have  

( ) ( ) ( ) ( ), ,f h g h f h g h
αβ

ψ ψ ψ ψ− − = − −  ( )∇  

then ψ  is called 2-isometry. 
Definition 2.2. For a mapping ( ) ( ): X Yψ ℑ → ℑ  and ( ), ,f g h X∈ℑ  
1) If 1= , then 1= , we say ψ  satisfies the area one preserving property 

(AOPP). 
2) If n= , then n= , we say ψ  satisfies the area n for each n (AnPP).  
Definition 2.3. We say a mapping ( ) ( ): X Yψ ℑ → ℑ  preserves collinear, if 
, ,f g h  mutually disjoint elements of ( )Xℑ , then exist some real number t we 

have  

( ) ( ) ( ) ( )( )g h t f hψ ψ ψ ψ− = −  

Next, we denote ( ) ( ) ( ) ( ), ,f h g h f h g h
αβ

ψ ψ ψ ψ− − ≤ − −  ( )∗ . 

Lemma 2.4. Let ( )Xℑ  and ( )Yℑ  be two FNA-2. If 1≤ , a mapping 
( ) ( ): X Yψ ℑ → ℑ  satisfies ( )∗  and AOPP, then we can get ( )∇  where 

1≤ .  
Proof: 1) Firstly, we prove that f preserves collinear. We assume that 0= , 

according to ( )∗ , we get  

( ) ( ) ( ) ( ), 0f h g h
β

ψ ψ ψ ψ− − =  

then ( ) ( )f hψ ψ−  and ( ) ( )g hψ ψ−  are linearly dependent. So we obtain 
that ψ  preserves collinear. 

2) Secondly, we prove that when 1≤ , we can get ( )∇ . 
If  

<   

Let 
,

f hh
f h g h

α

ω −
= +

− −
, then , 1h g h

α
ω − − = , so  
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( ) ( ) ( ) ( ), 1h g h
β

ψ ω ψ ψ ψ− − =  ( )∆  

Since  

( ), , 1
,

f hf g h f h g h
f h g hα

ω −
− − = − − − = −

− −
  

according to ( )∗ , we have  

( ) ( ) ( ) ( ), , 1f g h f g h
αβ

ψ ω ψ ψ ψ ω− − ≤ − − = −  

Since f preserves collinear, so there exists a real number s such that  

( ) ( ) ( ) ( )( )h s f hψ ω ψ ψ ψ− = −  

and  

( ) ( ) ( ) ( ) ( )( )1f s f hψ ω ψ ψ ψ− = − −  

So, we get  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

1

,

1 1

h g h

s

s

f g h

β

β

ψ ω ψ ψ ψ

ψ ω ψ ψ ψ

− −

=

≤ − +

= − − +

< − + =


 



 

 

This contradicts with ∆ .   
Lemma 2.5. Let ( )Xℑ  and ( )Yℑ  be two FNA-2. If a mapping  

( ) ( ): X Yψ ℑ → ℑ  satisfies AOPP and preserves collinear, then  
1) ψ  is an injective; 
2) if ( ) ( ) ( )0f fφ ψ ψ= − , then ( ) ( ) ( )f g f gφ φ φ+ = +  and  
( ) ( )f fφ λ λφ=  with 0 1λ< < .  
Proof: 1) We prove ψ  is injective. Let ( ),f g X∈ℑ , since dim ( ) 2Xℑ ≥ , 

there exists an element ( )h X∈ℑ  such that ,f h g h− −  are linearly indepen-
dent. Hence 0≠ . 

Let 
,

g hh
f h g h

α

γ −
= +

− −
, then , 1f h h

α
γ− − = , and ψ  satisfies AOPP, 

so  

( ) ( ) ( ) ( ), 1f h h
β

ψ ψ ψ γ ψ− − =  

we can see ( ) ( )h fψ ψ≠ . So the mapping ψ  is injective. 

2) Let , ,f g h  mutually disjoint elements of ( )Xℑ  and 
2

g hf +
= , so 

f h g f− = −  ( ) . Since ψ  is injective and preserves collinear, there exist 
0s ≠  such that  

( ) ( ) ( ) ( )( )g f s h fψ ψ ψ ψ− = −  

Since dim ( ) 2Xℑ ≥ , there exist an element ( )1f X∈ℑ  such that 
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1, 0g f f f
α

− − ≠ . Let 1

1,
f ff

g f f f
α

η
−

= +
− −

, then , 1g f f
α

η− − =  and  

( ) ( ) ( ) ( ), 1.g f f
β

ψ ψ ψ η ψ− − =  

So,  

( ) ( ) ( ) ( ) 1, .h f f
sβ

ψ ψ ψ η ψ− − =  

Since ( ) , we get , 1h f f
α

η− − =  and  

( ) ( ) ( ) ( ), 1.h f f
β

ψ ψ ψ η ψ− − =  

According to the mapping ψ  is injective, so 1s = − , and  

( ) ( )
2 2

g hg h ψ ψ
ψ

++  = 
 

 

Let ( ) ( ) ( )0f fφ ψ ψ= − , so we have  

( ) ( )
2 2

g hg h φ φ
φ

++  = 
 

 

Therefore  

( )0
2 2 2

ff f φ
φ φ +   = =   
   

 

and  

( ) ( ) ( ) ( ) ( )
2 22 2

2 2 2
f gf gf g f g

φ φ
φ φ φ φ+ + = = + = + 

 
 

So φ  is additive. 
From the lemma 2.4, we know that if 1≤ , then φ  satisfies 2-isometry.  

( ) ( ) ( ) ( ) ( ) ( )0 , 0 , 0 ,f f f f f f
α β β

λ ψ λ ψ ψ ψ φ λ φ= = − − =  

so ( )fφ λ  and ( )fφ  is linearly dependent i.e. ( ) ( )f s fφ λ φ= . 
Next we assume ,f g

α
λ= ,  

1 , 0, 0 1ff g g
α

αλ λ
= − − =  

and  

( ) ( ) ( )

( )

( ) ( )

1 0 , 0

,

1 ,

1 ,

f g

f g

f g
s

f g
s

β

β

β

α

φ φ φ φ
λ

φ φ
λ

φ φ

 = − − 
 

 =  
 

=

=

 

Thus sλ = , if s λ= − , then ( ) ( )f fφ λ λφ= − , but  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

1 , , 0

, 0

, 0

1 ,

1 ,

f g f f g

f f g

f f g

f g

f g

α α

β

β

β

α

λ λ

φ λ φ φ φ

λφ φ φ φ

λ φ φ

λ

− = − −

= − −

= − − −

= +

= +

  

so ( )1 1λ λ− = + . It contradicts with 0 1λ< < . Thus ( ) ( )f fφ λ λφ= .   
Lemma 2.6. Let ( )Xℑ  and ( )Yℑ  be FNA-2. If 1≤ , a mapping 

( ) ( ): X Yψ ℑ → ℑ  satisfies ( )∗  and AOPP, then we can get for all  
( ), ,f g h X∈ℑ , we can get ( )∇ . 

Proof: From lemma 2.4, we know ψ  preserves collinear. 
For any ( ), ,f g h X∈ℑ , there exist two numbers ,m n ∗∈  such that 

m
n

≤ .  

So,  

( ) ( ) 1, ,f h f hg h g h
m m m nαβ

ψ ψ ψ ψ −   − − ≤ − ≤   
   

 

and  

( ) ( ) 1,f h g h
m m nβ

φ φ φ   − − ≤   
   

 

By lemma 2.5, we have  

( ) ( )( ) ( ) ( )1 1,f h g h
m nβ

φ φ φ φ− − ≤  

( ) ( ) ( ) ( ), mf h g h
nβ

φ φ φ φ− − ≤  

Thus  

( ) ( ) ( ) ( ), mf h g h
nβ

ψ ψ ψ ψ− − ≤  

  
Lemma 2.7. Let ( )Xℑ  and ( )Yℑ  be two FNA-2. If a mapping 

( ) ( ): X Yψ ℑ → ℑ  satisfies AOPP and ( )∗  for all ( ), ,f g h X∈ℑ  with 1≤ , 
then ψ  satisfies AnPP.  

Proof: Let ( ), ,f g h X∈ℑ  and n∈N . Let  

( ), i
in g h g h
n

= = + −  

and  

1, 1, 0,1, , 1.i if h g g i n
α+− − = = −  

So,  

( ) ( ) ( ) ( )1, 1, 0,1, , 1.i if h g g i n
β

ψ ψ ψ ψ+− − = = −  
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We know ψ  preserves collinear. So there exist a number t∈  such that  

( ) ( ) ( ) ( )( )2 1 1 0g g t g gψ ψ ψ ψ− = −  

Therefore  
Then we have 1t = ± . By lemma 2.5, 1t = , so  

( ) ( ) ( ) ( )2 1 1 0g g g gψ ψ ψ ψ− = − .  

In the same way, we can get  

( ) ( ) ( ) ( )1 1 , 0,1, , 1.i i i ig g g g i nψ ψ ψ ψ+ −− = − = −
 

Hence  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( )

0

1 1 2 1 0

1 0

n

n n n n

g h g g

g g g g g g

n g g

ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

ψ ψ
− − −

− = −

= − + − + + −

= −


 

Therefore  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1 0

1 0

,

,

f h n g g

n f h g g n
β

β

ψ ψ ψ ψ

ψ ψ ψ ψ

= − −

= − − =


 

  
Theorem 2.8. Let ( )Xℑ  and ( )Yℑ  be two FNA-2. If a mapping 

( ) ( ): X Yψ ℑ → ℑ  satisfies AOPP and ( )∗  for all ( ), ,f g h X∈ℑ  with 1≤ , 
then ψ  is 2-isometry.  

Proof: Since lemma 2.4, we just need to prove that ( )∇  with 1> . 
We can assume that when 1> , for all ( ), ,f g h X∈ℑ , we have 0 1n< + . 

and there exist a number 0n ∗∈  such that  

Let ( )0 1
,

n
f f h

f h g h
α

τ
+

= + −
− −

, then  

0, 1f g h n
α

τ − − = +  

and  

0, 1h g h n
α

τ − − = + −  

Since ψ  preserves collinear, there exist a number c∈  such that  

( ) ( ) ( ) ( )( )f c h fψ τ ψ ψ ψ− = −  

Since 2),  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0 0

1 ,

1

,

1 1

n f g h

c

c

h g h

n n

β

β

ψ τ ψ ψ ψ

ψ τ ψ ψ ψ

+ = − −

=

≤ − +

= − − +

< + − + = +


 



 

 

which is contradiction, so  
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0 1n≥ +  

Therefore, we get ( )∇  with 1> . Hence  

( ) ( ) ( ) ( ), ,f h g h f h g h
αβ

ψ ψ ψ ψ− − = − −  

for all ( ), ,f g h X∈ℑ .   
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Abstract 
We describe two new derivations of the chi-square distribution. The first de-
rivation uses the induction method, which requires only a single integral to 
calculate. The second derivation uses the Laplace transform and requires 
minimum assumptions. The new derivations are compared with the estab-
lished derivations, such as by convolution, moment generating function, and 
Bayesian inference. The chi-square testing has seen many applications to 
physics and other fields. We describe a unique version of the chi-square test 
where both the variance and location are tested, which is then applied to en-
vironmental data. The chi-square test is used to make a judgment whether a 
laboratory method is capable of detection of gross alpha and beta radioactivi-
ty in drinking water for regulatory monitoring to protect health of popula-
tion. A case of a failure of the chi-square test and its amelioration are de-
scribed. The chi-square test is compared to and supplemented by the t-test. 
 

Keywords 
Mathematical Induction, Laplace Transform, Gamma Distribution, 
Chi-Square Test, Gross Alpha-Beta, Drinking Water 

 

1. Introduction 

The chi-square distribution (CSD) has been one of the most frequently used dis-
tributions in science. It is a special case of the gamma distribution (see Section 2). 
The latter has been an important distribution in fundamental physics, for exam-
ple as kinetic energy distribution of particles in an ideal gas (Maxwell-Boltzmann) 
[1] or the kinetic energy distribution of particles emitted from excited nuclei in 
nuclear reactions [2]. A historical context for the development of the CSD is de-
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scribed in References [3] and [4]. Its first derivation is attributed to Bienaymé 
[5], who used multiple integrals over normal variables and substitutions. Abbe 
[6] used a method of integration in the complex plane to solve multiple integrals. 
The most general derivation is attributed to Helmert, who proposed a classic 
transformation to derive CSD, including calculation of the Jacobian determinant 
of transformation [7]. This transformation can be worked out into polar va-
riables, which is described in statistical textbooks [4] [8].  

The established fundamental derivations of the CSD described above lend 
themselves to complicated handling of multiple integrals. On the contrary, the 
simplified derivations use the fact that CSD is a special case of the gamma dis-
tribution. Owing to the integrable and recursive properties of the gamma distri-
bution, as well as its moment generating function (Mgf), simplified derivations 
of CSD are described in the textbooks [9] [10]. Another simplified derivation 
uses Bayesian inference [11]. In Section 2, we refer to these methods for com-
parisons. 

In this work, we present two new methods of derivation of the CSD. They are 
both within the simplified category. One of them is mathematical induction. The 
original derivation was done by Helmert [12] using a 2-step forward mathemat-
ical induction. We have elaborated on that and observed that the CSD has cer-
tain recursive property, which enables its derivation using a single-step induc-
tion plus the well-known theorem for beta and gamma functions. Another deri-
vation method we describe is by the Laplace transform. This method has some 
similarity to the Mgf and characteristic function methods, owing to the presence 
of exponentiation. It uses a complex-variable integration and it is free from 
many assumptions of the other methods. The two new derivations of the CSD by 
mathematical induction and Laplace transform are described in Section 2. 

Chi-square testing (CST) is closely related to and based upon the CSD. It has 
its origins in the discovery of the goodness-of-fit test by Pearson [13]. In the 
goodness-of-fit, one calculates the test statistics as 

( )2
2

1 ,m i i
i

i

O E
Eνχ =

−
= ∑                      (1) 

where iO  is frequency of observation, iE  is expected frequency based on an 
assumed model distribution, for category of type i, and m is the number of cate-
gories. Both iO  and iE  are unitless. 1m pν = − −  is the number of degrees 
of freedom, where p is number of parameters of the model distribution calcu-
lated from the data. For any model distribution, Equation (1) leads asymptoti-
cally to the CSD when the number of observations is large, which has been 
proved for the multinomial distribution by Pearson [13]. The goodness-of-fit 
CST has been extensively used in statistics and widely applied to many fields [3] 
[14]. It is worth noting that the interpretation of the degrees of freedom was 
provided by Fisher [15]. As example in physics, CST goodness-of-fit has been 
used to verify Poisson fluctuations of radioactivity counter [14] [16]. 

Another form of the chi-square variable from Equation (1) is written in the 
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general form as 
2

2
1 ,n i i

i
i

x
ν

µ
χ

σ=

 −
=  

 
∑                      (2) 

where n is the number of observations, ix  is the observed variable, iµ  is the 
expected value, iσ  is the standard deviation, and nν ≤ . The variables in Equ-
ation (2) can be expressed in physical units. In the limit of large number of ob-
servations, the variable and parameters of Equation (2) are approximated by 
those of the normal variates, and the 2

νχ  distributes as CSD. In this work, we 
generalize this CST test to a combined test for variance and location as well as 
verify it with the t-test [17]. The test statistics studied are described in Section 3. 

Within the context of this work, we present a unique application of the CST to 
the detection of radioactive contaminants in drinking water required by the Safe 
Drinking Water Act (SDWA) in the US. The bulk of natural alpha and be-
ta/gamma (photon) radioactivity in drinking water originates from the possible 
presence of 238U and 232Th natural radioactive-series progeny, 226,228Ra and their 
progeny, as well as 40K radionuclides [18]. The SDWA regulations [19] establish 
a Maximum Contaminant Level (MCL) of 15 pCi/L (555 mBq/L) for gross alpha 
(GA) radioactivity, excluding U and Rn. For gross beta (GB) radioactivity, the 
MCL is limited by the total body or any organ radiation dose of 4 mrem/y (40 
μSv/y). For both GA and GB, the Maximum Contaminant Level Goal (MCLG) is 
zero. Furthermore, SDWA requires Detection Limits (DL) of 3 pCi/L (111 
mBq/L) and 4 pCi/L (148 mBq/L) for GA and GB radioactivity, respectively. 
These DLs must be met by all public health laboratories accredited for monitor-
ing of GA and GB radioactivity in drinking water in the US. In Section 4, we de-
tail a CST procedure to verify if the required above-mentioned DLs are met [20]. 
We investigate the reasons and consequences of failed CST and ameliorate such 
cases. 

2. Chi-Square Distribution 

The probability density function (Pdf) of the CSD is given by 

( ) ( )
( )

22 1 22
2

2

e
Pdf | ,

2 2

ν
ν χ

ν
ν ν

χ
χ ν

ν

− −

=
Γ

                   (3) 

where Γ  is the gamma function. The expectation value of CSD is 2E χ ν  = , 
and the variance 2Var 2χ ν  =   [21]. The CSD is a special case of the gamma 
distribution abbreviated as ( )2gamma | ,a bνχ  with the parameters 2a ν=  
and 2b =  [21]. 

To derive Equation (3), we start with the general definition of 2
νχ  statistics 

given by Equation (2) assuming normal variates. For a single normal variable 1x  
with ( )1Pdf x , the probability of [ ]1 1 1 1, dx x x x∈ +  is given by 

( )
2

1 1

1
2

1 1 1
1

1Pdf d e d .
2π

x

x x x
µ

σ

σ

 −
− 
 =                  (4) 
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By substituting ( )( )22
1 1 1 1xχ µ σ= − , we obtain from Equation (4) 

( ) ( )
( )

( )

2
1

2
1

1 2 12 2
12 2 2 21

1
2

1 1 12 1 2
11

2 2
1 1

ed2Pdf |1 d e d d
d 2 Γ 1 22π

gamma |1 2,2 d ,

x
χ

χ
χ

χ χ χ χ
χσ

χ χ

− −
−= =

=

      (5) 

which has the Pdf given by Equation (3) for 1ν = . In deriving Equation (5), we 
also used ( )1 2 πΓ = , whereas factor of 2 originated from the fact that the 1x  
variable ranging from minus infinity to plus infinity has been substituted with 
the 2

1χ  variable ranging from zero to plus infinity. 
Let us assume that the 1n +  term with the normal 1nx +  variable was added 

to Equation (2), and that this addition raised the number of degrees of freedom 
to 1ν + . Then, 

2
2 2 1 1

1
1

.n n

n

x
ν ν

µ
χ χ

σ
+ +

+
+

 −
= +  

 
                   (6) 

Using the calculus for probability density functions [21],  

( ) ( ) ( )2 2 2 2
1 1 1 1Pdf | 1 d Pdf | d Pdf d .n nx xν ν ν νχ ν χ χ ν χ

+∞

+ + + +−∞
+ = ∫        (7) 

Let us define a new variable z, such as 

( )
2

21 1
1

1

1 .n n

n

x
zν

µ
χ

σ
+ +

+
+

 −
= − 

 
                   (8) 

By realizing that 2 2
1d dν νχ χ+ = , and performing all substitutions, the right side 

of Equation (7) can be rewritten as 

( ) ( )

( )( )

( ) ( ) ( )
( )

2
1

1 2 21
1 10

1 2 1 22
11 1 2 12 2 1

11 2 0

d
2 Pdf | Pdf d d

d

e
d 1 d .

2 2 1 2

n
n

x
x z

z

z z z
ν

ν ν

ν χ
ν ν

νν

χ ν χ

χ
χ

ν

+

+
+ +

+ − −
+ −−

++
= −

Γ Γ

∫

∫
          (9) 

However, the integral on the right side of Equation (9) is the beta function, 
( )2,1 2B ν , which is related to the gamma functions by [22], 

( ) ( ) ( )
( )( )

Γ 2 Γ 1 2
2,1 2 .

Γ 1 2
B

ν
ν

ν
=

+
                   (10) 

By inserting Equation (10) into Equation (9), simplifying, and comparing with 
the left side of Equation (7), one obtains 

( ) ( )( )

( ) ( )( )

2
1

1 2 1 22
12

1 1 2
Pdf | 1 ,

2 Γ 1 2

e ν
ν χ

ν
ν ν

χ
χ ν

ν

+
+ − −

+
+ +

+ =
+

              (11) 

which is the Pdf given by Equation (3) for 1ν +  degrees of freedom and it 
proves Equation (3) by induction. 

By substituting ( )( )22
i i i ixϕ µ σ= − , Equation (2) becomes 

2 2
1

n
iiνχ ϕ

=
= ∑                       (12) 
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The sum of independent random variables 2
iϕ  is called a convolution and 

the joint distribution function for 2
νχ  can be obtained by calculating an 

n-dimensional convolution integral. Exploring the properties of this convolu-
tion leads to simplifications, which have been used in the literature. By convo-
luting two gamma distributions 2 2

1 iχ ϕ≡  from Equation (5) and using the 
theorem that the convolution of two gammas is also a gamma, one obtains 

( )2
2gamma | 2 2, 2χ  [9]. By continuing this process of convoluting with 2

1χ , it 
is easy to infer that the full convolution is equal to ( )2gamma | 2, 2νχ ν , where 

nν = , which the CSD given by Equation (3). This provides a simplified deriva-
tion of CSD using convolution. 

Another simplified derivation of CSD uses the theorem that the Mgf of con-
volution is a product of individual Mgfs [10]. Thus, by calculating Mfg of 2

1χ  
from Equation (5) and taking it to the nth power, one obtains the Mgf for 2

νχ , 
where nν = . One can also calculate the Mgf of the gamma distribution and in-
fer from a comparison that the CSD in Equation (3) is a special case of the 
gamma distribution [10]. 

In this work we provide yet another simplified derivation of the CSD using 
Laplace transform [23]. The Laplace transform of Equation (5) is equal to 

( )
( )

2
1

2
1

1 2 1 22 1 2
1 2

11 20

e 1 2e d .
1 22 1 2

s

s

χ
χ

χ
χ

− −
∞ −  

=  +Γ  
∫               (13) 

Subsequently, we use a theorem that the Laplace transform of a nth convolu-

tion is a product of the individual transforms, i.e. 
2

1 2
1 2

n

s
 
 + 

. By abbreviating 

2
nu χ= , the inverse Laplace transform results in the Pdf of u, 

( )
( )

/2

2 2

1 1 2 1 1 ePdf | e d d .
2π 1 2 2π2 1 2

n su
su

n nu n s s
i s i s

 
= = + + 

∫ ∫ 

     (14) 

To calculate the contour integral in Equation (14), we start with the Cauchy 
integration formula for an analytic function ( )f s  of a complex variable s hav-
ing a simple pole at 0s  [24]:  

( ) ( )
0

0

1 d .
2π

f s
f s s

i s s
=

−∫                    (15) 

The 1k −  times differentiation of Equation (15), where the differentiation 
can be of an integer or a fractional order [25], results in: 

( ) ( ) ( ) ( )
( )

1
0

0

Γ
d .

2π
k

k

k f s
f s s

i s s
− =

−
∫                    (16) 

By comparing Equation (14) to Equation (16), we infer that ( ) esuf s = , 

0 1 2s = − , and 2k n= . By inserting these variables to Equation (16) and plug-
ging it into Equation (14), we obtain: 

( )
( ) ( )

2 1 2 1 2

2 2 1 2
1 2

1 d ePdf | e ,
2 Γ 2 d 2 Γ 2

n n u
su

n n n
s

uu n
n s n

− − −

−
=−

 
= = 

 
       (17) 
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which is the CSD given by Equation (3) for nν =  and 2
n uχ = . 

Another simplified derivation of the CSD uses the Bayesian inference and it is 
not related to the convolutions described above [11]. It uses a normal likelihood 
function for multiple samples. It also uses the transformational prior distribu-
tions: 1 σ∝  for scale parameter σ  and a constant for translation parameter 
µ  [26]. Marginalizing the joint distribution ( ),µ σ  over µ  results in the 
CSD, whereas marginalizing over σ  results in the t-distribution [27]. 

In Section 5, we summarize the advantages and disadvantages of the simpli-
fied derivation methods of CSD described in this section.  

3. Test Statistics 

Several models for the CST statistics can be derived from the general Equation (2). 
For the expected value, we can use either the sample mean x  or the population 
mean µ , whereas for the standard deviation we can use either individual stan-
dard deviations iσ  or the sample standard deviation xσ . We do not know the 
population standard deviation for the data described in Section 4. Model test sta-
tistics ( )( )2

i xx x σ−∑  is always equal to 1n −  and thus not useful. However, 
the model test statistics ( )( )2

i ix x σ−∑  can be used to test the variance. Other 
possibilities are to test for both the variance and location by employing model test 
statistics ( )( )2

i ix µ σ−∑  or ( )( )2
i xx µ σ−∑ , if the population mean is 

known which is the case for the data in Section 4. 
For the t-test we perform a standard one-sample test, where we calculate t va-

riable as ( ) ( )xx nµ σ− . The t-test is the location test. The results of all these 
test models using radioactivity data are presented in Section 4. 

4. Chi-Square- and t-Test for Radioactivity Detection in  
Drinking Water 

The most convenient method of measuring GA and GB radioactivity in drinking 
water is by gas proportional counting [28]. In this method, a given quantity of 
water is evaporated with nitric acid onto a stainless-steel planchet and dried, 
leaving a residue containing any radioactivity. The planchet is then counted on a 
gas proportional detector. Alpha and beta particles are counted simultaneously, 
and they are differentiated by much larger ionization caused by the former. 

As stated in Section 1, this method must be able to determine GA and GB at 
the DL, to be verified by the CST [20] using a minimum of seven samples. EPA 
recommends a right-tail (RT) CST at 99% Confidence Level (CL), or 0.01 signi-
ficance. To accomplish this, 9n =  samples of community drinking water were 
spiked with 230Th and 90Sr/90Y radionuclides providing alpha and beta radioactiv-
ity, respectively. The spiking activities (i.e. the expected µ ) were: 2.9888 ± 
0.0402 pCi/L for alpha and 4.1860 ± 0.0549 pCi/L for beta, close to the required 
DL values. The values of spiking activities and their uncertainties were obtained 
from the standards traceable to the National Institute of Standards and Tech-
nology (NIST). Then the experimental procedure was followed, and the meas-
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ured GA and GB activities ix  are depicted as points in Figure 1 and Figure 2, 
respectively.  

Also shown in Figure 1 and Figure 2 are the individual standard deviations 

iσ , depicted as vertical lines. These standard uncertainties are propagated, in-
cluding the Poisson statistics of radioactivity counting and background subtrac-
tion, uncertainties of the detector efficiency, cross-talk between alpha and beta 
particles, as well as solution-pipetting uncertainties. Therefore, they are slightly 
different for different samples. 

The GA results are described first. The sample average for GA is given by 
3.0951x =  pCi/L (red horizontal thick line) which is close to the expected µ  

(green horizontal thick line) as seen in Figure 1. The sample standard deviation 
is given by 0.7000xσ =  pCi/L. The results of the variance test, as defined in 
Section 3, are given in column 3 of Table 1. The number of the degrees of free-
dom is 8ν =  because one constraint is from calculating the mean. The ob-
served 2χ  statistics is equal to 14.0 for gross alpha. The right-tail (RT) and 
left-tail (LT) 2χ  are calculated from the CSD at 0.01 significance each. Since 
1.6 14.0 20.1< < , each tail test passes at 0.01 significance and two-tail (2T) test 
passes at 0.02 significance. Then, the two combined variance/location tests, as 
defined in Section 3 are given in columns 4 and 5 using iσ  and xσ , respec-
tively. 9nν = =  in these cases, because there are no constraints. They both 
pass for GA. 

The t-test statistics is calculated as described in Section 3 resulting in 0.45 for 
GA, as given in column 6 in Table 1. The RT probability of 0.33 and 2T proba-
bility of 0.66 are larger than 0.01 and 0.02, respectively, ensuring the passage of 
the location t-test.  

The gross beta activities plotted in Figure 2, with the mean 5.1274x =  
pCi/L (red horizontal thick line) and 0.3050xσ =  pCi/L differ significantly 
from the expected µ  (green horizontal thick line) beyond the observed uncer-
tainties. That fact did not affect the variance test which passed for GB (column 3 
in Table 1). However, the observed 2χ  of 43.1 and 93.7 exceed the calculated 
RT 2χ  of 21.7 (columns 4 and 5 in Table 1), therefore the combined va-
riance/location tests failed. This failure is supported by the t-test, where the high 

9.26t =  (column 6) resulted in very low values of the RT and 2T probabilities 
(columns 7 and 8) and failures of the test for GB.  

To elucidate the reasons for failure of the GB CST and t-test, fifteen 
non-spiked Method Blank (MB) community water samples were prepared and 
measured. The average GA activity was below detection; however, the average 
GB was 0.8121 ± 0.2801 pCi/L. This MB was then subtracted from the spiked GB 
results and the corrected GB activities are plotted in Figure 3. The mean of the 
corrected GB is 4.3153x =  pCi/L ( 0.3050xσ =  pCi/L), very close to the value 
for spiked radioactivity. The corrected observed 2χ  are now 2.7, 3.2 and 9.6 
(columns 3, 4, and 5 in Table 1) ensuring the passage of the three CSTs. This is 
supported by the passage of the t-test also (columns 6, 7, and 8). 
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Table 1. The results of χ2- and t-tests. Abbreviations: RT right-tail, LT left-tail, 2T two-tail. 
Significance is 0.01 for each tail. 

1 2 3 4 5 6 7 8 

Experiment, 
reference 

χ2-test t-test 

Parameter 
Variance, 

iσ  

Variance  
and location, 

iσ  

Variance  
and location, 

xσ  
Location 

Deg free 8 9 9 8  

Calc RT 20.1 21.7 21.7  

Calc LT 1.6 2.1 2.1 t RT prob 2T prob 

Gross Alpha, 
Figure 1 

Observed 14.0 13.4 8.2 0.45 0.33 0.66 

Test result Passed Passed Passed  Passed Passed 

Gross Beta, 
Figure 2 

Observed 3.8 43.1 93.7 9.26 7.5E−06 1.5E−05 

Test result Passed Failed Failed  Failed Failed 

Gross Beta-MB 
subtracted, 
Figure 3 

Observed 2.7 3.2 9.6 1.27 0.12 0.24 

Test result Passed Passed Passed  Passed Passed 

 

 
Figure 1. Gross alpha (points) ordered according 
to the increased activity. 

 

 
Figure 2. Gross beta (points) ordered according 
to the increased activity. 
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Figure 3. Gross beta (points) corrected for method 
blank and ordered according to the increased 
activity. 

 
The reasons for the elevated GB in MB of community drinking water were 

investigated. Ten L of water were evaporated to 50 mL and measured using 
precise gamma-ray spectrometry [29]. It was determined that the concentra-
tion of the beta/gamma emitter, 40K was 0.6926 ± 0.0790 pCi/L. It was also 
possible to identify several beta/gamma progenies of the 238U series: 234Th, 
214Pb, 214Bi, and 210Pb, as well as those from the 232Th series: 228Ac, 212Pb, and 
208Tl. The combined activity of the beta/gamma progeny was 0.1513 ± 0.0672 
pCi/L. Therefore, the sum of 40K and beta/gamma progeny was 0.8440 ± 
0.1037 pCi/L. The latter is consistent with the GB activity of 0.8121 ± 0.2801 
pCi/L from the MB measurement to within the measured uncertainties. Also 
associated with the decay of 238U and 232Th is their alpha activity plus alpha 
progeny of similar activity to that of the beta/gamma progeny. This alpha ac-
tivity could not have been detected by gamma spectrometry and was below 
the detection by GA in the MB measurement. However, the fact that GA of 
3.0951 pCi/L is slightly higher than the expected 2.9888 pCi/L is an indication 
of that. Unlike in the case of beta activity, the small alpha progeny activity did 
not affect the CST or t-test. It should be noted that this level of naturally 
present radioactivity in the community water is much below the MCL, and 
thus poses small risk to the population.  

5. Summary and Conclusions 

We have described five simplified methods of deriving the chi-square distribu-
tion. Three of them: by convolution, moment generating function, and Bayesian 
inference are described in the literature and have been outlined here for com-
parison. The simplest of them seems to be the convolution method. It only uses 
the substitution from the normal distribution to a chi-square variable and re-
quires a calculation of a single convolution integral on the above. It infers the 
form of multiple convolution on gamma distribution leading to the chi-square 
distribution. The moment generating function method of derivation is more ad-
vanced as it requires the knowledge of the moment generating function and the 
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gamma distribution. The Bayesian inference method requires the knowledge 
about likelihood function and prior probabilities but does not require the know-
ledge about the gamma distribution. 

In this work, we have proposed two new methods for derivation of the 
chi-square distribution: by induction and by Laplace transform. The method of 
induction uses operational calculus with only a single integral leading to beta 
function. The proposed derivation applies modern formalism and seems to be 
simpler than the original derivation by Helmert as early as in 1876. A disadvan-
tage of the induction method is that it requires a prior knowledge of the 
chi-square distribution to perform induction on it. There is a significant advan-
tage, however. All other methods require either no constraints in the data; i.e. 
the number of degrees of freedom must be equal to the number of observations, 
or one constraint in case of Bayesian inference. The induction method leaves any 
constraints intact by adding one induction step to the existing number of de-
grees of freedom. The proposed derivation method by Laplace transform is more 
advanced because it uses integration in the complex plane. The significant ad-
vantage of the Laplace transform, and the Bayes inference methods is that they 
do not require prior knowledge about the gamma distribution. 

We have also described a unique application of the chi-square test to envi-
ronmental science. In chi-square testing, it is important to delineate systematic 
effects from the random uncertainties. In this work, a systematic natural conta-
mination of laboratory method blank caused the chi-square test for combined 
variance/location to fail; however, it did not affect the chi-square test for va-
riance alone. After subtracting the systematic method blank, the chi-square va-
riance/location test was shown to have passed. This was confirmed by the loca-
tion t-test. It is also imperative to perform analysis of uncertainty. In this work, 
using either individual or sample standard deviations did not affect the va-
riance/location chi-square test. While the chi-square test provides verification if 
a laboratory test method is adequate to monitor gross alpha and gross beta ra-
dioactivity in drinking water, the test statistics combining variance and location 
is more useful than the one based on the variance alone because it can identify 
systematic bias. 
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Appendix 
A.1. Glossary 

CL: Confidence Level 
CSD: Chi-Square Distribution 
CST: Chi-Square Test 
DL: Detection Limit for radionuclides 
EPA: U.S. Environmental Protection Agency 
GA: Gross Alpha Radioactivity 
GB: Gross Beta Radioactivity 
L: Liter 
LT: Left Tail 
MB: Method Blank 
mBq: milli-Becquerel 
MCL: Maximum Contaminant Level 
MCLG: Maximum Contaminant Level Goal 
Mgf: Moment generating function 
mL: milli-Liter 
mrem: milli-rem 
NIST: National Institute of Standards and Technology 
pCi: pico-Curie 
Pdf: Probability density function 
RT: Right Tail 
SDWA: Safe Drinking Water Act 
STEM: Science, Technology, Engineering and Mathematics 
y: year 
μSv: micro-Sievert 
2T: Two Tail 

A.2. Variables 

a, b: parameters of the gamma distribution 
B: beta function 
E: expectation value 

iE : expected frequency 
( )f s : analytic function 

gamma: gamma distribution 
i, k: indices 
m: number of categories 
n: number of observations 

iO : observed frequency 
p: number of parameters for model distribution 
s: complex variable 

0s : pole 
t: t-test variable 
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Var: variance 

ix : normal random variable 
x : sample mean 

u, z: substituted variables 
Γ : gamma function 

, iµ µ : expected variable: population, individual 
ν : number of degrees of freedom 

, ,i xσ σ σ : standard deviation, individual, sample 
2
iϕ : individual chi-square 
2 2 2 2, , ,i n νχ χ χ χ : chi-square, for i, n observations, ν  degrees of freedom 
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Abstract 
We study graph weights which naturally occur in Mayer’s theory and 
Ree-Hoover’s theory for the virial expansion in the context of an imperfect 
gas. We pay particular attention to the Mayer weight and Ree-Hoover weight 
of a 2-connected graph in the case of the hard-core continuum gas in one di-
mension. These weights are calculated from signed volumes of convex poly-
topes associated with the graph. In the present paper, we use the method of 
graph homomorphisms, to develop other explicit formulas of Mayer weights 
and Ree-Hoover weights for infinite families of 2-connected graphs. 
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Graph Invariants, Virial Expansion 

 

1. Introduction 

Before discussing our subject, we first present some preliminary notions on the 
theory of graphs drawn from among others [1] [2] [3].  

Preliminary Notions on the Theory of Graphs 

Definition 1. A simple graph g is formed of two sets: a non-empty finite set V, 
called the set of vertices of g, and a set E of pairs of vertices, called the set of 
edges of g. So we have ( )2E V⊆   with ( )2 V  denotes all the parts of V with 
two elements. We often write ( ),g V E= .  

Definition 2. A subgraph h of a graph ( ),g V E=  is a graph of the form 

( )0 0,h V E= , such that 0V V⊆  and ( )0 2 0E V E=  .  
Definition 3. An over graph g of a graph ( ),h V E=  is a graph of the form 

( )1 1,g V E= , such that 1V V⊆  and ( )2 1E V E=  .  
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In the present work it will be useful to identify a graph with all of its edges, 
that is to say ( )2g V⊆  .  

Definition 4. In a simple graph ( ),g V E= , a chain c is a finite sequence of 
vertices, 0 1, , , mv v v , such that for all 0 i m≤ < , { }1,i iv v E+ ∈ . We write 

[ ]0 1, , , mc v v v= 
.  

Definition 5. A graph ( ),g V E=  is connected if ,v w V∀ ∈ , there is a chain 
from v to w.  

Any graph breaks down uniquely as a disjoint union of connected graphs.  
Definition 6. On the set V of the vertices of the simple graph ( ),g V E= , we 

define the relation of equivalence: ~v w  ⇔  there is a chain v to w in g. Let 

1 2, , , kV V V  the equivalence classes of ~ and let’s say, for 1 i k≤ ≤ , 
ii Vg g= , 

the subgraph of g generated by iV . These simple graphs ig , that we call the 
connected components of g, are related (see Figure 1 with connected compo-
nents are circled).  

Definition 7. A cutpoint (or articulation point) of a connected graph c is a 
vertex of c whose removal yields a disconnected graph.  

Definition 8. A connected graph is called 2-connected if it has no cutpoint 
(see Figure 2).  

In the present paper, we study Graph weights in the context of a non-ideal gas 
in a vessel dV ⊆  . In this case, the Second Mayer weight ( )Mw c  of a con-
nected graph c, over the set [ ] { }1,2, ,n n= 

 of vertices, is defined by (see [1] [4] 
[5] [6])  

( ) ( ) { }
( )1 1 1

,
d d , 0,ndM i j n n

i j c
w c f− −

∈

= − =∏∫ x x x x x


         (1) 

where 1, , nx x  are variables in d  representing the positions of n particles 
in V (V →∞ ), the value 0n =x  being arbitrarily fixed, and where ( )f f r=  
is a real-valued function associated with the pairwise interaction potential of the 
particles, see [6] [7].  

Let [ ]n  be the set of connected graphs over [ ]n . The total sum of weights 
of connected graphs over [ ]n  is denoted by  

[ ]
[ ]

( ).
M

Mw
c n

n w c
∈

= ∑


                    (2) 

The interest of this sequence in statistical mechanics comes from the fact that 
the pressure P of the system is given by its exponential generating function as 
follows (see [6]):  

 

 
Figure 1. A simple graph and its connected components. 
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Figure 2. A 2-connected graph. 
 

( ) [ ]
1

,
!M M

n

w w
n

P zz n
kT n≥

= = ∑                     (3) 

where k is a constant, T is the temperature, and z is a variable called the fugacity 
or the activity of the system.  

It is known that the weight Mw  is multiplicative over 2-connected compo-
nents so that in order to compute the weights ( )Mw c  of the connected graphs 

[ ]c n∈ , it is sufficient to compute the weights ( )Mw b  for 2-connected graphs 

[ ]b n∈  (  for blocks). The Mayer weight appear in the so-called virial ex-
pansion proposed by Kamerlingh Onnes in 1901  

2 3
2 3 ,P

kT
ρ β ρ β ρ= + + +                    (4) 

where ρ  is the density. Indeed, it can be shown that  

[ ]1 ,
! M

n w

n n
n

β −
=                        (5) 

where [ ]n  denote the set of 2-connected graphs over [ ]n  and [ ]
Mw

n  is 
the total sum of weights of 2-connected graphs over [ ].n  In order to compute 
this expansion numerically, Ree and Hoover [8] introduced a modified weight 
denoted by ( )RHw b , for 2-connected graphs ,b  which greatly simplifies the 
computations. It is defined by  

( ) ( ) { }
( )

{ }
( )1 1 1

, ,
d d , 0,ndRH i j i j n n

i j b i j b
w b f f− −

∈ ∉

= − − =∏ ∏∫ x x x x x x x


    (6) 

where ( ) ( )1f r f r= + . Using this new weight, Ree and Hoover [8] [9] [10] and 
later Clisby and McCoy [11] [12] [13] have computed the virial coefficients nβ , 
for n up to 10, in dimensions 8d ≤ , in the case of the hard-core continuum gas, 
that is when the interaction is given by  

( ) ( ) ( ) ( )1 , 1 ,f r r f r rχ χ= − < = ≥                 (7) 

where χ  denote the characteristic function ( ( ) 1Pχ = , if P is true and 0, oth-
erwise). 

The main goal of the present paper is to give new explicit formulas for the 
Mayer and Ree-Hoover weights of certain infinite families of graphs in the con-
text of the hard core continuum gas, defined by (7), in dimension 1d = . The 
values ( )Mw c  and ( )RHw c  for all 2-connected graphs c of size at most 8 are 
given in [1] [14].  
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In Section 2, we look at the case of the hard-core continuum gas in one di-
mension in which the Mayer weight turns out to be a signed volume of a convex 
polytope ( )c  naturally associated with the graph c. A decomposition of the 
polytope ( )c  into a certain number of simplices is utilised. This method was 
introduced in [6] and was adapted in [1] [5] to the context of Ree-Hoover 
weights and is called the method of graph homomorphisms. The explicit com-
putation of Mayer or Ree-Hoover weights of particular graphs is very challeng-
ing in general and have been made for only certain specific families of graphs 
(see [4] [5] [6] [15] [16] [17] [18]). In the present paper we extend this list to in-
clude other graphs. We give new explicit formulas of the Ree-Hoover weight of 
these graphs in Section 3. Section 4 is devoted to the explicit computation of 
their Mayer weight. The following conventions are used in the present paper: 
Each graph g is identified with its set of edges. So that, { },i j g∈  means that 
{ },i j  is an edge in g between vertex i and vertex j. The number of edges in g is 
denoted ( )e g . If e is an edge of g (i.e. e g∈ ), \g e  denotes the graph ob-
tained from g by removing the edge e. If b and d are graphs, b d⊆  means that 
b is a subgraph of d. The complete graph on the vertex set [ ] { }1,2, ,n n= 

 is 
denoted by nK . The complementary graph of a subgraph ng K⊆  is the graph 

\ng K g= .  
An important rewriting of the virial coefficients was performed by Ree and 

Hoover [8] [9] by introducing the function  

( ) ( )1f r f r= +                       (8) 

and defining a new weight (denoted here by ( )RHw b ) for 2-connected graphs b, 
by (9)  

( ) ( ) { }
( )

{ }
( )1 1 1

, ,
d d , 0,ndRH i j i j n n

i j b i j b
w b f f− −

∈ ∉

= − − =∏ ∏∫ x x x x x x x


  (9) 

and then expanding each weight ( )Mw b  by substituting 1 f f= −  for pairs of 
vertices not connected by edges.  

In [1], we gived explicit linear relations expressing the Ree-Hoover weights in 
terms of the Mayer weights and vice versa: For a 2-connected graph b, we have  

( ) ( ) ,
n

RH M
b d K

w b w d
⊆ ⊆

= ∑                   (10) 

( ) ( ) ( ) ( ) ( )1 .
n

e d e b
M RH

b d K
w b w d−

⊆ ⊆

= −∑              (11) 

So that the virial coefficient can be rewritten in the form  

[ ]
( ) ( )1 ,

!n n RH
b n

n a b w b
n

β
∈

−
= ∑


                (12) 

for appropriate coefficients ( )na b  called the star content of the graph b. The 
importance of (1.12) is due to the fact that ( ) 0na b =  or ( ) 0RHw b =  for many 
graphs b. This greatly simplifies the computation of nβ . 

Using the definition of the Ree-Hoover weight, we have  

( ) ( ) , 2.RH n M nw K w K n= ≥                  (13) 
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2. Hard-Core Continuum Gas in One Dimension 

Consider n hard particles of diameter 1 on a line segment. The hard-core con-
straint translates into the interaction potential ϕ , with ( )rϕ = ∞ , if 1r < , and 

( ) 0rϕ = , if 1r ≥ , and the Mayer function f and the Ree-Hoover function f  
are given by (7). Hence, we can write the Mayer weight function ( )Mw c  of a 
connected graph c as  

( ) ( ) ( )

{ }
( )1 1 1

,
1 1 d d , 0,n

e c
M i j n n

i j c
w c x x x x xχ− −

∈

= − − < =∏∫


        (14) 

and the Ree-Hoover’s weight function ( )RHw c  of a 2-connected graph c as  

( ) ( ) ( )

{ }
( )

{ }
( )1 1 1

, ,
1 1 1 d d ,n

e c
RH i j i j n

i j c i j c
w c x x x x x xχ χ− −

∈ ∉

= − − < − >∏ ∏∫


   (15) 

with 0nx =  and where ( )e c  is the number of edges of c. Note that 
( ) ( ) ( ) ( )( )1 Vole c

Mw c c= −  , where ( )c  is the polytope defined by  

( ) { }{ } { }10, 1 , 0 ,n n n
n i jc X x x x i j c −= ∈ = − < ∀ ∈ ⊆ × ⊆    

where ( )1, , nX x x= 
. Similarly, ( ) ( ) ( ) ( )( )1 Vole c

RH RHw c c= −  , where 
( )RH c  is the union of polytopes defined by  

( ) { } { }{ }0, 1 , , 1 , .n
RH n i j i jc X x x x i j c x x i j c= ∈ = − < ∀ ∈ − > ∀ ∈  

Graph Homomorphisms 

The method of graph homomorphisms was introduced in [6] for the calculation 
of the Mayer weight ( )Mw b  of a 2-connected graph b in the context of 
hard-core continuum gases in one dimension and was fited in [5] to the context 
of Ree-Hoover weights. Since ( ) ( ) ( ) ( )( )1 Vole b

Mw b b= −  , the calculation of 
( )Mw b  is reduced to the calculation of the volume of the polytope ( )b  asso-

ciated to b. In order to compute this volume, the polytope ( )b  is decom-
posed into ( )bν  simplices which are all of volume ( )1 1 !n −  and we will have 

( )( ) ( ) ( )Vol 1 !b b nν= − . Each simplice is represented by a diagram associated 
to the integral parts and the relative positions of the fractional parts of the coor-
dinates 1, , nx x  of points ( )X b∈ .  

More specifically, to each real number x, they associate his fractional repre-
sentation, which is a pair ( ),x xhξ , where xh x=     is the integral part of x and 

x xx hξ = −  is the (positive) fractional part of x, so that x xx hξ= + . Then, for 
x y≠ , the condition 1x y− <  translates into “assuming x yξ ξ< , then 

x yh h=  or 1x yh h= + ”. It mean that the slope of the line segment between the 
points ( ),x xhξ  and ( ),y yhξ  in the plane should be either null or negative. Let 
b a 2-connected graph with vertex set [ ]n , and let ( )1, , nX x x= 

 be a point in 
the polytope ( )b . Let’s write ( ),i ihξ  for the fractional representation of the 
coordinate ix  of X. For 0nx = , it will be convenient to use the special repre-
sentation 1.0nξ =  and 1nh = − . Remarque that the volume of ( )b  is un-
changed by removing all hyperplanes { }i jx x k− = , for k ∈ . in consequence, 
we can assume that all the fractional parts iξ  are distinct. We get a subpolytope 
of ( )b  by fixing the “heights” 1 2, , , nh h h  as well as the relative positions 
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(total order) of the fractional parts 1 2, , , nξ ξ ξ . Let :h V →   denote the 
height function ii h  and [ ]:V nβ →  be the permutation of [ ]n  for which 
( )iβ  gives the rank of iξ  in this total order with ( )n nβ = . Explicitly, each 

simplex ( ),h β  can be written as  

( ) ( ) ( ) ( ){ }1 11 1 1 1 1 1
, , , ,0 0 1n n n

h h h
β β

β ξ ξ ξ ξ− −− − −
= + + < < < <     (16) 

and it is shown in [1] that each such simplex is affine-equivalent to the standard 
simplex  

( ) ( ){ }1 2 1 1 2 10, id , , , ,0 0 1n nξ ξ ξ ξ ξ ξ− −= < < < < <   

of volume ( )1 1 !n − . 
Note that the simplices (16) are disjoint and each such simplex can be charac-

terized by its centre of gravity  

( ) ( ) ( )
, 1 2 1

1 2 1
, , , ,0 .h n

n
X h h h

n n nβ

β β β
−

− 
= + + + 
 

  

Note also that when there are no restrictions on h and β , the union of the 
closed simplices ( ),h β  coincides with the whole configurations space 

{ }1 0n− × . 
Using the fractional coordinates to represent the center of gravity ,hX β  of 

the simplex ( ),h β , and drawing a line segment form ( ),i i ix h ξ=  and 
( ),j j jx h ξ=  for each edge { },i j  of the graph b, we get a configuration in the 

plane which is an homomorphic image of b which represents the subpolytope 
( ),h β . The above content is summarized in to the form of a proposition:  
Proposition 1. ([6]). Let b be a 2-connected graph with vertex set [ ]V n=  

and consider a function :h V →   and a bijection [ ]:V nβ →  satisfying 
( )n nβ = . Then the simplex ( ),h β  corresponding to the pair ( ),h β  is 

contained in the polytope ( )β  if and only if the following condition is satis-
fied:  

for any edge { },i j  of b, ( ) ( )i jβ β<  implies i jh h=  or 1i jh h= + .  (17) 

Corollary 1. ([6]). Let b be a 2-connected graph and let ( )bν  be the number 
of pairs ( ),h β  such that the condition (17) is satisfied. Then the volume of the 
polytope ( )b  is given by  

( )( ) ( ) ( )Vol 1 !.b b nν= −                    (18) 

Proposition 1 can be used to compute the weight of some families of graphs, 
since ( ) ( ) ( ) ( )( )1 Vole b

Mw b b= −  .  
In a similar way we can adapt the above configurations to the context of the 

Ree-Hoover weight.  
Proposition 2. ([5]). Let b be a 2-connected graph with vertex set [ ]V n=  

and consider a function :h V →   and a bijection [ ]:V nβ →  satisfying 

( )n nβ = . Then the simplex ( ),h β  corresponding to the pair ( ),h β  is 
contained in the polytope ( )RH b  if and only if the following conditions are 
satisfied:  
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for any edge { },i j  of b, ( ) ( )i jβ β<  implies i jh h=  or 1i jh h= + .  (19) 

for any edge { },i j  of b , ( ) ( )i jβ β<  implies 1i jh h≤ −  or 2i jh h≥ + . (20) 

Proposition 3. ([5]). Let b be a 2-connected graph and let ( )RH bν  be the 
number of pairs ( ),h β  such that conditions (19) and (20) are satisfied. Then 
the volume of ( )RH b  is given by  

( )( ) ( ) ( )Vol 1 !.RH RHb b nν= −                 (21) 

3. Ree-Hoover Weight of New Families of Graphs 

In this section, we give other explicit formulas for the Ree-Hoover weight for in-
finite families of 2-connected graphs. First, we use Ehrhart polynomials to con-
jectured these formulas from numerical values. We use the techniques of graph 
homorphisms in order to prove these formulas. The weights of 2-connected 
graphs b are given in absolute value ( )w b , the sign being always equal to 
( ) ( )1 e b− .  

Lemma 1. ([5]). Suppose that g is a graph over [ ]n  and [ ], 1i j n∈ −  are 
such that g does not contain the edge { },n i  but contains the edges { },i j  and 
{ },n j . In this case, any RH-configuration ( ),h β  (with 1nh = − , ( )n nβ = ) 
satisfies either one of the following conditions:  

1) 1ih = , 0jh =  and ( ) ( )i jβ β< ,  
2) 2ih = − , 1jh = −  and ( ) ( )i jβ β> .  

3.1. The Ree-Hoover Weight of the Graph ( )( )nK C S S4 2 1\ ⋅ ⋅ ⋅  

Let ( )4 2 kC S S⋅ ⋅ ⋅  denote the graph obtained by identifying one vertex, with de-
gree three, of the graph ( )4 2C S⋅ ⋅  with a center of a k-star. See Figure 3 for an 
example.  

Let us start with the simple case ( )4 2 1C S S⋅ ⋅ ⋅ .  
Proposition 4. For 7n ≥ , we have  

( )( )( ) ( )( )( )( )( )4 2 1
12\

1 2 3 4 5RH nw K C S S
n n n n n

⋅ ⋅ ⋅ = ⋅
− − − − −

    (22) 

Proof. We can assume that the missing edges are { }1,n , { }2,n , { }4,n , 

{ },5n , { }1,3 , { }3,4  and { }2,3  (see Figure 4).  
According to Lemma 1 there are two possibilities for h:  

• 1 2 4 5 1h h h h= = = =  and 1nh = −  and all other 0ih = , so that ( )5 1β =  
and ( )3 2β =  and ( ) ( ) ( )( )1 , 2 , 4β β β  must be a permutation of  

{ }3,4,5 .  
• 1 2 4 5 2h h h h= = = = −  and all other 1ih = − , so that ( )5 1nβ = −  and 

( )3 2nβ = −  and ( ) ( ) ( )( )1 , 2 , 4β β β  must be a permutation of  

{ }3, 4, 5n n n− − − .  
In each case β  can be extended in ( )6 !n −  ways, giving the possible rela-

tive positions of the ( )6n −  ix  (see Figure 5). So, there are ( )2 3! 6 !n⋅ −  
RH-configurations ( ),h β .  
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Figure 3. The graph ( )4 2 4C S S⋅ ⋅ ⋅ . 

 

 

Figure 4. The graph ( )4 2 1C S S⋅ ⋅ ⋅ . 

 

 

Figure 5. Fractional representation of a simplicial subpolytope of  

( )( )( )4 2 1\RH nK C S S⋅ ⋅ ⋅ . 

3.2. The Ree-Hoover Weight of the Graph ( )( )n kK C S S4 2\ ⋅ ⋅ ⋅  

In the general case we have:  
Proposition 5. For 1k ≥ , 6n k≥ + , we have  

( )( )( ) ( )( ) ( )4 2
12 !\ .

1 2 4RH n k
kw K C S S

n n n k
⋅ ⋅ ⋅ =

− − − −

        (23) 

Proof. We can assume that the missing edges are { }1,n , { }2,n , { }4,n , 
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{ }3,4 , { }2,3 , { }1,3  and { }5,n , { }6,n ,  , { }4,k n+  (see Figure 6, for 
the case of ( )4 2 2C S S⋅ ⋅ ⋅ ).  

According to Lemma 1 there are two possibilities for h:  
• 1 2 4 5 4 1kh h h h h += = = = = =  and 1nh = −  and all other 0ih = , so that 

( ) ( ) ( ) ( )( )5 , 6 , 7 , , 4kβ β β β +  must be a permutation of { }1,2,3, ,k
 

and ( )3 1kβ = +  and ( ) ( ) ( )( )1 , 2 , 4β β β  must be a permutation of  

{ }2, 3, 4k k k+ + + .  
• 1 2 4 5 4 2kh h h h h += = = = = = −  and all other 1ih = − , so that  

( ) ( ) ( ) ( )( )5 , 6 , 7 , , 4kβ β β β +  must be a permutation of  

{ }1, 2, 3, ,n n n n k− − − −
 and ( )3 1n kβ = − −  and ( ) ( ) ( )( )1 , 2 , 4β β β  

must be a permutation of { }2, 3, 4n k n k n k− − − − − − . 
In each case β  can be extended in ( )5 !n k− −  ways, giving the possible 

relative positions of the ( )5n k− −  ix  (see Figure 7, for the case of  

2 4 2S C S⋅ ⋅ ⋅ ). So, there are ( )2 3! ! 5 !k n k⋅ − −  RH-configurations ( ),h β .  
We need to use Propositions (6)-(10) to prove Mayer’s weight formulas that 

will be presented in section 4.  
Proposition 6. ([5]). For 6n ≥ , we have  

( ) ( )( )( )4
8\ ,

1 2 3RH nw K C
n n n

=
− − −

              (24) 

where 4C  is the unoriented cycle with 4 vertices.  
Proposition 7. ([5]). For 1k ≥ , 3n k≥ + , we have  

( ) ( )( ) ( )
2 !\ ,

1 2RH n k
kw K S

n n n k
=

− − −

             (25) 

where kS  denote the k-star graph with vertex set [ ]1k +  and edge set 
{ } { } { }{ }1,2 , 1,3 , , 1, 1k + , (see Figure 8, for the case of 3S ).  

Proposition 8. ([5]). For 1j k≥ ≥ , 3n k j≥ + + , we have  

( )( ) ( )( ) ( )( )
2 ! !\ ,

1 2 1RH n j k
k jw K S S

n n n k j
− =

− − − + +

      (26) 

where j kS S−  denote the graph obtained by joining with a new edge the cen-
ters of a j-star and of a k-star. See Figure 9 for an example.  

Proposition 9. ([5]). For 1k ≥ , 5n k≥ + , we have  

( )( ) ( )( ) ( )( )4
4 !\ ,

1 2 3RH n k
kw K C S

n n n k
⋅ =

− − − +

        (27) 

where 4 kC S⋅  denote the graph obtained by identifying one vertex of the graph 

4C  with the center of a k-star. See Figure 10 for an example.  
Proposition 10. ([18]). For 7n ≥ , we have  

( )( ) ( )( )( )( )4 2
24\ ,

1 2 3 4RH nw K C S
n n n n

⋅ ⋅ =
− − − −

         (28) 

where ( )4 2C S⋅ ⋅  denote the graph obtained by identifying two non adjacent 
vertices of the graph 4C  (the unoriented cycle with 4 vertices) with the extrem-
ities of a 2-star (see Figure 11).  
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Figure 6. The graph ( )4 2 2C S S⋅ ⋅ ⋅ . 

 

 

Figure 7. Fractional representation of a simplicial subpolytope of  

( )( )( )4 2 2\RH nK C S S⋅ ⋅ ⋅ . 

 

 

Figure 8. The graph S3. 
 

 

Figure 9. The graph 3 4S S− . 
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Figure 10. The graph 4 4C S⋅ . 
 

 

Figure 11. The graph 4 2C S⋅ ⋅ . 

4. Mayer Weight of New Families of Graphs 

Here are some of our results concerning new explicit formulas for the Mayer 
weight of the previous infinite families of graphs. In this case, the computation 
of the Mayer weight is more difficult. Instead of using the method of graph ho-
momorphisms, we use the following formula  

( ) ( )
n

M RH
b d K

w b w d
⊆ ⊆

= ∑                      (29) 

which is a consequence of (1.11) in the case of hard-core continuum gases in one 
dimension. Substituting \nK g  and \nK k  for b and d in (29), we have  

( ) ( )


( ) ( )\ \ , \ ,M n RH n RH n
k g h g

w K g w K k m h g w K h
⊆ ⊆

= =∑ ∑


       (30) 

where g  denotes the unlabelled graph corresponding to g, h  runs through 
the unlabelled subgraphs of g  and ( ),m h g  is the number of ways of obtain-
ing h  by removing some edges in h . We obtain these multiplicities ( ),m h g  
by combinatorial arguments.  

4.1. The Mayer Weight of the Graph ( )( )nK C S S4 2 1\ ⋅ ⋅ ⋅  

Proposition 11. For 7n ≥ , we have  

( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

4 2 1
14 48 114\

1 1 2 1 3
156 72

1 4 1 5

M nw K C S S n
n n n n n

n n n n

⋅ ⋅ ⋅ = + + +
− − − − −

+ + ⋅
− − − −



 

    (31) 
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Proof. The over graphs of ( )4 2 1\nK C S S⋅ ⋅ ⋅  whose Ree-Hoover weight is not 
zero are up to isomorphism of the form: 4\nK C , 4\n lK C S⋅ , 1 2l≤ ≤ , 

4 2\nK C S⋅ ⋅ , ( )4 2 1\nK C S S⋅ ⋅ ⋅ , \n lK S , 1 4l≤ ≤ , ( )1\n lK S S− , 1 3l≤ ≤ , and 

nK . Their multiplicities are given by  

( )( )
( ) ( ) ( ) ( )
( ) ( ) ( )( )

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )( )

4 2 1

1 2 3

4 4 1 1

1 2 1 3 4 2

4 1 4 2 4 2 1

\

7 \ 12 \ 5 \

\ 3 \ 15 \

12 \ 3 \ \

9 \ 3 \ \ .

M n

RH n RH n RH n RH n

RH n RH n RH n

RH n RH n RH n

RH n RH n RH n

w K C S S

w K w K S w K S w K S

w K S w K C w K S S

w K S S w K S S w K C S

w K C S w K C S w K C S S

⋅ ⋅ ⋅

= + + +

+ + + −

+ − + − + ⋅⋅

+ ⋅ + ⋅ + ⋅⋅ ⋅

 

We conclude using Propositions (5) and (6)-(10).  

4.2. The Mayer Weight of the Graph ( )( )n kK C S S4 2\ ⋅ ⋅ ⋅  

Proposition 12. For 1k ≥ , 6n k≥ + , ( )( )4 2\n n kg K C S S= ⋅⋅ ⋅ , we have, with 

the usual convention 
1

0
k + 

= 
 

 if 1k> + ,  

( ) ( ) ( )( )( )( )

( )( ) ( )( )( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

3

1

2

1

1

6 60
1 1 2 3 4
24 60

1 2 1 2 3

3 12 ! 12 !
1 1 3

6 !2
2 1 1 2

12 !
1 4

M n

k

l

k

l

k

l

w g n
n n n n n

n n n n n

k kl l
l ln n l n n l

k k k l
l l l n n l

k l
l n n l

+

=

+

=

=

= + +
− − − − −

+ +
− − − − −

 + +   
+ +    − − − − −     

       
+ + +        − − − − −         

 
+   − − − 

∑

∑

∑

 






⋅ 

  

 

Proof. The over graphs of ( )( )4 2\n kK C S S⋅ ⋅ ⋅  whose Ree-Hoover weight is 
not zero are up to isomorphism of the form: \n lK S , 1 3l k≤ ≤ + , 

( )4\n lK C S⋅ , 1 1l k≤ ≤ + , ( )1\n lK S S− , 1 2l k≤ ≤ + , 4\nK C , 

( )4 2\nK C S⋅ ⋅ , ( )( )4 2\n lK C S S⋅ ⋅ ⋅ , 1 l k≤ ≤  and nK . Their multiplicities are 
given by  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )( )

( ) ( )( )

1 2 3

4 1 1 1 2

4 2 4 1

1

4 4 2
1

2

1

3 \ 6 \ \

3 \ 12 \ 6 \

\ 3 \

1
3 \ \

3 2
1 2

M n RH n RH n RH n RH n

RH n RH n RH n

RH n M n

k

RH n l RH n l
l

k

l

w g w K w K S w K S w K S

w K C w K S S w K S S

w K C S w K C S

k k
w K C S w K C S S

l l

k k k
l l l

+

=

+

=

= + + +

+ + − + −

+ ⋅⋅ + ⋅

+     
+ ⋅ + ⋅⋅ ⋅    

    

     
+ + +    − −     

∑

∑ ( )1\RH n lw K S S
 

− 
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( )
3

1

3
\ .

k

RH n l
l

k
w K S

l

+

=

+ 
+  

 
∑  

We conclude using Propositions (5) and (6)-(10).  

5. Conclusion 

The links between statistical mechanics and combinatorics are more and more 
numerous as we have seen in this work. In this paper, after recalling the Mayer 
and Ree-Hoover theory, we presented in Section 2 the method of graph homo-
morphisms and we have mainly placed ourselves in the context of hard-core 
continuum gas in one dimension. From various tables that we constructed giv-
ing numerical values of Mayer and Ree-Hoover weights of all 2-connected 
graphs up to size 8, we conjectured explicit formulas for Mayer and Ree-Hoover 
weights of the family ( )( )( )4 2 1\nK C S S⋅ ⋅ ⋅ , 7n ≥ , and more generally for the 
family ( )( )( )4 2\n kK C S S⋅ ⋅ ⋅ , 1k ≥ , 6n k≥ + . These formulas have been 
proved in Section 3 by the method of graph homomorphisms for the 
Ree-Hoover weight and by the linear relations between the two weights for 
Mayer’s weight in Section 4. A similar work was done by the author, see [18], for 
families of graphs ( )( )4 2\nK C S⋅ ⋅ , 7n ≥  and ( )( )1 4 2\nK S C S⋅ ⋅ ⋅ , 7n ≥ , and 
more generally for families ( )( )4 2\n kK S C S⋅ ⋅ ⋅ , 1k ≥ , 6n k≥ + . These devel-
opments pave the way for several future research prospects. For example, the 
extension of the exact calculation of Mayer’s weight and Ree-Hoover’s weight for 
families of graphs ( )( )( )1 4 2 1\nK S C S S⋅ ⋅ ⋅ ⋅ , 8n ≥  and  

( )( )( )1 4 2 2\nK S C S S⋅ ⋅ ⋅ ⋅ , 9n ≥  and ( )( )( )2 4 2 1\nK S C S S⋅ ⋅ ⋅ ⋅ , 9n ≥  and 
more generally for families ( )( )( )1 4 2\n kK S C S S⋅ ⋅ ⋅ ⋅ , 1k ≥ , 6n k≥ +  and 

( )( )( )4 2 1\n kK S C S S⋅ ⋅ ⋅ ⋅ , 1k ≥ , 6n k≥ + , with ( )( )4 2j kS C S S⋅ ⋅ ⋅ ⋅  denote the 
graph obtained by joining with an edge of the graph 4 2C S⋅ ⋅  the centers of a 
j-star and k-star. 
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Abstract 
In this paper, we study the quasi-coordinated search technique for a lost tar-
get assumed to move randomly on one of two disjoint lines according to a 
random walk motion, where there are two searchers beginning their search 
from the origin on the first line and other two searchers begin their search 
from the origin on the second line. But the motion of the two searchers on 
the first line is independent from the motion of the other two searchers on 
the second line. Here we introduce a model of search plan and investigate the 
expected value of the first meeting time between one of the searchers and the 
lost target. Also, we prove the existence of a search plan which minimizes the 
expected value of the first meeting time between one of the searchers and the 
target. 
 

Keywords 
Random Walker, Linear Search, Expected Value, Optimal Search Plane,  
Stochastic Process 

 

1. Introduction 

The searching for a lost target either located or moved is often a time-critical is-
sue, that is, when the target is very important. The primary objective is to find 
and search for the lost target as soon as possible. The searching for lost targets 
has recently applications such as the search for a goldmine underground, the 
search for Landmines and navy mines, the search for the cancer cells in the hu-
man body, the search for missing black box of a plane crash in the depth of the 
sea of ocean, the search for a damaged unit in a large linear system such as tele-
phone lines, and mining system, and so on [1] [2] [3]. Search problem when the 
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lost target is located or moved on the real line has been considered in [4]-[9]. 
The coordinated search technique discussed on the real line when the located 
target has symmetric or unsymmetric distribution as in [10] [11] [12]. Also, the 
coordinated search for a located target in the plane has been examined in [13] 
[14] [15] [16]. Recently, [17] and [18] proposed and studied a modern search 
model in the three-dimensional space to find a 3-D randomly located target by 
one searcher, two searchers and four searchers. 

2. Problem Formulations 

One of the most complicate problems when a mother loses her son in a way of 
multiple ways, here the primary objective is finding the lost son, as soon as 
possible in a minimum time. The survival rate of the son in this region gradually 
decreases, so the search team must organize itself quickly to begin the mission of 
the searching for the lost son immediately. Also, when the target is serious as a 
car, which filled by explosives, and it moves on one road from disjoint roads, 
and then the search effort must be unrestricted and we can use more than 
searcher to detect the target at right time. 

The search team which consists of 4 searchers will organize itself on 2 straight 
lines to find the lost target as soon as possible. We clarify a modern technique by 
collaboration between each two searchers to find the lost person in minimum 
time. This problem can be characterized as follows. 

2.1. The Searching Framework 

The space of search: 2 disjoint lines. 
The target: The target moves with a random walk motion on one of 2 disjoint 

straight lines. 
The means of search: Looking for the lost target performed by two searches 

on each line. The searchers start searching for the target from the origins of the 
two lines with continuous paths and with equal speeds. In addition, the search 
spaces (2 straight lines) are separated into many distances. 

2.2. The Searching Technique  

Assume that we have two searchers S1 and S2 that start together looking for the 
lost target from O1 on L1. The two searchers coordinate their search about the 
lost target, where the searcher S1 searches to the right and goes from the O1 to H1, 
and the searcher S2 searches to the left and goes from O1 to −H1, the two search-
ers S1 and S2 reach to H1 and −H1 in the same time of G1. Then they come back 
to O1 again in the same time of G2. If one of the two searchers do not find the 
lost target, then the two searchers S1 and S2 begin the new cycle search for the 
lost target, where they go from O1 to H2 and −H2, respectively and they will 
reach to H2 and −H2 in the same time of G3. Then they come back to O1 again in 
the same time of G4 and so on. Also, we have two other searchers S3 and S4 start 
together looking for the lost target from O2 on the second line L2, the searcher S3 
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searchers to the right and goes from O2 to 1H , and the searchers S4 searches to 
the left and goes to the left and goes from O2 to 1H− , the two searchers S3 and 
S4 reach to 1H  and 1H−  in the same time of 1G . Then they come back to O2 
again in the same time of 2G . If one of the two searchers not find the lost target, 
then the two searchers S3 and S4 begin the new cycle search for the lost target, 
where they go from O2 to 2H  and 2H− , respectively and they will reach to 

2H  and 2H−  in the same time of 3G , then they come back to O2 again in the 
same time of 4G , and so on. The four searchers return to the O1 and O2 after 
searching successively common distances until the target is found. 

2.3. The Movement of the Target and the Searchers 

A target is assumed to move randomly on one of two disjoint lines according to 
a stochastic process ( ){ } { }, , 0,1, 2,S t t I I+ +∈ =  . Assume that { } 0i i

Z
≥

 is a 
sequence of independent identically distributed random variables such as for any 

1i ≥ : ( )1ip Z p= =  and ( )1 1ip Z p q= − = − = , where , 0p q > . For 0t > , 
t I +∈ , 

( ) ( )
1

, 0 0
t

i
i

S t Z S
=

= =∑ . 

We assume the searchers S1 and S2 begin their search path from O1 on L1 with 
speeds V1, and the searchers S3 and S4 begin their search path from O2 on L2 with 
speeds V2, following the search paths which are functions 1 : R Rφ + →  and 

1 : R Rφ + →  on L1 and 2 : R Rφ + →  and 2 : R Rφ + →  on L2, respectively, 
such that: 

( ) ( ) ( ) ( )1 1 1 2 1 1 1 2 1 1 2t t t t V t tφ φ φ φ− = − ≤ − ,              (1) 

and 

( ) ( ) ( ) ( )2 1 2 2 2 1 2 2 2 1 2 1 2, ,t t t t V t t t t Iφ φ φ φ +− = − ≤ − ∀ ∈ ,         (2) 

where V1 and V2 are constants in R+  and ( ) ( ) ( ) ( )1 1 2 20 0 0 0 0φ φ φ φ= = = = . 
Let the set of all search paths of the two searchers S1 and S2, which satisfy condi-
tion (1), be respectively by 

1v
Φ  and 

1v
Φ  respectively and the set of all search 

paths of the searchers S3 and S4 which satisfy condition (2), be represented by 

2vΦ  and 
2vΦ , respectively. we represented to the path of S1 and S2 by 

( )0 1 1 0,φ φ φ= ∈Φ  where ( )0 2 2 0,φ φ φ= ∈Φ , where  

( ){ }2 20 2 2 2 2, : ,v vφ φ φ φΦ = ∈Φ ∈Φ . 

The search plan of the four searchers be represented by ( )0 0
ˆ ˆ,φ φ φ= ∈Φ , 

where ( ){ }0 0 0 0 0 0
ˆ , : ,φ φ φ φΦ = ∈Φ ∈Φ  is the set of all search plan. 

We assume that 0Z X=  if the target moves on L1 and 0Z Y=  if the target 
moves on L2 such that ( ) ( )0 0 1P Z X P Z Y= + = = . There is a known probabili-
ty measure 1 2 1v v+ =  on 1 2L L  which describes the location of the target, 
where v1 is probability measure induced by the position of the target on L1, while 
v2 on L2. The first meeting time valued in I +  defined as 
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( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )}

ˆ 1 1

2 2

inf : or

or or ,

t t X S t t X S t

t Y S t t Y S t
φ
τ φ φ

φ φ

= = + = +

= + = +
 

where Z0 is a random variable representing the initial position of the target and 
valued in 2I  (or 2 1I + ) and independent of ( ) , 0S t t > . 

At the beginning of the search suppose that the lost target is existing on any 
integer point on L1 but more than H1 or less than 1H−  or the lost target is ex-
isting on an integer point on L2 but more than 1H  or less than 1H− . Let 

1φ
τ  

be the first meeting time between S1 and the target and 
1̂φ

τ  be the first meeting 
time between S2 and the target and 

2φ
τ  be the first meeting time between S3 and 

the target and 
2̂φ

τ  be the first meeting time between S4 and the target. The main 
objective is to find the search plan ( )0 0

ˆ ˆ,φ φ φ= ∈Φ  such that ( )ˆE
φ
τ < ∞ . In 

this case φ̂  is said to be a finite search plan, and if ( ) ( )*
ˆ ˆ

ˆ ˆ,E E
φ φ
τ τ φ< ∀ ∈Φ , 

where E terms to expectation value, then we call *φ̂  is an optimal search plan.  

Given 0n > , if z is: 10
2

n zk n+
≤ ≤ ≤ , where 1k  is integer, then  

( )( )
1 1

11

10, if does not exist

k n kn
p q

kp S n k
k

− 
 = =  



 

2.4. Finite Search Plan 

Let 1 2 1 2, , ,λ λ ζ ζ  be positive integers such that 1 2, 1ζ ζ > , 1 1kλ θ= , 2 2kλ θ= , 
where 1,2,k =   and 1 2,θ θ  are the least positive integers and 1 2 1V V= = . 

We shall define the sequences { } { }0 0
,i ii i

G H
≥ ≥

 for the searcher S1 on the first 
line L1 and { } { } 00

,i i ii
G H

≥≥
 for the searcher S3 on the second line L2 and the 

search plans with speeds 1 as follows: 
( ) ( )11 1 11 1 1

2 2 4 4
1 1 2 12 1 , , 1

i ii

i i iG H G iλ ζ
− − − + − −  

−

 
= − = ≥  

 
 on L1, 

( ) ( )11 1 11 1 1
2 2 4 4

2 2 2 12 1 , , 1
i ii

i i iG H G iλ ζ
− − − + − −  

−

 
= − = ≥  

 
 on L2. 

We shall define the search path as follows: 
for any t I +∈ , if 1i iG t G +≤ < , then 

( ) ( ) ( ) ( )1
1 1 1

2 2

1 11 1
2 2

i i
i i it H H t Gφ +
+ +

   
= + − + − −      
   

, 

and  

( ) ( )1 1t tφ φ= − . 

Also, if 1i iG t G +≤ < , then  

( ) ( ) ( ) ( )1
2 1 1

2 2

1 11 1
2 2

i i
i i it H H t Gφ +
+ +

   
= + − + − −      
   

, 

and  

( ) ( )2 2t tφ φ= − . 
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We define the notion 
( ) ( ) ( ) ( )1 1,t S t t t S t tϕ ϕ= − = +  on L1, 
( ) ( ) ( ) ( )2 2,t S t t t S t tϕ ϕ= − = +  on L2, 

the searchers S1 and S2 return to the origin of L1 after searching successively 
common distances 1 2 3, , ,H H H  , and 1 2 3, , ,H H H− − −  , respectively and the 
searchers S3 and S4 return to the origin of L2 after searching successively com-
mon distances 1 2 3, , ,H H H  , and 1 2 3, , ,H H H− − −  , respectively until the 
target is found. 

Theorem 1: If ( )0 0
ˆ ˆ,φ φ φ= ∈Φ  is a search plan defined above, then the ex-

pectation ( )ˆE
φ
τ  if finite if 

( ) ( ) ( )( )1 1 1 2 1
1

1i
i

i
w x p G xζ ϕ

∞

−
=

= − < −∑  , 

( ) ( ) ( )( )2 1 1 2 1
1

1i
i

i
w x p G xζ ϕ

∞

−
=

= − > −∑ , 

( ) ( )( ) ( )( )3 1 1 1 2
1

2 1i i
i

i
w x p G xζ ζ ϕ

∞

=

= − + < −∑  , 

( ) ( )( ) ( )( )4 1 1 1 2
1

2 1i i
i

i
w y p G xζ ζ ϕ

∞

=

= − + > −∑ , 

( ) ( ) ( )( )5 2 2 2 1
1

1i
i

i
w y p G yζ ϕ

∞

−
=

= − < −∑  , 

( ) ( ) ( )( )6 2 2 2 1
1

1i
i

i
w y p G yζ ϕ

∞

−
=

= − > −∑  , 

( ) ( )( ) ( )( )7 2 2 2 2
1

2 1i i
i

i
w y p G yζ ζ ϕ

∞

=

= − + < −∑ 

 , 

and 

( ) ( )( ) ( )( )8 2 2 2 2
1

2 1i i
i

i
w y p G yζ ζ ϕ

∞

=

= − + > −∑  .            (3) 

are finite. 
Proof: Assume that X and Y are independent of ( ) , 0S t t > , if 0X > , then 

( ) ( )1X S t tφ+ >  until the first meeting between S1 and the target on L1, also if 
0X < , then ( ) ( )1̂X S t tφ+ <  until the first meeting between S2 and the target 

on L2. We can apply this assumption on the second line by replacing X by Y and 

1 1,φ φ  by 2 2,φ φ  respectively. Hence, for any 0i ≥  

( ) ( )0 0ˆ ˆorp t p t tφφ φ
τ τ τ> = > > , 

hence 

( ) ( )

( ) ( )
( ) ( )

1 1

0 0

2 1

ˆ ˆ
0

ˆ
0

1 1 1 11 1 1
2 2 4 4

1 1
0

d

d d

2 1

i i

i i

i i

G G

i i
i G G

i

i

E p t t

p G t p G t

φ φ

φ φ

τ τ

τ τ

λ ζ

+ +

+ +

∞

∞

=

+∞  − − + − −  

=

= >

 
≤ > + > 

  
  

= −    
  

∫

∑ ∫ ∫

∑
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( ) ( ) ( )
( ) ( )

1

0

2 1

1 1 11 1 1
2 2 4 4

ˆ1 1

1 1 1 11 1 1
2 2 4 4

2 2

2 1

2 1

i i

i i

i

i

i

p G
φ

λ ζ τ

λ ζ

+

+ +

 − − + − −  

+ − − + − −  

 
− − >   
  

+ −    
  

 

( ) ( ) ( )
( )( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )
( )( ) ( )

1

0

0 0

0 0

0 0

0

1 1 11 1 1
2 2 4 4

ˆ2 2

1 1 1 1

2
1 1 2 1 3

2 3
1 1 4 1 5

3
1 1 6

2 1

2 1 0 1

2 1 1

2 1 1

2 1

i ii

ip G

p p G

p G p G

p G p G

p G

φ

φ φ

φ φ

φ φ

φ

λ ζ τ

λ ζ τ ζ τ

ζ ζ τ ζ τ

ζ ζ τ ζ τ

ζ ζ τ

+ − − + − −  
 

− − >   
= − + > + − >

+ − + > + − >

+ − + > + − >

+ − + > + 





 

( )( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )
( )( ) ( )

0 0

0 0

0 0

0

2 2 2 1

2
2 2 2 2 3

2 3
2 2 4 2 5

3
2 2 6

2 1 0 1

2 1 1

2 1 1

2 1

p p G

p G p G

p G p G

p G

φ φ

φ φ

φ φ

φ

λ ζ τ ζ τ

ζ ζ τ ζ τ

ζ ζ τ ζ τ

ζ ζ τ

+ − + > + − >

+ − + > + − >

+ − + > + − >

+ − + > + 

     (4) 

to solve Equation (4) we shall find the value of ( )0 2 1ip Gφτ −> , ( )0 2 1ip Gφτ −> , 

( )0 2ip Gφτ >  and the value of ( )0 2ip Gφτ >  as the following 

( ) ( )( ) ( )

( )( ) ( )

0

0

2 1 2 1 1

2 1 1
0

/ d

/ d

i i i

i i

p G p x S G H X x v x

p x S G H X x v x

φτ − −
−∞

∞

−

> ≤ + < − =

+ + > =

∫

∫
 

We get 

( ) ( )( ) ( )

( )( ) ( )

0

0

2 1 1 2 1 1

1 2 1 1
0

d

d

i i

i

p G p G x v x

p G x v x

φτ ϕ

ϕ

− −
−∞

∞

−

> ≤ < −

+ > −

∫

∫



            (5) 

also,  

( ) ( )( ) ( )

( )( ) ( )

0

0

2 1 2 2 1 2

2 2 1 2
0

d

d

i i

i

p G p G y v y

p G y v y

φτ ϕ

ϕ

− −
−∞

∞

−

> ≤ < −

+ > −

∫

∫



            (6) 

( ) ( )( ) ( )

( )( ) ( )

0

0

2 2 1

2 1
0

2 d

2 d

i i i

i i

p G p X S G H v x

p x S G H v x

φτ
−∞

∞

> ≤ + < −

+ + >

∫

∫
           (7) 

We get 

( ) ( )( ) ( ) ( )( ) ( )
0

0

2 1 2 1 1 2 1
0

d di i ip G p G x v x p G x v xφτ ϕ ϕ
∞

−∞

> ≤ < − + > −∫ ∫   (8) 
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( ) ( )( ) ( ) ( )( ) ( )
0

0

2 1 2 2 1 2 2
0

d di i ip G p G y v y p G y v yφτ ϕ ϕ
∞

−∞

> ≤ < − + > −∫ ∫    (9) 

substituting by (5), (6), (7) and (8) in (4) we can get 

( ) ( )( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )
( )( ) ( )

0 0

0 0

0 0

0

ˆ 1 1 1 1

2
1 1 2 1 3

2 3
1 1 4 1 5

3
1 1 6

2 1 0 1

2 1 1

2 1 1

2 1

E p p G

p G p G

p G p G

p G

φ φφ

φ φ

φ φ

φ

τ λ ζ τ ζ τ

ζ ζ τ ζ τ

ζ ζ τ ζ τ

ζ ζ τ

≤ − + > + − >

+ − + > + − >

+ − + > + − >

+ − + > + 

 

( )( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )
( )( ) ( )

0 0

0 0

0 0

0

2 2 2 1

2
2 2 2 2 3

2 3
2 2 4 2 5

3
2 2 6

2 1 0 1

2 1 1

2 1 1

2 1

p p G

p G p G

p G p G

p G

φ φ

φ φ

φ φ

φ

λ ζ τ ζ τ

ζ ζ τ ζ τ

ζ ζ τ ζ τ

ζ ζ τ

+ − + > + − >

+ − + > + − >

+ − + > + − >

+ − + > + 

 

hence  

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

0

0

ˆ 1 1 1 1

0

2 1 3 2 4 2
0 0

0

2 2 5 2

0

6 2 7 2 8 2
0 0

2 1 0 d

d d d

2 1 0 d

d d d

E p w x v x

w x v x w y v y w y v y

p w y v y

w y v y w y v y w y v y

φφ

φ

τ λ ζ τ

λ ζ τ

−∞

∞ ∞

−∞

−∞

∞ ∞

−∞

 
≤ − + > + 

 
  

+ + +   
  

 
+ − + > + 

 
  

+ + +   
  

∫

∫ ∫ ∫

∫

∫ ∫ ∫

 

where, 

( ) ( ) ( )( )1 1 1 2 1
1

1i
i

i
w x p G xζ ϕ

∞

−
=

= − < −∑  , 

( ) ( ) ( )( )2 1 1 2 1
1

1i
i

i
w x p G xζ ϕ

∞

−
=

= − > −∑ , 

( ) ( )( ) ( )( )3 1 1 1 2
1

2 1i
i

i
w x p G xζ ζ ϕ

∞

=

= − + < −∑  , 

( ) ( )( ) ( )( )4 1 1 1 2
1

2 1i
i

i
w x p G xζ ζ ϕ

∞

=

= − + > −∑ , 

( ) ( ) ( )( )5 2 2 2 1
1

1i
i

i
w y p G yζ ϕ

∞

−
=

= − < −∑  , 

( ) ( ) ( )( )6 2 2 2 1
1

1i
i

i
w y p G yζ ϕ

∞

−
=

= − > −∑ , 

( ) ( )( ) ( )( )7 2 2 2 2
1

2 1i
i

i
w y p G yζ ζ ϕ

∞

=

= − + < −∑  , 

and  
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( ) ( )( ) ( )( )8 2 2 2 2
1

2 1i
i

i
w y p G yζ ζ ϕ

∞

=

= − + > −∑ . 

Lemma 1: For any 0k ≥ , let 0na ≥  for 0n ≥ , and 1n na a+ ≤ . Let { } 0n n
d

≥
 

be a strictly increasing sequence of integers with 0 0d = , 

( ) ( )
11 1n n

k
n n d k n n d

n k k d n k
d d a a d d a

+

∞ ∞ ∞

+ +
= = =

− ≤ ≤ −∑ ∑ ∑ , 

For more details see [1].  
Theorem 2: The chosen search plan satisfies 

( ) ( ) ( ) ( )1 9 2 10, ,w x w x w x w x≤ ≤  

( ) ( ) ( ) ( )2 11 4 12, ,w x w x w x w x≤ ≤  

( ) ( ) ( ) ( )5 13 6 14, ,w y w y w y w y≤ ≤  

( ) ( ) ( ) ( )7 15 8 16, and ,w y w y w y w y≤ ≤  

where, ( )9w x , ( )10w x , ( )11w x , ( )12w x , ( )13w y , ( )14w y , ( )15w y , 
and ( )16w y  are linear function. 

Proof: This theorem will prove for ( )2w x  and ( )6w y , and by similar way 
we can prove the other cases 

( ) ( ) ( )( )2 1 1 2 1
0

1i
i

i
w x p G xζ ϕ

∞

−
=

= − > −∑  

and 

( ) ( ) ( )( )6 2 2 2 1
0

1i
i

i
w y p G yζ ϕ

∞

−
=

= − > −∑  

1) if 0x ≤ , then 

( ) ( )2 2 0w x w≤  

and if 0y ≤ , then 

( ) ( )6 6 0w y w≤ , 

2) if 0x > , then 

( ) ( ) ( ) ( )( )2 2 1 1 2 1
0

0 1 0i
i

i
w x w p x Gζ ϕ

∞

−
=

= + − − < ≤∑ , 

and if 0y > , then 

( ) ( ) ( ) ( )( )6 6 2 2 2 1
0

0 1 0i
i

i
w y w p y Gζ ϕ

∞

−
=

= + − − < ≤∑ , 

from Theorem (2), see (Mohamed [1]) we obtain 

( ) ( ) ( )( ) ( ) 2 1
2 1 1 2 1 1

0 1
0 1 0 1 , 0 1iGi i

i
i i

w p Gζ ϕ ζ ε ε−
∞ ∞

−
= =

= − > ≤ − < <∑ ∑  

and  

( ) ( ) ( )( ) ( ) 2 1
6 2 2 2 1 2

0 1
0 1 0 1 , 0 1iGi i

i
i i

w p Gζ ϕ ζ ε ε−
∞ ∞

−
= =

= − > ≤ − < <∑ ∑  
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Let us define the following 

1) ( ) ( )1 1
1

2
n

i
i

V n n Wϕ θ
=

= = ∑ , where { }iW  is a sequence of (i. i. d. r. v.) 

( ) ( )2 2
1

2
n

i
i

V n n Wϕ θ
=

= = ∑ , where { }iW  is a sequence of (i. i. d. r. v.). 

2) ( )2 1 1 1 1n
n nd G kθ ζ−= = − , ( )2 1 2 2 1n

n nd G kθ ζ−= = − . 

3) ( ) ( )( ) ( ) ( ) ( )
2

0
2 0 1

x

i

na n p x V n p j V n j
n k =

= − < ≤ = − + < ≤ −  + ∑ ,  

( ) ( )( ) ( ) ( ) ( )
2

0
2 0 1

y

i

na n p y V n p j V n j
n k =

 = − < ≤ = − + < ≤ − + ∑ , 

4) 1m  is an integer such that 1 1 2dm b x b= + , and 2m  is an integer such 
that 2 1 2dm b y b= + , 

5) 
( )

1
1

1 1 k
ζ

α
ζ

=
−

, and 
( )

2
2

2 1 k
ζ

α
ζ

=
−

, 

and 

6) ( ) ( ) ( ) ( )1
0

, 1 1
n

U j j p j V n j
∞

=

+ = − + < < −  ∑ ,  

( ) ( ) ( ) ( )1
0

, 1 1
n

U j j p j V n j
∞

=

 + = − + < ≤ − ∑ , 

then ( )1 , 1U j j +  and ( )1 , 1U j j +  satisfies the condition of the renewal equa-
tion, for more details see [19]. 

If 
1mn d>  and 

2mn d>  then by Theorem (2) see (Mohamed [1]) ( )a n  and 
( )a n  are non increasing and we can apply Lemma (2) to obtain  

( ) ( ) ( ) ( )( )

( ) ( )

( ) ( )

( )

( ) ( ) ( )

( )

1

1

1

1

1

1

1

1

1

2 2 1 1 2 1
1

1 1
1 1

1 1 1
1 1

1 1
1

2

1 1
1 0

2

1 1 1
1 0

0 1 0

1

, 1

m

m

i
i

i
n

n n
n n

n n n

n
n

n n n
n n n

n
n

n n d

xn
n

n n d i

xn
n

n j

w x w p x G

a d a d

d d a d

a n

p j V n j

U j j

ζ ϕ

ζ ζ

ζ α

ζ α

ζ α

ζ α

∞

−
=

∞

= = +

∞

−
= = +

∞

= =

∞

= = =

= =

− = − − < ≤

= +

≤ + −

≤ +

≤ + − + < ≤ −  

≤ + +

∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑ ∑

∑ ∑

 

and 

( ) ( ) ( ) ( )( )

( ) ( )

( ) ( )

2

2

2

2

6 6 2 2 2 1
0

2 2
1 1

2 2 1
1 1

0 1 0i
i

i
n

n n
n n

n n n

n
n

n n n
n n n

w x w p y G

a d a d

d d a d

ζ ϕ

ζ ζ

ζ α

∞

−
=

∞

= = +

∞

−
= = +

− = − − < ≤

= +

≤ + −

∑

∑ ∑

∑ ∑
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( )

( )

2

2

2

2 2
1

2

2 2 1
1 0

, 1

m

n
n

n n d

yn
n

n j

a n

U j j

ζ α

ζ α

∞

= =

= =

≤ +

≤ + +

∑ ∑

∑ ∑
 

Since ( )1 , 1U j j +  and ( )1 , 1U j j +  satisfied the condition of the renewal 
equation, hence ( )1 , 1U j j +  and ( )1 , 1U j j +  is bounded for all j by a con-
stant, so  

( ) ( ) ( )2 2 1 2 100w x w N N x w x≤ + + = , 

and 

( ) ( ) ( )6 6 1 2 140w x w N N x w y≤ + + = . 

Theorem 3: If ( )0 0
ˆ ˆ,φ φ φ= ∈Φ  is a finite search plan, then 0E Z  is finite. 

Proof: If ( )ˆE
φ
τ < ∞ , then ( )ˆ is finite 1p

φ
τ =  and so  

( ) ( )0 0̂
is finite is finite 1p pφ φ

τ τ+ = , 

then, we conclude that 

( )0
is finite 1p φτ =  and ( )0

is finite 0p φτ = , 

or 

( )0
is finite 0p φτ =  and ( )0

is finite 1p φτ = . 

On the first line L1 if ( )0
is finite 1p φτ = , then ( ) ( )0 00X Sφ φφ τ τ= −  with 

probability one and hence  

( ) ( )0 00E X E E Sφ φτ τ≤ + . 

If ( )0
E φτ < ∞ , but ( )0 0

S φ φτ τ≤ , then ( ) ( )0 0
E S Eφ φτ τ≤  and 0E X < ∞ . 

On the second line L2 if ( )0
is finite 1p φτ = , then ( ) ( )0 00Y Sφ φφ τ τ= −  with 

probability one, by the same way we can get 0E Y  is finite on the second line 
L2. 

3. Existence of an Optimal Search Plan 

Theorem 4: Let for any t I +∈ , let ( )S t  be a process. The mapping 

( )ˆ
ˆ E R

φ
φ τ +→ ∈  is lower semi-continuous on ( )ˆ tΦ . 

Proof: Let ( )ˆ,I tφ  be the indicator function of the set { }ˆ t
φτ ≥  by the Fatou 

Lebesque theorem see (Stone [16]) we get 

( ) ( )

( ) ( )

ˆ
1

ˆ
1

ˆ,

ˆliminf , liminf

t

ni it

E E I t

E I t E

φ

φ

τ φ

φ τ

∞

=

∞

→∞ →∞=

 =   
 = ≤  

∑

∑
, 

for any sequence ˆ ˆ
nφ φ→  in ( )ˆ tΦ  is sequentially compact [20], thus the 

mapping ( )ˆ
ˆ E

φ
φ τ→  is lower semi continuous on ( )ˆ tΦ , then this mapping 

attains its minimum.  
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4. Conclusions 

We have described a new kind of search technique to find a lost moving target 
on one of two disjoint lines. The motion of the four searchers on the two lines in 
the quasi-coordinated search technique is independent, and this helps us to find 
the lost target without waste of time and cost, especially if this target is valuable 
as the search for lost children. Actually we calculated the finite search plan. Also; 
we proved the existence of an optimal search plan which minimizes the expected 
value of the first meeting time between one of the searchers and the target. 

In the future work, we will introduce an important search problem, looking 
for a randomly moving target as a general case and the searchers will begin their 
mission from any point on the line. 
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Abstract 
The main objective of this research work is to decrease work function of any 
given element or compound or material. To decrease the work function of the 
given material we have to decrease the bandwidth between conduct band and 
valance band. Because according to definition of work function, the amount 
of energy that required the remove the electron from valance band of an atom 
and it is also called ionization energy. These all energies depend upon the 
band width that is greater than the band width greater energy required to 
remove the electron from the surface, and less than the band width and lesser 
amount of energy required to remove the electron from of materials. In this 
work we are trying to give an theoretical model or relation, how to decrease 
the work function of a material by applying external pressure on atoms and 
doping of the material that has screening or shielding effects. With the help of 
this model we can increase the efficiency of material used in solar cell that is 
cell work for all range of frequencies and by construction material bases on 
this we can increase the efficiency of solar cell or any type of material working 
solar cell principle. 
 

Keywords 
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1. Introduction 

The total amount of energy received at ground level from the Sun is about 3.3% 
higher than average in January and lower in July. In terms of energy, sunlight at 
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Earth’s surface is around 52 to 55 percent infrared 42 to 43 percent visible, and 3 
to 5 percent ultraviolet. In this research work, we are trying to give a theoretical 
model, that decreases the work function of the material especially, photonic ma-
terial from IR to Visible range frequencies because the maximum amount of 
energy in our atmosphere is energy of photon. The utilization of such huge 
amount of energy is possible only if we constructed materials which can emit the 
electron from atom, for all ranges of frequencies. This is possible to decrease the 
work function of the material either by doping of the different material that has 
shielding effect or by applying the Van Der Waals force relation. Base on these 
principles we can construct photonic materials that have different work function 
and can be used for different frequency of photon especially IR and Visible pho-
ton.  

Photonic crystals are periodically structured electromagnetic media, generally 
possessing photonic band gaps: ranges of frequency in which light cannot prop-
agate through the structure. The study of photonic crystals is likewise governed 
by the Bloch F. theorem, and intentionally introduced defects in the crystal. Felix 
Bloch pioneered the study of wave propagation in three dimension-ally periodic 
media in 1928, which proved that waves in such a medium could propagate 
without scattering, when the photon incident on the material the energy of the 
photon observed electron or electron cloud of an atom. The energy observation 
is started from the outer most valance orbital i.e. the outer most electron of an 
atom and goes on the excited state or kicks out from the orbits of an atom; hence 
the photoelectric effect take place. Let the energy of incident photon on the sur-
face of photonic material is hf, where h is plank constant and f is frequency and 
the amount of energy required to remove or electron from its valance orbit to 
conduct orbit hf1 where f1 is frequency needed to excite the electron from val-
ance band or orbit1 and the energy hf2 of excited state, where f2 is frequency of 
exciting the electron for conducing band or orbit 2 and the difference between 
them gives, 2 1hf hf hf= − , which implies smaller the difference of hf2 − hf1, 
where hf is smaller that is f is smaller and shows that on changing the energy 
level or orbit difference we can obtain the necessary value of hf2 − hf1. In this 
way we can change frequency for our desire and increase the efficiency of the 
photonic materials like solar cell. 

On the other hand, work function of the material is define as the minimum 
amount of the energy required to remove the electron from the material surface 
which is given by hf3 where h = plank’s factor and f3 is the minimum frequency 
required to remove the electron from the surface, which is equal to or less than 
incident frequency; then we can obtain the relation.  

2 1 3hf hf hf hf− = ≤                        (1) 

In general,  

1n n nhf hf hf hf′+ − = ≤                       (2) 

In Equation (2), fn + 1 is frequency of orbit n + 1 and fn is the frequency of orbit 
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n.  

Now on putting the value of 
cf
λ

=  where c = velocity of light and λ  in 

Equation (2) we obtain the relation  

11 1 1 1n n nλ λ λ λ′+ − = =                      (3) 

where λn + 1, λn and λn, or λ is corresponding wavelength of n + 1, n orbit and 
difference wavelength of two orbit n + 1 and n.  

Photonic crystals usually consist of dielectric materials, that is, materials that 
serve as electrical insulators or in which an electromagnetic field can be propa-
gated with low loss. Materials used for making a Photonic band gap are: Silicon, 
Germanium, Gallium and so on.  

2. Literature  

Composite optical materials can display useful optical properties that are quali-
tatively dissimilar from those of their underlying constituents. Nano composite 
materials are especially well suited for photonic applications because they can be 
constructed in such a manner as to produce enhanced nonlinear optical re-
sponse. More recently entangled states of light have been used to perform func-
tions unthinkable in the context of classical physics, such as the demonstration 
of quantum cryptography and quantum teleportation (those materials which in-
teract with certain frequency that is we can transform quantum information 
from one to another place). One application entails the development of tech-
niques for the construction of imaging systems that can achieve a transverse res-
olution that exceeds the classical Rayleigh criterion [1]. Photonic crystal working 
in the optical range of electromagnetic spectrum but PCs for X-ray should 
present a modulation of some A0 which is a solid state crystal. EM field store 
more energy if it has extreme at the region of high dielectric function. Bragg dif-
fraction is the primary feature of the system of PBG material can be used for ini-
tial characterization. When refractive index contrast is low it is good approx. to 
use ordinary diffraction or dynamic to characterized PCs [2]. The mid-infrared 
wavelength range from 2 to 20 microns is a spectral region of tremendous inter-
est which is important for a wide range of applications ranging from chemical 
and bio-Sensing to spectroscopy and thermal imaging, optical fiber can transmit 
the light from visible to near IR, industrial and military applications, such as 
remote sensing and explosive detection or free-space communication systems 
[3]. 

The electromagnetic band gap overlaps the electronic band edge by at least a 
few kT in energy, then electron-hole radioactive recombination, which creates 
periodic three-dimensional dielectric structures in which there exists an elec-
tromagnetic band gap. The recombination rate of electrons and holes in a semi-
conductor can be expressed as a power series in the injected carrier density. The 
combined electron and hole three-body Auger recombination coefficient are in-
trinsic to the material. In today’s high quality, double hetero structure has low 
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enough defect density [4]. The concept of a photonic material is explained in 
terms of Bragg diffraction. The concept of Bragg reflection applies equally well 
to visible radiation except that we cannot rely on atoms to do work for all re-
searcher [5]. GaAs are used in various electronic applications such as wireless 
communication, microwave, and high-speed digital systems. Silicon appears as 
thin films of amorphous or poly crystalline form in TFT-technology, in solar cell. 
SiGe is needed to introduce electron accelerating strain in the Si lattice. GaAs, 
InP, and GaP, has occurred culminating in the development of a blue semicon-
ductor laser using GaN [6]. As in the 3D case, we can create dielectric system 
which exhibits a complete photonic band gap, a set of frequencies in which light 
of any polarization cannot propagate in any in-plane direction and drill air 
columns in dielectric. At the dielectric contrast of GaAs, the only combination 
which was found to have a photonic band gap in both polarization was the tri-
angular lattice of air columns in dielectric [7]. Photonic crystals can be used to 
selectively reflect specific frequencies of electromagnetic radiation. It has recent-
ly been shown experimentally that geometrically asymmetric silicon structures 
support strong near-infrared magnetic resonances akin to the familiar ‘trapped 
mode’ of metallic asymmetric split ring designs. Silicon and silicon nit-ride are 
assumed lossless with refractive indices of 3.5 and 2.0 respectively in the 
near-infrared range under consideration. All in-plane optical forces generated 
within the meta-material structure are canceled and only out-of plane forces act 
on the dielectric beams. These drive each beam to move up or down until elastic 
restoring forces balance the optical forces. Optical absorption and variations in 
ambient temperature may lead to thermo-mechanical changes in the structure [8] 
[9]. 

Far-infrared radiation traveling through a polar crystal, such as GaAs, couples 
strongly to optical phonon. The transverse optical (TO) and longitudinal optical 
(LO) phonon define a region of negative permittivity and the center of a region 
of high loss, the so-called “Reststrahlen band” of the material. Optical transpa-
rency in the 20 - 60 μm range for intrinsic III-V semiconductors is limited by 
absorption due to optical phonon. Consequently, materials and devices based on 
III-V semiconductors are scarce in the Reststrahlen region [10]. Beyond semi-
conductors, superconductors also have the potential to advance the state-of 
the-art in far-IR detection. Microwave kinetic inductance detectors sense inci-
dent radiation by detecting small changes in the inductance of a thin supercon-
ductor from the breaking of Cooper pairs. The small changes in the inductance 
can be detected by monitoring the resonance frequency of a microwave resona-
tor that incorporates the superconducting film. A challenge associated with Mi-
crowave kinetic inductance detectors for the far-IR is coupling incident radia-
tion into the device [11]. 

A well-known thin-film Gallium nit-ride LED structure is fabricated by re-
moving the sapphire layer using a laser and roughening the revealed n-doped 
Gallium nit-ride layer. Gallium nit-ride thin-films, wafer-bonded to oxidized 
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silicon wafers, provide a promising platform for nonlinear integrated optics. The 
obtainable quality factors in optical micro-resonators based on bonded Gallium 
nit-ride thin films are limited by the remaining surface roughness. Aluminum 
nit-ride, on the other hand, is a wide-band gap semiconductor with the capabili-
ty of direct integration on silicon (100) substrates with suitable mechanical and 
thermal properties [12] [13]. 

Photonic crystals have a periodic dielectric structure with high index con-
trast, designed to control photons in the same way that conventional crystals 
control electrons. PCs also possess a band gap, a so-called photonic band gap, 
where the material acts like a photonic insulator and light of certain fre-
quencies cannot propagate. The Electro optics effect is the change in the in-
dex of refraction of a material with an applied external electric field, given by 
δ- ( )2

ij ij ijk k ijkl k ln n r E s E E= − +  [14]. Transparent electrodes are used to apply an 
electric field, which, in combination with polarized, may be used to either block 
or transmit the light. Electro optic crystals have extremely small Electro optic 
coefficients. Liquid crystal optical-phased array beam steers tend to be slow, 
provide non-continuous diffraction steering, and have a very limited steering 
range because thick LC layers are problematic. Acoustic optic beam steers have a 
larger steering range but are also diffraction, require very large power supplies 
and expensive crystals [15]. 

Photonic crystals are meta-materials designed to display a periodic modula-
tion of the refractive index. One of the intrinsic shortcomings of photonic crys-
tals is the highly selective reflection from Bragg planes due to crystalline sym-
metries. For example, dye-free reflective color displays, colored packing mate-
rials or cosmetics are preferentially non-iridescent and thus non-crystalline. For 
a photonic crystal of thickness L the sum of transmittance T and spectacular ref-
lectance R is T + R = 1. The gap wavelength λG and the transmittance displays an 
exponential decay e BL LT −= , where LB is the Bragg length [16].  

AlGaN alloys have been the default choice for the development of Deep ultra-
violet Op-to-electronic devices. Deep ultraviolet light emitting diodes LED and 
laser diodes with high quantum efficiencies QEs is the low conductivity of p-type 
AlGaN. The resistivity of Mg-doped AlGaN increases with Al-content and be-
comes extremely high in Mg-doped AlN. Seebeck effect measurement is a 
well-established technique to distinguish between n-type and p-type conductivi-
ty of a semiconductor. The temperature gradient creates a voltage between the 
cold and hot ends due to the diffusion of thermally excited charged carriers [17]. 

As the investigation of photo current generation mechanisms in 2D opt o 
electronics goes deeper, 2D material-based devices have also been demonstrated 
to exhibit elevated performance. Over the past decade, it has been shown that 
most graphene based photo-transistors exhibit photo responsive around 10 
mA/W [18]. First reported single-layer MoS2 photo transistors reach responsi-
bility to 7.5 mA/W with 50 V gate bias, and exhibit stable response time within 
50 ms. Because mono layer MoS2 is a direct-band gap semiconductor due to 
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quantum-mechanical confinement, it could be suitable for applications in opt o 
electronic devices where the direct band gap would allow a high absorption coef-
ficient and efficient electron-hole pair generation under photo excitation. The 
maximum external photo is responsive of 880 A W-1 at a wavelength of 561 nm 
and a photo response in the 400 - 680 nm range. MoS2 shows important poten-
tial for applications in MoS2-based integrated opt o electronic circuits, light 
sensing, biomedical imaging, video recording and spectroscopy [19] [20]. 

Near the gap in a photonic band, gap material the effective index of refraction 
can become less than unity and in fact can approach zero at the band edge it-
self-leading to ultra-refractive optical effects. Ultra-refractive optics with pho-
tonic band materials has many applications, including laser accelerators and 
lenses of ultra-short focal lengths. Scully and colleagues, In current prototypes of 
PBG materials the structure is about 85% air and so losses are less than in a ho-
mogeneous dielectric and discussed the novel properties of the effective index of 
refraction of PBG material when operating near a band edge, using a quantita-
tive and simple one-dimensional model of a three-dimensional PPG structure 
[21]. 

We present designs of 2D, isotropic, disordered, photonic materials of arbi-
trary size with complete band gaps blocking all directions and polarization. The 
designs with the largest band gaps are obtained by a constrained optimization 
method that starts from a hyper uniform disordered point pattern Since their 
introduction in 1987, photonic band gap (PBG) materials have evolved dramati-
cally, and their unusual properties have led to diverse applications. Obtaining 
complete PBGs in dielectric materials without long-range order is counter intui-
tive. If the arrangement of dielectrics has local geometric order, a tight binding 
model with nearly uniform coefficients describes the propagation of light in the 
limit of high dielectric constant ratio. Weaire and Thorpe proved that band gaps 
could exist in continuous random tetrahedral coordinated networks, commonly 
used as models for amorphous silicon and germanium. The comparison to elec-
tronic band gaps is also useful in comparing states near the band edges and con-
tinuum. For a perfectly ordered crystal (or photonic crystal), the electronic 
(photonic) states at the band edge are propagating such that the electrons (elec-
tromagnetic fields) sample many sites. If modest disorder is introduced, loca-
lized states begin to fill in the gap so that the states just below and just above are 
localized. Although formally the disordered hetero-structures do not have 
equivalent propagating states, an analogous phenomenon occurs [22]. 

The radiation effects on Ge-doped and (Fluorine) F-doped fibers and per-
forms: the first play a crucial role in the photo sensitivity property, the second 
improves the dielectric radiation hardness even at low concentrations. Usually 
classical optical fibers for telecommunications are used in the IR, from 835 to 
1600 nm, medical application and plasma diagnostic use of visible and UV re-
gion were optical transmission is affected by many losses. Fluorine is a promis-
ing key material in optical fiber technology directed to applications requiring 
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high and stable transmission in UV and visible spectral range [23]. Photons in-
teract very weakly with transparent optical media. Due to their fast propagation 
speed, photons use for transmitting quantum information and distributing 
quantum correlations. Additionally, photons possess many degrees of freedom; 
include spatial and temporal modes, frequency, polarization and angular mo-
mentum. Photons also possess continuous quantum variables, such as the quan-
tized field quadrature, which can be utilized in special classes of information 
protocols. Silicon has a much higher refractive index than silica, leading to 1000 
times smaller wave guide bend radius compared to that in silica wave guides. 
Silicon’s indirect band gap of 1.12 eV and low intrinsic carrier concentration 
makes it transparent to photons at the telecommunication wavelength (1.55 µm) 
[24]. 

Up to now, entangled photon pairs have been generated by optical pumping 
in passive semiconductor wave guides by exploiting four-wave mixing in silicon 
or spontaneous parametric down conversion in aluminum gallium arsenide. 
Aluminum Gallium Arsenide device that emits photon pairs at telecom wave-
lengths and operates at room temperature [25]. Three-dimensional confinement 
of both electrons and holes in hetero-structures gives rise to quantum dots 
which potentially provide on-demand single-photon generation across the NIR 
range with near unity internal efficiency. Efficient photon collection represents a 
major technological challenge associated with quantum emitters. Integrated col-
lection techniques with over 98% mode coupling efficiency exist for quantum 
dots [26]. 

InGaAs/GaAs quantum dots demonstrate single-photon emission for wave-
lengths up to 1400 nm, while InAsP/InP quantum dots emission can be achieved 
across the entire telecom spectrum. Multi-photon entangled states can be gener-
ated, constituting a particularly useful resource for quantum communication. 
The combination of a diode junction and an embedded quantum dot has led to 
the demonstration of an electrically driven entangled-photon source of high 
enough quality to perform quantum teleportation [27] [28]. 

It is also found that the size and composition with alloy effect can tune the 
band-gap energy, which suggests an effective way to reach the desirable electrical 
and optical properties. Interestingly, both the size and the composition can tune 
the band-gap energy of Nano compounds. In particular, the composition tun-able 
band-gap may be a better way for wider band-gap materials [29]. Ionization po-
tential is the electric potential (V) required to separate an electron from the or-
bital system in free space with the kinetic energy remaining unchanged. Ioniza-
tion energy is the work done in removing the electron at zero temperature and is 
measured conveniently in electron volts, where 1 eV = 1.6022 × 1019 J. Screening 
(electron-electron repulsion) reduces electron-nucleus attractions in helium and 
two-electron atomic ions but ionization energies are not functions of simple 
squares. First ionization energies vary in the order B > Al < Ga > In < Tl and C > 
Si > Ge > Sn < Pb but decrease with increasing atomic number down groups 15 
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to 18. In 1930, Slater give a relation ( )2* *I R Z N= , where Z* = an effective 
nuclear charge, N* = an effective quantum number could be assigned to each 
electron and I = energy required to ionize an electron [30]. 

The photo-ionization of 3d’’ impurities in semiconductors with zinc blende 
structure is to be treated by investigating the matrix elements for electric dipole 
transitions between linear combinations of d-type one-electron wave functions 
which can be mixed with p-states and the continuum of states in the conduction 
band, i.e. Bloch functions [31]. The force attracting the electron to the nucleus 
depends upon magnitude of the core charge, and the separation of the electron 
from the nucleus. The first ionization energy will therefore be the work done 
when removing an electron from the core and so will be that needed to pull the 
electron away against the attraction from the core charge. This will not be an in-
finite quantity as the magnitude of the force falls rapidly with distance [32]. 

The ionization energy (IE) is defined as the minimum amount of energy that 
needs to be absorbed by an atom or molecule in its electronic and vibration 
ground states in order to form an ion that is also in its ground states by ejection 
of an electron. Ionization energies of most molecules are in the range of 7 - 15 
eV. The ionization cross section describes an area through which the electron 
must travel in order to effectively interact with the neutral [33]. Lebedev gave the 
radiation pressure of light in 1901. In principle, if the currents in the mir-
ror/antenna can be determined from the drive fields, then the electromagnetic 
fields due those currents can be calculated, and combined with the drive fields to 
obtain the total fields. This effect of the currents on themselves can be expressed 
mathematically as an integral equation for the currents, which takes into account 
the good-conductor boundary condition at the surface of the mirror/antenna 
[34].  

3. Methodology: Theoretical Calculation  

In this paper we are trying to give theoretical model or relation that help to con-
struct such type of material which work on difference range of frequencies that is 
produce the current or energy for all frequencies. To give the theoretical relation 
here we follow the Bohr’s relation of energy for hydrogen atom and pressure 
area relation.  

If we increase the pressure on an atom surface externally, we can decrease the 
width or the distance between two outer most orbits of an atom that is the two 
outer most orbits come closure. This shows amount of energy is required to ex-
cite electron from inner outer most orbit to outer most orbit needed less. But in 
normal condition or without applying the pressure on atom the distance be-
tween the inner outer most and outer most is quite greater then applied presure 
condition and hence the energy required to excite the electron from inner most 
outer orbit to outer most orbit needed more. 

Here the outer most orbit is last orbit of an atom when we consider the 
counting of orbit from nucleus and the inner outer most orbit is second last or-
bit of nucleus.  
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Mathematical Derivation: 
From hydrogen model we have Bohr’s energy for different orbits. Let us con-

sider the energy of valance band or energy of ground state electron is En and 
conductance band or excited state electron is En + 1.  

Now we relation En + 1 − En = hf when an electron goes from ground state to 
excited state and on coming to ground state again by emitting the energy of hf.  

Similar phenomena we are using here that is amount of energy required to go 
electron from valance band to conduct band is given by En + 1 − En = hf, Where h 
= planks factor and f = incident frequency of a photon. Let us consider, N = 
Nucleus of an atom, n = 1 is the nearest orbit of nucleus where electron is 
bounded tightly, n = 2 is orbit of nucleus where electron is less bounded then n 
= 1, n = 3 is another orbit where electron is less bounded then n = 2. In similar 
way the electron bounded is going decrease as we go far away from nucleus. As 
shown in Figure 1. 

According to Bohr’s the amount of energy required to bounded the electron 
around the nucleus is given by  

24 2

2 2 2 2

1
8

H
n

z Rme zE
n h nε

= − = −                     (4) 

where RH = Rydberg’s constant. 
We also have, Bohr’s radius  

2 2 2

2 2 0.529
4n
n h nr

zz me
= = ×

π
 

This is the distance from the center of nucleus to the orbit of an electron re-
volving around the nucleus. 

Or, 2

1 0.529

nzrn
=                          (5) 

 

 

Figure 1. Energy Level for an atom without applying the 
external pressure. 
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Now From Equations (4) and (5) we have 

0.529 H
n

n

zRE
r

= −                         (6) 

This relation shows that how much amount of energy required to bind the 
electron by proton or nucleus when the electron is at a certain i.e. rn.  

Let us consider, En + 1 is the amount of energy required to remove the electron 
from the outer shell of atom of any atom is at a distance rn + 1 then the energy can 
be obtain similar as Equation (6).  

Since we have an energy relation  

1
1

0.529 H
n

n

zRE
r+
+

= −                       (7) 

In other word, En + 1 and En is the energy level of valance band or ground band 
of orbit n and n + 1 of an atom then the transition between them is possible. If 
we consider n as ground state and n + 1 is excited state of electron in an atom 
then, Now on subtracting Equation (7) from (6) we have, 

1
1

1 10.529n n H
n n

hf E E zR
r r+

+

 
= − = − 

 
                (8) 

where hf is incident photon, which is needed to, excited an electron from one 
energy level to another that means from En to En + 1 level.  

1
1

1

0.529 n n
n n H

n n

r r
hf E E zR

r r
+

+
+

 −
= − =  × 

                (9) 

Here from Equation (9) we have an interesting relation that the different be-
tween two energy levels are related to the distance between two orbits is directly 
proportional and product is inversely related which means incident photon 
energy is directly related difference of 1n nr r+ −  it means that smaller the differ-
ence smaller the amount of energy required to excited an electron from rn to rn + 1. 
And another relation is inversely related to the product of the distance of two 
orbits from the nucleus ( 1n nr r + ). 

Since the atom is not solid that is within atom there is the space so we can 
compress the atom. Here we are studying the compression of the atom from the 
outer surface area during the compression the of an atom equal from all sides. 
the outer shell come to closure to the second last orbit or ground state orbit 
while the ground state orbit is less effect due to apply the pressure from outer 
side of atom. 

Lets Pn and Pn + 1 are the pressure applying on energy level of an atom which is 
at a distance of rn and rn + 1 from nucleus, with constant force F then pressure ex-
erted on n and n + 1 orbits.  

Then external pressure is applied on orbit of n + 1 and n orbit with constant 
force to an atom is given by 

24n
n n

F FP
A r

= = −
π

                      (10) 
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1 2
1 14n

n n

F FP
A r+

+ +

= = −
π

                     (11) 

respectively. Here negative sign in (10) and (11) implies show that force is acting 
from outside that mean in outer most orbit. Since the pressure is applied from 
outside or surface of an atom then pressure exerted on n + 1 orbit is greater then 
pressure exerted on n orbit for constant force.  

Now on subtracting Equation (10) from (11) we have, 

1 2 2
1

1 1
4n n

n n

FP P
r r+

+

 
− = − 

π  
                   (12) 

2 2
1

1 2 2
14

n n
n n

n n

r rFP P
r r
+

+
+

 −
− =  

π × 
                   (13) 

Now, from Equation (13) we have clearly, see that pressure different is directly 
related to different and inversely related to square product of distance from nuc-
leus to electron.  

( )( )1 1
1 2 2

14
n n n n

n n
n n

r r r rFP P
r r

+ +
+

+

 − +
− =   π × 

              (14) 

Now, on putting the value from Equation (9) on Equation (14), we have, 

( )( )
( )

1 1
1

14 0.529
n n n n

n n
H n n

E E r rFP P
zR r r

+ +
+

+

 − +
− =   π × 

             (15) 

Since Pn + 1 is greater than Pn then Pn + 1 – Pn must be positive which is also de-
pend up on the ( )1n nE E+ −  of Equation (15) which is depend upon (rn + 1 – rn). 

It is possible because of the atom has space according to the Ruth-er forth 
scattering of an atom. Here we can press the electron for the certain radius 
because of repulsion of nuclear. In addition, Van Der Waals forces between 
atoms are depends upon the sized of atoms that is smaller the sized smaller 
the Van Der Waals force. Also on doping the material having the greater 
atomic number decrease attraction of the electron with the nucleus that is less 
amount of energy required to remove the electron from the surface of atom or 
materials. From the above Methodology, we can decrease the work function 
of the element or compound or materials. 

4. Result and Conclusion 

Hence, from the above relation (15), pressure, energy and orbit radius we can 
change the work function of material and make them work for all frequencies 
ranges. This helps to increase the efficiency of solar cell material or similar prin-
ciple material. Once material is constructed or follows this principle, energy cri-
sis should be ended forever. In other hand, we can also say that, same materials 
can be used for different range of frequencies and extracted energy from all 
ranges radiation. Hence such material can also solve the problem of energy 
where solar radiation is absent. 
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Abstract 
The article investigates a SIQR epidemic model with specific nonlinear 
incidence rate and stochastic model based on the former, respectively. For 
deterministic model, we study the existence and stability of the equilibrium 
points by controlling threshold parameter 0R  which determines whether the 
disease disappears or prevails. Then by using Routh-Hurwitz criteria and 
constructing suitable Lyapunov function, we get that the disease-free 
equilibrium is globally asymptotically stable if 0 1R <  or unstable if 0 1R > . 
In addition, the endemic equilibrium point is globally asymptotically stable in 
certain region when 0 1R > . For the corresponding stochastic model, the 
existence and uniqueness of the global positive solution are discussed and 
some sufficient conditions for the extinction of the disease and the persistence 
in the mean are established by defining its related stochastic threshold 0

SR . 
Moreover, our analytical results show that the introduction of random 
fluctuations can suppress disease outbreak. And numerical simulations are 
used to confirm the theoretical results. 
 

Keywords 
Epidemic Model, Specific Nonlinear Incidence Rate, Lyapunov Function,  
Stability, Existence, Persistence 

 

1. Introduction 

Infectious diseases have always been a thorny issue that endangers human health, 
triggers social unrest and even affects national stability. Therefore, it is of great 
significance to take effective prevention measures to control the epidemic by es-
tablishing mathematical models with typical characteristics, discovering the 
transmission and development trends of infectious diseases. In the last decades, 
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many authors have made a great headway on SIR (Susceptible-Infected-Removed) 
epidemic models [1] [2] [3]. However, for some diseases such as SARS, smallpox, 
foot-and-mouth disease, parrot fever and so on, introducing quarantine is one of 
the most pivotal and effective control means. In a model, assuming that some 
susceptible individuals become infected ones, and then the infected individuals 
flow into three parts, some remains at class I, some move into the removed R after 
recovering health, while some are transferred to the quarantine class Q and enter 
class R until they are no longer infectious. It is worth noting that the infected and 
quarantined people have permanent immunity after recovery. The model with the 
above characteristics is called SIQR (Susceptible-Infected-Quarantined-Removed) 
model. It is not difficult to find that a large amount of researches on the impact 
of quarantine on infectious diseases have been carried out so far [4] [5] [6] [7]. 
And in 2017, Joshi et al. [8] studied a SIQR epidemic model with saturated inci-
dence rate and proved the global stability of the disease-free and endemic equi-
librium. 

In order to realistically reflect the process of human-to-human disease trans-
mission, it is very important to determine the specific form of the incidence 
function which describes the increased number of infected people per unit time 
and plays a vital role in epidemiological dynamics research. Due to the complex-
ity of disease transmission in real life, many scholars admit that the nonlinear 
incidence function is more reasonable than the bilinear incidence and standard  

incidence. The specific nonlinear incidence ( ) ( )
( ) ( )( ),

S t I t
f S t I t
β

 was proposed in 

2013 [9], where ( ) ( )( ) ( ) ( ) ( ) ( )1 2 3, 1f S t I t S t I t S t I tα α α= + + +  and 1 2 3, ,α α α  

are saturation factors that measure psychological or inhibitory effects and non-
negative constants. Obviously, depending on the values of 1 2 3, ,α α α , the inci-
dence can be changed to various common types of incidence rates in existing li-
teratures, including the bilinear incidence rate, the saturation incidence, Bed-
dington-DeAngelis incidence [10] and Crowley-Martin response [11]. Therefore, 
it is more interesting and valuable than the saturation incidence and is also 
widely used to study epidemic diseases. For instance, Adnani et al. [12] intro-
duced the effect of white noise into a SIRS epidemic model with the above inci-
dence. They analyzed the global existence, positivity and boundedness of solu-
tions, as well as the dynamics of stochastic model. And Hattaf et al. [13] applied 
the incidence to a stochastic delayed SIR epidemic model with temporary im-
munity. They proved that the model is mathematically and biologically well-posed 
and also obtained sufficient conditions for the extinction and persistence of the 
disease. However, there are few articles on the SIQR model with this incidence 
rate. 

In this paper, to improve and generalize the model of Joshi et al. [8], we pro-
pose a new SIQR epidemic model based on the incidence [9]. The deterministic 
differential equations of the model are as follows: 
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d
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,
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t f S t I t
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I t
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Q t
I t Q t

t
R t

I t Q t R t
t
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µ

β
δ γ µ µ

δ ρ µ µ

γ ρ µ


= − −



 = − + + +




= − + +



= + −


            (1) 

The total population ( )N t  is divided into four compartments and 
( ) ( ) ( ) ( ) ( )N t S t I t Q t R t= + + + , where ( ) ( ) ( ), ,S t I t Q t  and ( )R t  are the 

number of the susceptible, infected, quarantined and recovered individuals at 
time t, respectively. The parameter constants have the following biological 
meanings: A is the recruitment rate of the susceptible through birth and immi-
gration; µ  is the natural death rate of the population; 1µ  is the disease-caused 
mortality of infective individuals; 2µ  is the disease-caused mortality of quaran-
tined individuals; β  represents contact rate of an infected person with other 
compartment members per unit time; δ  is the isolation rate of the compart-
ment I quarantined directly to enter Q; γ  is the recovery rate of infected indi-
viduals; ρ  is the recovery rate of quarantined individuals. In addition, all pa-
rameters of model (1) are supposed to be nonnegative constants. Especially, A 
and µ  are positive constants. 

In fact, any system is more or less affected by environmental factors. Stochas-
tic models can predict the future dynamics of the system accurately compared to 
their corresponding deterministic models. Therefore, when establishing popula-
tion model, many stochastic biological systems and stochastic epidemic models 
have been presented and studied [14] [15]. One of the most main ways to intro-
duce random effects is to directly perturb the parameters of the deterministic 
model by Gaussian white noise. As an expansion of model (1), now we introduce 
white noises into (1) by substituting the parameters ,iµ β  with ( )i i iB tµ σ+  
( )1,2i =  and ( )3 3B tβ σ+ , where ( ) ( ) ( ) ( )( )1 2 3, ,B t B t B t B t=  is a standard 
Brownian motion. 2 0iσ >  ( )1,2,3i =  denote the intensity of the white noise. 
Other parameters are the same as in model (1). Hence, the stochastic system is 
described by  

( ) ( ) ( ) ( )
( ) ( )( )

( ) ( )
( ) ( )( ) ( )

( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( )

3
3

1 1 1

3
3

2 2 2

d d d ,
, ,

d d d
,

d ,
,

d d d ,

d d .

S t I t S t I t
S t A S t t B t

f S t I t f S t I t

S t I t
I t I t t I t B t

f S t I t

S t I t
B t

f S t I t

Q t I t Q t t Q t B t

R t I t Q t R t t

β σ
µ

β
δ γ µ µ σ

σ

δ ρ µ µ σ

γ ρ µ

  
 = − − −    


 
= − + + + −     


 +

 = − + + −
 = + −

    (2) 
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This paper is organized as follows. In Section 2, we present some preliminaries 
which will be used in our following analysis. In Section 3, the existence and sta-
bility of the equilibrium points of deterministic system is analyzed. In Section 4, 
we study dynamics of the stochastic model. Firstly, the existence and uniqueness 
of the global positive solution is proved. Then, the extinction and persistence of 
the disease under certain conditions is discussed. Finally, numerical simulations 
are presented to illustrate our main results. Section 5 just provides a brief discus-
sion and the summary. 

2. Preliminaries 

In this section, some notations, definitions and lemmas are provided to prove 
our main results. Let ( ), ,Ω   be a complete probability space with a filtration 
{ } 0t t≥
  satisfying the usual conditions (i.e. it is increasing and right continuous 

while 0  contains all  -null sets). And ( )( )1,2,3iB t i =  are defined on this 
complete probability space. 

Consider the 4-dimensional stochastic differential equation  

( ) ( )( ) ( )( ) ( ) 0d , d , d for ,x t f x t t t g x t t B t t t= + ≥             (3) 

with initial value 4
0x +∈ . We define the differential operator L of Equation (3) 

as follows:  

( ) ( ) ( )
24 4

T

1 , 1

1, , , .
2i iji i ji i j

L f x t g x t g x t
t x x x= =

∂ ∂ ∂ = + +  ∂ ∂ ∂ ∂∑ ∑  

Let L act on a nonnegative function ( ) [ )( )2,1 4
0, , ;V x t t+ +∈ × ∞  . Then,  

( ) ( ) ( ) ( ) ( ) ( ) ( )T1, , , , , , , ,
2t x xxLV x t V x t V x t f x t trace g x t V x t g x t = + +    

where { }4 0, 1, 2,3, 4ix i+ = > = . By Itô’s formula,  

( ) ( ) ( ) ( ) ( )d , , d , , dxV x t LV x t t V x t g x t B t= + . For an integrable function χ  on 

[ )0,+∞ , we define  

( ) ( )
0

1 d .
t

t s s
t

χ χ= ∫  

Definition 2.1 System (2) is said to be persistent in the mean if  
( )liminf 0 . ..

t
I t a s

→∞
>  

Moreover, we need the following lemma (see Lemma 5.1 in [16]). 
Lemma 2.2. Let ( ),g +∈ ×Ω   and ( ),G +∈ ×Ω  . If there exist two 

real numbers 0 0λ ≥  and 0λ >  for all 0t ≥ , such that  

( ) ( ) ( ) ( )
0 0

ln d and lim 0 . .,
t

t

G t
g t t g s s G t a s

t
λ λ

→∞
≥ − + =∫  

then  

( ) 0liminf . ..
t

g t a s
λ
λ→∞

≥  

Lemma 2.3. Consider the following two systems  
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( ) ( )d d, , ,
d d
x yf t x g y
t t
= =  

where , nx y∈ , f and g are continuous, satisfy local Lipschitz conditions in any 
compact set nX ⊂  , and ( ) ( ),f t x g x→  as t → +∞ , so that the second 
system is the limit system for the first system. Let ( )0 0, ,t t xΦ  and ( )0 0, ,t t yϕ  
be solutions of these systems, respectively. Suppose that e X∈  is a locally 
asymptotically stable equilibrium of the limit system and its attractive region is  

( ) ( ){ }0| , , , .W e y X t t y e tϕ= ∈ → → +∞  

Let WΦ  be the omega limit set of ( )0 0, ,t t xΦ . If ( )W W eΦ ≠ ∅ , then 
( )0 0lim , ,t t t x e→+∞ Φ = .  

3. Dynamics of the Deterministic SIQR Model  
3.1. The Existence of Equilibrium Points 

For a population dynamics system, studying its equilibrium points is the pre-
condition for predicting the development trend of populations within the sys-
tem.  

Theorem 3.1 System (1) has two equilibrium points, 0 ,0,0,0AE
µ

 
=  
 

 for all 

parameter values and ( )* * * * *, , ,E S I Q R=  for 0 1R > , here * 0, AS
µ

 
∈ 
 

, 

* *,I Q  and * 0R > .  
Proof. Summing up all the equations of model (1), we find the following dif-

ferential equation: 1 2
d
d
N A N I Q
t

µ µ µ= − − − . By comparison theorem, we ob-

tain that the solutions of model (1) exist in the region defined by 

( ) 4, , , : , 0, 0, 0, 0AS I Q R S I Q R S I Q R
µ+

 
Γ = ∈ + + + ≤ ≥ ≥ ≥ ≥ 

 
 . To get the 

equilibrium points, we set the right-side of equations to be 0,  

( )

( ) ( )

( )

1

2

0,
,

0,
,

0,
0,

SIA S
f S I

SI I
f S I

I Q
I Q R

βµ

β δ γ µ µ

δ ρ µ µ
γ ρ µ

 − − =

 − + + + =

 − + + =


+ − =

                 (4) 

which yields  

( )1 2 2

, , ,A SI Q I R Iµ δ γ ρδ
δ γ µ µ ρ µ µ µ µ ρ µ µ

 −
= = = +  + + + + + + + 

 

1

1

.
,

S
A Sf S

β δ γ µ µ
µ

δ γ µ µ

= + + +
 −
 + + + 
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If 0I = , the model (1) has a disease-free equilibrium 0 ,0,0,0AE
µ

 
=  
 

 for 

all parameter values. And we can get the basic reproduction number 

( )( )0
1 1

AR
A

β
µ α δ γ µ µ

=
+ + + +

 by using next generation method. The value 0R  

represents the average number of secondary infections when an infected person 

enters fully susceptible population. If 0I ≠ , 
1

0A SI µ
δ γ µ µ

−
= >

+ + +
 implies 

AS
µ

< . Hence, there is no positive equilibrium point if AS
µ

> . Now, we con-

sider the function ( )g S  defined on the interval 0, A
µ

 
 
 

, where  

( ) ( )

( ) ( )

1

1

1

,

, .

Sg S
A Sf S

h S I

β δ γ µ µ
µ

δ γ µ µ

δ γ µ µ

= − + + +
 −
 + + + 

− + + +

 

Obviously, ( ) ( )10 0g δ γ µ µ= − + + + <  and  

( ) ( )( )1 1 0
1

1 0A Ag R
A

β δ γ µ µ δ γ µ µ
µ µ α

 
= − + + + = + + + − >  + 

 when 0 1R > . 

Simultaneously, differentiating the function g, we gain  

( )
1

0h hg S
S I

µ
δ γ µ µ

∂ ∂′ = − >
∂ + + + ∂

. Because ( )g S  is monotonically increasing 

in the interval 0, A
µ

 
 
 

, ( )0 0g <  and 0Ag
µ

 
> 

 
, the equation ( ) 0g S =  has 

only one positive root by the zero theorem. That is, there exists a unique en-

demic equilibrium ( )* * * * *, , ,E S I Q R=  with * 0, AS
µ

 
∈ 
 

.  

3.2. The Stability of Equilibrium Points 

In the biological sense, we analyze the stability of the disease-free equilibrium 
point and the endemic equilibrium point.  

Theorem 3.2. The disease-free equilibrium 0E  of system (1) is globally 
asymptotically stable if 0 1R <  and unstable if 0 1R > .  

Proof. Consider the Jacobian matrix of system (1) at 0E   

( ) ( )

( )

1

10
1

2

0 0

0 0 0 .

0 0
0

A
A

A
J E

A

βµ
µ α

β δ γ µ µ
µ α

δ ρ µ µ
γ ρ µ

 − − + 
 

− + + +=  + 
 − + +
  − 

 

The characteristic equation of system (1) at 0E  is  

( ) ( ) ( )2
2 1

1

0.A
A

βλ µ λ ρ µ µ λ δ γ µ µ
µ α

 
+ + + + − + + + + =     + 
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Clearly, 1,2 0λ µ= − < , ( )3 2 0λ ρ µ µ= − + + <  and the positive and negative 
of the fourth eigenvalue depends on 0R . That is,  

( ) ( )( )4 1 1 0
1

1 0A R
A

βλ δ γ µ µ δ γ µ µ
µ α

= − + + + = + + + − <
+

 when 0 1R < ,  

4 0λ >  when 0 1R > . Hence the disease-free equilibrium 0E  is locally asymp-
totically stable if 0 1R <  and unstable if 0 1R > . 

Then we prove the global stability of the system (1) at the equilibrium 0E  
when 0 1R < . Taking the Lyapunov function ( ) ( )1W t I t=  into consideration, 
we get  

( ) ( )

( )

( )( )

1 1

1
1

1 0

,

1 0.

SW I
f S I

A I
A

R I

β δ γ µ µ

β δ γ µ µ
µ α

δ γ µ µ

 
= − + + +  
 
 

≤ − + + + + 
= + + + − ≤



 

Thus if 0 1R < , 1 0W ≤ . And 1 0W =  if and only if 0I = . In this case, 
d
d
S A S
t

µ= −  indicates AS
µ

→  as t →∞ . Similarly, 0Q →  and 0R →  as 

t →∞ . So the largest positive invariant set in ( ){ }1, , , : 0S I Q R W∈Γ =  is the 

singleton 0E . By Liapunov-Lasalle theorem, 0 ,0,0,0AE
µ

 
=  
 

 is globally 

asymptotically stable in Γ .  
Theorem 3.3. If 0 1R > , the endemic equilibrium point *E  of the system (1) 

is globally asymptotically stable in the region ( ){ }, , , : 0S I Q R IΩ = Γ − ∈Γ = .  
Proof. Consider the Jacobian matrix of system (1) at *E   

( )

( ) ( )

( ) ( ) ( )

( )

* *2 * *2
2 1

2 * * 2 * *

* *2 * *2
* 2 1

12 * * 2 * *

2

0 0
, ,

.0 0
, ,

0 0
0

I I S S
f S I f S I

I I S SJ E
f S I f S I

β α β β α β
µ

β α β β α β
δ γ µ µ

δ ρ µ µ
γ ρ µ

 + +
− − − 
 
 

+ + = − + + + 
 
 − + +
  − 

 

Let 
( )

* *2
2

1 2 * *,
I IC
f S I

β α β+
=  and 

( )
* *2

1
2 2 * *,

S SC
f S I

β α β+
= , then 

( ) ( )
( )

1 2

1 2 1*

2

0 0
0 0

.
0 0
0

C C
C C

J E

µ
δ γ µ µ

δ ρ µ µ
γ ρ µ

− − − 
 − + + + =
 − + +
 

− 

 

Therefore the characteristic equation of system (1) at *E  is  

( ) ( ) ( ) ( ){ }2 1 1 2 1 2 0.C C C Cλ µ λ ρ µ µ λ µ λ δ γ µ µ+ + + + + + + + + + − + =        

Obviously, 1 0λ µ= − < , ( )2 2 0λ ρ µ µ= − + + <  and the other two eigenva-
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lues are determined by the following quadratic equation  

( )
( ) ( )

2
1 1 2

1 1 2 1 2 0

C C

C C C C

λ µ δ γ µ µ λ

µ δ γ µ µ

+ + + + + + −  
+ + + + + − + =  

 

2
1 2 0,a aλ λ⇒ + + =  

where  

( )
( ) ( )

1 1 1 2

2 1 1 1 2

,

.

a C C

a C C

µ δ γ µ µ

δ γ µ µ µ δ γ µ µ

= + + + + + −  
= + + + + + + + −  

 

By utilizing Routh-Hurwitz criteria, we know that the system is stable if 

1 2, 0a a >  and unstable if 1 2, 0a a < . From the second equation of (4), we ob-
tain ( )1 2Cδ γ µ µ+ + + > , thus all eigenvalues have negative real parts. The en-
demic equilibrium *E  is locally asymptotically stable. 

Now we confirm the global stability at the equilibrium *E  when 0 1R > . 
The first two equations of system (1) do not contain Q and R, so we consider the 
following Lyapunov function in the positive quadrant of the two-dimensional 
plane SI.  

( )
( )
( )*

* *
* *

2 **

,
d ,

,
S

S

l S I IW t S S x I
Il x I

 = − − + Ψ 
 ∫  

where ( ) ( ) ( ), , 1 ln , 0
,
Sl S I x x x x

f S I
β

= Ψ = − − > . Clearly, : +Ψ →   attains 

its global minimum at 1x =  and ( )1 0Ψ = . Besides, the function 

( )
( )
( )*

* *
*

*

,
d

,
S

S

l S I
S S S x

l x I
ϖ = − − ∫  has the global minimum at *S S=  and 

( )* 0Sϖ = . Then, ( ) 0xΨ ≥  for any 0x >  and ( ) 0Sϖ ≥  for any 0S > . 

Consequently, ( )2 0W t ≥  with equality holding if and only if 
( ) ( )
* * 1

S t I t
S I

= =  

for all 0t ≥ . And ( ) ( ) ( )
* *

* * * *
1* *

,
,

S Il S I I I
f S I
β δ γ µ µ= = + + + , So the derivative 

function of ( )2W t  is given by  

( )
( )
( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )( )

( ) ( )
( )

* * *

2 *

* * *

1*

* *
* * * *

*

*
* * *

** * *

,
1 1

,

,
1 1

, ,,

,
1 , ,

,

,
, 1

,

l S I IW S I
Il S I

l S I SI I SIA S I
f S I I f S Il S I

l S I
S S l S I I l S I I

l S I

l S I II Il S I I
I Il S I I

β βµ δ γ µ µ

µ

    = − + −     
      = − − − + − − + + +              
 
 = − − − + −
 
 

 
+ − − 
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( ) ( )
( ) ( ) ( )

( )
( )
( )

( ) ( )
( )

( )
( )

( )
( )

( ) ( )
( ) ( ) ( )

( )
( )
( )

* * *
* * * *

** * *

* * *
* * *

* * *

* * *
* * * *

** *

, , ,
1 , 1

,, ,

, , ,
, 3

, , ,

, ,,
1 , 1

,, ,

l S I l S I l S I IIS S l S I I
l S IIl S I l S I I

l S I l S I l S I
l S I I

l S I l S I l S I

l S I l S Il S I IS S l S I I
l S I Il S I l S I

µ

µ

   
   = − − + − − + +
   
   
 
 − + + −
 
 

    
    = − − + − −
    
    

( ) ( )
( )

( )
( )

( )
( )

* * *
* * *

* * *

, , ,
,

, , ,

l S I l S I l S I
l S I I

l S I l S I l S I

      
      − Ψ +Ψ +Ψ
      

      

 

Due to  

( ),
0 for all 0 and 0,

l S I
S I

S
∂

> > ≥
∂

 

( ),
0 for all 0 and 0,

l S I
S I

I
∂

< ≥ ≥
∂

 

we have ( ) ( )
( )

* *
*

*

,
1 0

,

l S I
S S

l S I
µ

 
 − − ≤
 
 

, 
( )
( )

( )
( )

*

**

,,
1 0

,,

l S Il S I I
l S I Il S I

  
  − − ≤
  
  

, thus 

( )2 0W t ≤  and 2 0W =  if and only if *S S=  and *I I= . By the Liapu-
nov-Lasalle theorem, all solutions starting in the positive quadrant of SI-plane 

with AS I
µ

+ ≤  approach ( )* *,S I  at t →∞ . In this case, the differential eq-

uation for Q has the limiting equation ( )*
2

d
d
Q I Q
t

δ ρ µ µ= − + +  which im-

plies *Q Q→  as t →∞ , and similarly, the limiting equation for R is 

* *d
d
R I Q R
t

γ ρ µ= + −  so that *R R→  as t →∞ . Therefore, by Lemma 2.3, 

the endemic equilibrium ( )* * * * *, , ,E S I Q R=  is globally asymptotically stable 

in the region Ω  for the system (1). This completes the proof.  

4. Dynamics of the Stochastic SIQR Model  
4.1. Existence and Uniqueness of the Global Positive Solution 

In order to study the dynamics of stochastic models, the primary question to be 
considered is whether the solution is global and nonnegative existence. Although 
the coefficients of the model (2) satisfy the local Lipschitz condition, it’s not 
enough to prove that the solution does not explode within a finite time for any 
given initial value. Hence in this section, we will show that the solution of model 
(2) is positive and global. 

Theorem 4.1. For any given initial value  
( ) ( ) ( ) ( ) ( )( ) 40 0 , 0 , 0 , 0X S I Q R += ∈ , there exists a unique solution 

 
( ) ( ) ( ) ( ) ( )( ), , ,X t S t I t Q t R t=  of system (2) on 0t ≥ , which is in 4

+  with 
probability one.  
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Proof. Since the system (2) has locally Lipschitz continuous coefficients, then 
for any initial value ( ) 40X +∈ , system (2) has a unique local solution ( )X t  
on [ )0, eτ , where eτ  is the explosion time. To verify this solution is global, we 
only need to show that . .e a sτ = ∞ . Now define the stopping time τ +  as  

[ ) ( ) ( ) ( ) ( ){ }{ }inf 0, : min , , , 0 .et S t I t Q t R tτ τ+ = ∈ ≤  

Set inf ∅ = ∞  (∅  denotes the empty set). Obviously eτ τ+ < , if we can 
show . .a sτ + = ∞ , then . .e a sτ = ∞ . Assume that this statement is false, then 
there exists a constant 0T >  such that ( ) 0Tτ + < > . 

Define a 2C -function 4:V + →   by  

( ) ( ), , , ln .V S I Q R SIQR=  

Applying Itô’s formula, for all )0,t τ +∈  , we obtain  

( ) ( )1 1 2 2 3 3d , , , d d d d ,
,

I SV S I Q R LV t B B B
f S I

σ σ σ −
− − −  

where  

( ) ( ) ( ) ( )

( ) ( )

2

3
1

2

2 23
1 2 2

1
, 2 , ,

1 1 1 .
2 2 , 2

IA I SLV
S f S I f S I f S I

S I I Q
f S I Q R R

σβ βµ δ γ µ µ

σ
σ δ ρ µ µ σ γ ρ µ

 
= − − − + − + + +  

 

 
− − + − + + − + + −  

 

 

Since , , , 0S I Q R >  for all )0,t τ +∈  , and ( ), 1f S I ≥ , we have  

( ) ( ) ( )2 22 2
1 2 1 2 3 3

14 .
2

LV I I Sµ δ γ µ ρ µ β σ σ σ σ ≥ − + + + + + − − + + +   

Hence,  

( )

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )
( ) ( )( ) ( )

1 20

2 22 2
1 2 3 3 1 1 2 2

3 30

, , ,

0 , 0 , 0 , 0 4

1 d
2

d .
,

t

t

V S I Q R

V S I Q R I

I S B t B t

I S
B

f S I

µ δ γ µ ρ µ β θ

σ σ σ θ σ θ θ σ σ

θ θ
σ θ

θ θ


≥ − + + + + + +


+ + + + − −       

−
−

∫

∫

    (5) 

From the definition of τ + , it follows that ( ) ( ) ( ) ( ) 0S I Q Rτ τ τ τ+ + + + = . 
Therefore,  

( ) ( )lim , , , lim ln .
t t

V S I Q R SIQR
τ τ+ +→ →

= = −∞  

Letting t τ +→  in (5) and then taking the expectation on both sides of (5), 
we have that  

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )
1 20

2 22 2
1 2 3 3

0 , 0 , 0 , 0 4

1 d ,
2

V S I Q R E

I I S

τ
µ δ γ µ ρ µ

β θ σ σ σ θ σ θ θ

+ 
−∞ ≥ − + + + + +


+ + + + + > −∞       

∫
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which is a contradiction and we confirmed . .a sτ + = ∞ . This completes the 
proof.  

Remark 4.2. The region Γ  is almost surely positive invariant of stochastic 
model (2), refer to [12]. In addition, from biological consideration, we next focus 
on the disease dynamics of model (2) in the bounded set Γ .  

4.2. The Extinction and Persistent in the Mean of the Disease  

One of the most concerning issues in epidemiology is how to establish the thre-
shold condition for the extinction and persistence of the disease. The target of 
this section is to study the extinction and persistence of the disease. First of all, 
we define corresponding random threshold as follows:  

( )

( )

2 2
1 3

0
2 2

1 1 1

2
.

12
2

s A A A
R

A

β µ α σ

µ α δ γ µ µ σ

+ −
=

 + + + + + 
 

 

Theorem 4.3. Let ( ) ( ) ( ) ( ) ( )( ), , ,X t S t I t Q t R t=  be a solution of system (2) 
for any given initial value ( )0X ∈Γ . 

1) If 0 1sR <  and 
( )12

3

A
A

β µ α
σ

+
≤ , then  

( ) ( )2
1 1 0

ln 1limsup 1 0 . .,
2

s

t

I t
R a s

t
δ γ µ µ σ

→∞

 ≤ + + + + − < 
 

        (6) 

2) If 
2

2
3

2
1 1

12
2

βσ
δ γ µ µ σ

>
 + + + + 
 

, then  

( ) 2
2

1 12
3

ln 1limsup 0 . .,
22t

I t
a s

t
β δ γ µ µ σ
σ→∞

 ≤ − + + + + < 
 

       (7) 

which means that ( )I t  tends to zero exponentially a.s., i.e. the disease dies out 
with probability 1. Furthermore,  

( )lim . ..
t

AS t a s
µ→∞

=                        (8) 

Proof. Define Lyapunov function ln I , by Itô’s formula, we get that  

( ) ( ) ( )

( )

( ) ( )

2
2 2

1 1 3 2

1 1 3 3

1 1 3 3

1 1d ln d
, 2 2 ,

d d
,

d d d ,
, ,

S SI t t
f S I f S I

SB B
f S I

S St B B
f S I f S I

β δ γ µ µ σ σ

σ σ

ψ σ σ

  = − + + + + −  
   

− +

 
= − +  

 

     (9) 

where ( ) 2 2 2
3 1 1

1 1
2 2

x x xψ σ β δ γ µ µ σ = − + − + + + + 
 

. 

Suppose 1) holds. Noting that ( )xψ  is monotone increasing for 

2
3

0,x β
σ

 
∈  
 

 and 
( )12

3

A
A

β µ α
σ

+
≤ , we have  
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( ) 2
1 3

0 .
,

S A
f S I A

β
µ α σ

≤ ≤ ≤
+

 

Then,  

( ) ( )1 1 3 3
1

d ln d d d .
,

A SI t t B B
A f S I

ψ σ σ
µ α

 
≤ − + + 

 

Integrating both sides of the above inequality from 0 to t and dividing by t, we 
obtain  

( ) ( ) ( ) ( )1
10

1

ln ln 01 d ,
tI t I B t M tA

t t A t t t
ψ θ σ

µ α
 

≤ + − + + 
∫        (10) 

where ( ) ( )
( ) ( )( ) ( )3 30

d
,

t S
M t B

f S I
θ

σ θ
θ θ

= ∫ . By the strong law of large numbers 

for local martingales [17], we derive that 
( ) ( )1lim lim 0 . .t t

M t B t
a s

t t→∞ →∞= = . 

Since 0 1SR < , Equation (10) becomes  

( )

( )

( )

( )

1

2
2 2
3 1 1

1 1

2 2
1 32

1 1
2 2

1 1 1

2
1 1 0

ln
limsup

1 1
2 2

21 1
12 2
2

1 1 0 . ..
2

t

s

I t A
t A

A A
A A

A A A

A

R a s

ψ
µ α

σ β δ γ µ µ σ
µ α µ α

β µ α σ
δ γ µ µ σ

µ α δ γ µ µ σ

δ γ µ µ σ

→∞

 
≤  + 

     = − + − + + + +     + +     
 
 + −   = + + + + −      + + + + +    

 = + + + + − < 
 

 

We obtain the desired assertion (6). 
If 2) holds, from Equation (9), we get  

( ) ( )
( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

2
2

2
3 2 20

3 3

12
1 1 1

2
2

1 120
3

1
1

ln 1 1
2 2,

ln 01 d
2

1 1 d
22

ln 0
.

t

t

I t S
t t f S I

I B t M t
t t t

t

I B t M t
t t t

θ β βσ
σ σθ θ

δ γ µ µ σ θ σ

β δ γ µ µ σ θ
σ

σ

  
= − − +    

 − + + + + + − +  
  ≤ − + + + +  

  

+ − +

∫

∫

    (11) 

Since 
2

2
3

2
1 1

12
2

βσ
δ γ µ µ σ

>
 + + + + 
 

, Equation (11) becomes  

( ) 2
2

1 12
3

ln 1limsup 0 . ..
22t

I t
a s

t
β δ γ µ µ σ
σ→∞

 ≤ − + + + + < 
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We obtain the desired assertion (7). And so  

( )lim 0 . ..
t

I t a s
→∞

=                          (12) 

From the first two equations of system (2), there is  

( ) ( )( ) ( ) ( ) ( ) ( )1 1 1d d d .S t I t A S t I t t I B tµ δ γ µ µ σ+ = − − + + + −     (13) 

Integrating both sides of (13) from 0 to t and dividing by t, we have  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )1 1
10 0 0

0 0

d d d .
t t t

S t I t S I
t t

A S I I B
t t t

δ γ µ µ σµ θ θ θ θ θ θ

+ +
−

+ + +
= − − −∫ ∫ ∫

 

Therefore,  

( ) ( ) ( )11 ,
H tAS t I t

t
δ γ µ µ

µ µ
+ + +

= − −              (14) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( )1
1 10

0 0
d

tS t I t S I
H t I Bσ

θ θ
µ µ µ
+ +

= − + ∫ . Clearly,  

( )1lim 0 . .t

H t
a s

t→∞ =  and from (12), we have  

( ) ( ) ( )11lim lim lim . ..
t t t

H tA AS t I t a s
t

δ γ µ µ
µ µ µ→∞ →∞ →∞

+ + +
= − − =  

Therefore the assertion (8) holds. The conclusion is proven.  
Next, the conditions for the persistence of the disease are presented.  
Theorem 4.4. Suppose that 0 1SR > , then the solution 

 
( ) ( ) ( ) ( ) ( )( ), , ,X t S t I t Q t R t=  of system (2) is persistent in the mean for any 

given initial value ( )0X ∈Γ . Moreover,  

( ) *liminf 0,
t

I t I
→∞

≥ >                   (15) 

( ) 1
*liminf 0,

t

A S t Iδ γ µ µ
µ µ→∞

+ + +
− ≥ >            (16) 

( ) *
2

liminf 0,
t

Q t Iδ
ρ µ µ→∞

≥ >
+ +

              (17) 

( ) ( )
( )

2
*

2

liminf 0,
t

R t I
γ ρ µ µ ρδ
µ ρ µ µ→∞

+ + +
≥ >

+ +
            (18) 

where  

( ) ( )
( ) ( )

2
1 1 1 0

*
1 2 3

1 1
2 .

SA R
I

A A

µ µ α δ γ µ µ σ

β µ δ γ µ µ α µ α

 + + + + + − 
 =

 + + + + + 
 

Proof. Since X ∈Γ , we have  

( ) ( )( )

( )( ) ( )( )

1 1

32

1 1

, ,

, ,

S A A S
f S I A f S I A

AA I SI
f S I A f S I A

β β βµ
µ α µ α µ

βαβα
µ α µ α

 
= − − + +  

− −
+ +
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32

1 1 1 1

2 3
1 1

.

AAA A S I SI
A A A A

S A A I
A A

βαβαβ βµ
µ α µ α µ µ α µ α

βµ β α α
µ α µ α µ

 
≥ − − − − + + + + 

 
≥ − + + +  

 

Then  

 

( ) ( ) ( )

( )

( )

( )

2
2 2

1 1 3 2
1

1 1 3 3

2 2
2 3

1 1 2
1 1

2 3 1 1 3 3
1

1 1d ln d
, 2 2

d d
,

1 d
2 2

d d d .
,

S AI t t
f S I A

SB B
f S I

AS t
A A

A A SI t B B
A f S I

β δ γ µ µ σ σ
µ α

σ σ

σβµ δ γ µ µ σ
µ α µ α

β α α σ σ
µ α µ

  ≥ − + + + + −  
  +  

− +

  ≥ − + + + + −  +   +  
 

− + − + +  

   (19) 

Integrating both sides of (19) from 0 to t, there is  

( ) ( )

( )
( )

( ) ( ) ( )

2 2
2 3

1 1 20
1 1

2 3 1 10
1

ln ln 0

1d
2 2

d .

t

t

I t I

A
S t t

A A

A A I B t M t
A

σβµ θ θ δ γ µ µ σ
µ α µ α

β α α θ θ σ
µ α µ

−

 ≥ − + + + + − +   +

 
− + − + +  

∫

∫

 

From (14), we have  

( )
( )

( ) ( ) ( )

( )

( ) ( ) ( )

2 2
2 3

1 1 2
1 1

1 2 3 20
1

2
1 1 0

1 2 3 20
1

1ln
2 2

d

1 1
2

d ,

t

S

t

AAI t t
A A

AA I H t
A

R t

AA I H t
A

σβ δ γ µ µ σ
µ α µ α

β δ γ µ µ α α θ θ
µ α µ

δ γ µ µ σ

β δ γ µ µ α α θ θ
µ α µ

  ≥ − + + + + −  +   +  
  

− + + + + + +  +   
 = + + + + − 
 

  
− + + + + + +  +   

∫

∫

 

where ( ) ( ) ( ) ( ) ( )2 1 1 1
1

ln 0H t I B t M t H t
A

βµσ
µ α

= − + −
+

. Obviously,  

( )2lim 0 . .t

H t
a s

t→∞ = . By Lemma 2.2 and 0 1SR > , we deduce that  

( )
( ) ( )

( ) ( )

2
1 1 1 0

*
1 2 3

1 1
2liminf 0.

S

t

A R
I t I

A A

µ µ α δ γ µ µ σ

β µ δ γ µ µ α µ α→∞

 + + + + + − 
 ≥ = >

 + + + + + 
 

This is the required inequality (15), and from (14), we have  

( ) ( ) ( )11 .
H tA S t I t

t
δ γ µ µ

µ µ
+ + +

− = +  
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Therefore,  

( )

( )1 1
*

liminf

liminf 0,

t

t

A S t

I t I

µ
δ γ µ µ δ γ µ µ

µ µ

→∞

→∞

−

+ + + + + +
= ≥ >

 

the inequality (16) is valid. From the third equation of system (2), we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 20 0 0
0 d d d .

t t t
Q t Q I Q Q Bδ θ θ ρ µ µ θ θ σ θ θ− = − + + −∫ ∫ ∫  

Then,  

( ) ( ) ( )3

2

,
H t

Q t I t
t

δ
ρ µ µ

= +
+ +

 

where ( ) ( ) ( ) ( ) ( )2
3 20

2 2

0
d

tQ Q t
H t Q Bσ

θ θ
ρ µ µ ρ µ µ

−
= −

+ + + + ∫ . It follows from the 

strong law of large numbers for local martingales that 
( )3lim 0 . .t

H t
a s

t→∞ = , 

hence (17) holds for  

( ) ( )
2

*
2

liminf liminf

0.

t t
Q t I t

I

δ
ρ µ µ

δ
ρ µ µ

→∞ →∞
=

+ +

≥ >
+ +

 

The last equation of system (2) gives  

( ) ( ) ( ) ( ) ( )
0 0 0

0 d d d .
t t t

R t R I Q Rγ θ θ ρ θ θ µ θ θ− = + −∫ ∫ ∫  

Then,  

( ) ( ) ( ) ( ) ( )0
.

R R t
R t I t Q t

t
γ ρ
µ µ µ

−
= + +  

So we have  

( ) ( ) ( )

( )
( )

( )

* *
2

2
*

2

liminf liminf liminf

0.

t t t
R t I t Q t

I I

I

γ ρ
µ µ
γ ρδ
µ µ ρ µ µ

γ ρ µ µ ρδ
µ ρ µ µ

→∞ →∞ →∞
= +

≥ +
+ +

+ + +
= >

+ +

 

This is the required inequality (18).  

4.3. Numerical Simulations  

In this section, we numerically simulate solutions of the models by using the 
Milstein’s method [18] to confirm main results. We compare the threshold pa-
rameters of the deterministic model and stochastic model to illustrate the effect 
of white noise on the system. The model (2) can be rewritten as the following 
discrete equation:  
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( )

( )

( )

1
1 2 3

3

1 2 3
2

23

1 2 3

1 1
1 2 3

2
2 31

1
1 2

1

1

1 ,
2 1

1

1
2 1

k k
k k k

k k k k

k k
k

k k k k

k k
k

k k k k

k k
k k k

k k k k

k k
k k k k

k k

S I
S S A S t

S I S I
S I

t
S I S I

S I
t

S I S I

S I
I I I t

S I S I

S I
I t I t

S I

β
µ

α α α
σ

ε
α α α

σ
ε

α α α

β
δ γ µ µ

α α α

σσ
σ η η

α α

+

+

 
= + − − ∆ + + + 

− ∆
+ + +

− − ∆
+ + +

 
= + − + + + ∆ + + + 

− ∆ − − ∆ +
+ +

( )

( )( ) ( )
( )

3
2

23

1 2 3
2

22
1 2 2

1

1 ,
2 1

1 ,
2

,

k
k k

k k
k

k k k k

k k k k k k k k

k k k k k

t
S I

S I
t

S I S I

Q Q I Q t Q t Q t

R R I Q R t

ε
α

σ
ε

α α α

σ
δ ρ µ µ σ ξ ξ

γ ρ µ

+

+















 ∆ +



+ − ∆ + + +

 = + − + + ∆ − ∆ − − ∆

 = + + − ∆

 

where ,k kε η  and kξ , 1,2, ,k n=   are the Gaussian random variables 
( )0,1N . Similarly, the model (1) can also be written in the above form. We just 

need to delete the disturbance term and will not repeat it here. 
Example 4.3.1 For the deterministic system (1), we choose the initial value 
( ) ( ) ( ) ( )( ) ( )0 , 0 , 0 , 0 12,8,6,3S I Q R =  and the parameter values 1A = , 

0.4β = , 0.25δ = , 0.4γ = , 0.4ρ = , 0.1µ = , 1 0.3µ = , 2 0.25µ = , 

1 0.3α = , 2 0.1α = , 3 0.08α = . By Matlab software, we get 0 0.9524 1R = <  
and find that the class I, Q and R tend to 0, which means that the disease dies 
out (see Figure 1(a)). Theorem 3.2 is illustrated. Then, let  

( ) ( ) ( ) ( )( ) ( )0 , 0 , 0 , 0 9,8,8,8S I Q R =  and 6A = , 0.4β = , 0.25δ = , 0.4γ = , 
0.4ρ = , 0.2µ = , 1 0.3µ = , 2 0.25µ = , 1 0.03α = , 2 0.03α = , 3 0.07α =  to 

draw Figure 1(b). It shows that the disease becomes endemic and 0 5.4920 1R = > . 
The condition of theorem 3.3 is satisfied. 

Example 4.3.2 For the stochastic system (2), we choose the initial value 
( ) ( ) ( ) ( )( ) ( )0 , 0 , 0 , 0 5,2,1,1S I Q R =  and the parameter values 1A = , 0.6β = , 

0.3δ = , 0.3γ = , 0.3ρ = , 0.1µ = , 1 0.2µ = , 2 0.15µ = , 1 0.5α = , 2 0.1α = , 

3 0.2α = , 1 0.01σ = , 2 0.01σ = , 3 0.3σ = . By calculation,  

0 0.9722 1SR = <  and 
( )12

3 0.09 0.36
A

A
β µ α

σ
+

= < = . Hence, the condition 1)  

of theorem 4.3 is satisfied. In Figure 2(a), the class I exponentially decays to zero 
which indicates the extinction of the disease. Next, we let parameter 3 0.7σ =  
and others are the same as above. In this case,  

2
2
3

2
1 1

0.49 0.36
12
2

βσ
δ γ µ µ σ

= > =
 + + + + 
 

. Therefore, the condition 2) of  

theorem 4.3 is satisfied and the disease dies out (Figure 2(b)). Finally, let 
( ) ( ) ( ) ( )( ) ( )0 , 0 , 0 , 0 5,4,4,4S I Q R = , 2A = , 1 0.2α = , 2 0.1σ = , 3 0.09σ =  
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and keep the other parameters, we get 0 2.5945 1SR = > . According to theorem 
4.4, all classes of the system (2) are persistent and are shown in Figure 2(c).  

 

 
(a) 

 
(b) 

Figure 1. Dynamics of the deterministic system (1). 
 

 
(a) 
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(b) 

 
(c) 

Figure 2. Dynamics of the stochastic system (2). 
 

Example 4.3.3 Now, we reselect the parameters  
( ) ( ) ( ) ( )( ) ( )0 , 0 , 0 , 0 5, 2, 2, 2S I Q R = , 2A = , 0.6β = , 0.3δ = , 0.3γ = , 

0.3ρ = , 0.1µ = , 1 0.2µ = , 2 0.15µ = , 1 0.5α = , 2 0.1α = , 3 0.2α = , 

1 0.01σ = , 2 0.01σ = , 3 0.4σ =  and give a set of comparison charts of simula-
tion results. In Figure 3, 0 00.9182 1 1.2121SR R= < < = , the class S, I, Q and R of 
deterministic model all exist, which means that the disease break out, but after 
adding white noise, except for the class S, the others tend to be 0. It reveals that 
the random fluctuations can suppress disease prevail. 

5. Summary and Discussions  

In this work, we investigate the deterministic and stochastic SIQR epidemic 
models with the specific nonlinear incidence. This incidence rate can become 
multiple types, and is more abundant than saturation incidence. We obtain the  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. The random fluctuations can suppress disease break out. 
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dynamics properties of the SIQR model based on two threshold parameters 0R  
and 0

SR . And owing to 0 0
SR R< , there may be an interesting situation 

0 01SR R< < , which indicates that the random fluctuations can suppress disease 
break out. Moreover, we simulate them with computer software and the results 
of the simulation are also consistent with the theoretical results. It can provide 
us with some useful control strategies to regulate disease dynamics. 

In future work, we will further consider the delayed SIQR model with this in-
cidence and the SIQS model without permanent immunity. 
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Abstract 
Exoplanet transit timing variation is a method to find exoplanets. To under-
stand this method better, I wrote a computer program in python to simulate 
the transit of exoplanets. I use my program to simulate the transit timing var-
iation observed in the Kepler-19 system. I make a simple simulation of Kep-
ler-19 system, and this simulation shows that the variation in transit timing 
due to other planets is very obvious for Kepler-19b, the transiting planet, 
which means the transit timing variation method is very useful for finding 
exoplanet in Kepler-19 system. The whole paper is an illustration for that. 
The simulation I make is relatively simple but it still corresponds to the law of 
TTV, and because of its simplicity, it can help more people understand. 
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1. Introduction 

This paper presents a program that relies primarily on transit photometry and 
transit timing in the search for exoplanets to simulate the transit timing varia-
tion observed in the Kepler-19 system. Transit timing variation is a phenome-
non that the period of the planet transiting the star varies due to the gravitation-
al effects of other planets orbiting the star. And we can use this phenomenon to 
discover other planets which don’t transit base on the transit photometry me-
thod, which means that the light curve of a star can indicate the existence of an 
exoplanet that does not transit. There are also other methods to discover exop-
lanet indirectly, and transit timing variation and other methods can check each 
other to make sure an exoplanet really exists. So far, the transit timing variation 
method has only discovered two exoplanets, Kepler-19c [1] and Kepler-9d. Be-
fore 2012, the radial-velocity method was the most productive technique for 
finding exoplanets. After 2012, the transit method becomes the most productive 
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because of the use of the Kepler spacecraft. But due to their limitations, many 
exoplanets will be ignored. For example, if the orbital plane of an exoplanet is 
perpendicular to the line connecting the star surrounded by this exoplanet to the 
Earth, then we will not be able to observe the change in radial velocity and can-
not directly know the existence of this exoplanet through transit, which means 
both radial-velocity method and transit photometry method don’t work in this 
case. However, transit timing variation can solve this problem and that’s why I 
am so interested in it. TTV is very useful as a supplement and I want to know 
about its feasibility and want to know whether it can do more than being a sup-
plement. What’s more, I hope that more people can know more about it. I wrote 
a computer program to simulate the transit timing variation of Kepler-19b to 
better understand the system. The program uses the initial velocity to update 
force and acceleration, and then uses force and acceleration to update position-
ing. Current positioning then updates the velocity, and the process repeats. I 
calculated the initial velocity using Kepler’s Second Law and Kepler’s Third Law 
and I calculated the difference between periods to make a period variation graph 
to show the transit timing variation of Kepler-19b due to Kepler-19c and Kep-
ler-19d. I use geometry to calculate the area of the star that is covered by the 
transiting planet, and this can be used to draw a light curve of Kepler-19. 

2. Simulations 
2.1. Updating the Position with an Initial Velocity 

Following are the equations I use to update the position of the first planet.  

final initialv v a t= + ×                         (1) 

final initial
F tv v

m
×

= +                         (2) 

final initial finalx x v t= + ×                       (3) 

By expressing and calculating velocity, force, and position in terms of x, y, and 
z coordinates, we can plot them in a three-dimensional coordinate system. In 
order to use Equation (2) above to update the velocity, we need to calculate the 
forces between the planet and the star using Newton’s Gravitational law. G is the 
gravitational constant, M is the mass of the star, and m is the mass of the planet.  

2
ˆG M mF r

r
× ×

=


                        (4) 

To use Equation (4) and to express and calculate force in terms of x, y, and z 
direction, we need to calculate the Euclidean distances in x, y, and z direction. 

The force in x direction is given by  

ˆx
x

r
F F r

r
= × ×  

Similarly, the force in y and z direction can be calculated using the method 
above. 

As a result, we can calculate the velocity in terms of x, y, and z direction and 
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then update the position in terms of x, y, and z direction. 
We can use the new position to calculate the new forces between celestial bo-

dies and then use the new forces to update the velocity and position in x, y, and z 
direction again. 

In this process, knowing the mass of the celestial bodies, the only variation 
that I need is the initial velocity and the initial Euclidean distance between the 
two celestial bodies. 

All the methods mentioned above allow us to simulate the motion of many 
celestial bodies. To get a graph about the motion of many celestial bodies, we can 
record every position that the celestial bodies pass through. 

I randomly set some properties of celestial bodies to check whether my simu-
lation can work (see Table 1). 

In order to make the planets orbit around the star, we need to know some-
thing about the initial velocity: 

If  

initial ˆ ,GMv r
r

= ×  

planets will have a circular orbit. 
If  

initial
2ˆ ˆ,GM GMr v r

r r
× < < ×  

planets will have an elliptical orbit. 
If  

initial
2 ˆ,GMv r

r
= ×  

planets will have a hyperbolic orbit and it will escape from the gravitational field 
of the star. 

The formulas for explanation are as follows: 
The orbital velocity:  

c gF F=  

2
1

2

mv GMm
r r

=  

1
GMv

r
=  

The escape velocity:  

KE U=  

2
2

1
2

GMmmv
r

=  

2
2GMv

r
=  

And then I make a graph to check. 
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Table 1. Some random data of celestial bodies. Celestial body 1 is the star. Initial velocities 
in y and z directions are 0. 

Name Mass (kg) Orbital radius (m) 
initial velocity (m/s) in  

x direction (see Figure 1) 

celestial body 1 5.95e24 0 −12 

celestial body 2 1e20 6,371,000 × 2 7900 

celestial body 3 3e21 6,371,000 3000 

celestial body 4 7e21 7,892,344 5000 

celestial body 5 9e22 10,376,476 7000 

 

 

Figure 1. The application of the process describe above.  

2.2. Using Maths to Calculate the Initial Velocity 

In reality, most of the orbits of celestial bodies are ellipses instead of circle. And 
the central celestial bodies will at one focus of the ellipse. To calculate the initial 
velocity of the celestial bodies, we need to use some formulas of ellipse. 

The semi-major axis is a, the semi-minor axis is b, and the focal length is c. 
Eccentricity:  

ce
a

=  

semi-minor axis:  
2 2 2b a c= −  

Area of ellipse:  

area πab=  

For a line between the star and the planet, the line will sweep out an area as 
the planet moves around the star for a small angle dθ  the area will be:  

( )21d d
2

A a c θ= × − ×  

As a result, the initial velocity can be calculated by combining the formulas 
above using Kepler’s second law:  

https://doi.org/10.4236/jamp.2019.78127


Z. Y. Zeng 
 

 

DOI: 10.4236/jamp.2019.78127 1865 Journal of Applied Mathematics and Physics 
 

( )2d 1 d π
d 2 d period
A aba c
t t

θ
= × − × =  

( ) initial
1 π
2 period

aba c v× − × =  

( )
( )

2 2

initial

2π 1

period

a a e
v

a e a

× × −
=

× − ×
 

Actually, we can apply all the things mentioned in this section on celestial bo-
dies which have circular orbit. The eccentricity of a circle is 0 and the semi-major 
axis is the radius of a circle. The formula of calculating the initial velocity of a 
circular-orbit planet will be:  

( )
( )

2 2

initial

2 π radius radius 1 0

period radius 0
v

a

× × × × −
=

× − ×
 

initial
2 π raidus perimeter

period time
v × ×

= =  

So we only need the semi-major axis, eccentricity, and the period to calculate 
the initial velocity. 

2.3. Period Variation 

The period of a planet is not constant because of the gravitational effects due to 
other planets. The period variation is one kind of transit timing variation. 

In order to know the differences between periods, I plot periods in a graph in 
a relatively long time. The way I calculate one period for a particular planet is to 
record every time when one of the planet passes from negative to positive. And 
then I calculate the differences between every two record time, which show us 
the periods of the planets. I randomly choose some data to draw the graph. See 
Table 2. 

2.4. Drawing a Light Curve 

To draw a light curve of the star, we need the relationship between the area 
blocked by the transiting planet and the surface area of the star that we can ob-
serve when it is not covered by the planet. To calculate the relationship between 
these two areas, we need to establish a two-dimensional system and put the cen-
ter of the star at the origin. Let the distance between the center of the planet and 
the center of the star be d (see Figure 2) star planetposition positiond = − . Because 
the radius of the orbit of the planet is relatively small compared to the distance 
between the whole system and the observer, we can let the radius of the planet be 

pR  and let the radius of the star be sR . Also because the arc is relatively small 
compared to the perimeter of the orbit, we can consider the velocity that planet 
moves toward the star as the linear velocity of the planet. The method of calcu-
lating the star’s area that is blocked by the planet is changing with respect to the 
change in the relative position of the planet and the star. 
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Figure 2. Period variation of a planet due to the gravitational effects of 
other planets. 

 
Table 2. Some random properties of celestial bodies. Celestial body 1 is the star. 

Name Mass(kg) eccentricity the average period 

celestial body 1 0.936 × mass of the sun 0 0 

celestial body 2 8.4 × mass of the earth 0.12 9.28716 

celestial body 3 31 × mass of the earth 0.21 28.731 

celestial body 4 55 × mass of the earth 0.05 62.95 

 
There are six conditions that need different methods to calculate the blocked 

area shown in Figure 3. 
1) when the planet is not blocking the star: area = 0;  
2) when ( )s pd R R≤ − +  and sd R≥ − ;  
3) when sd R< −  and ( )s pd d R R≥ > − − ;  
4) when ( )s pd R R> − −  and s pd R R≤ − ;  
5) when s pd R R> −  and sd R≤ ; 
6) when sd R>  and s pd R R≤ + .  
An example of calculating the blocked area is as follow.  
In condition 2 shown in Figure 4, the blocked area = area 1 + area 2. We can 

calculate the sectorial area of the star and the planet first. And then we can cal-
culate area1 by subtract the sectorial area of the star with triangle OAB, and use 
the same method to calculate area 2. 

We can use some similar methods to calculate the areas in other conditions. 
Using different methods in these conditions, I get the light curve of the star 

(see Figure 5). 

2.5. Using the Data of Kepler-19 

I use the data of Kepler-19 of Wikipedia (shown in Table 3) to run my program 
assuming that all the orbits of the Kepler-19 system are in the same plane. Fol-
lowing are my results (see Figures 6-8). 
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Table 3. The data of Kepler-19 system. 

Name Mass (kg) Eccentricity 
The average  
period (day) 

Radius (m) 

Kepler-19 0.936 × mass of the sun 0 0 0.85 × radius of the sun 

Kepler-19b 8.4 × mass of the earth 0.12 9.28716 2.209 × radius of the earth 

Kepler-19c 13.1 × mass of the earth 0.21 28.731 unknown 

Kepler-19d 22.5 × mass of the earth 0.05 62.95 unknown 

 

 

Figure 3. A transiting planet.  
 

 

Figure 4. The way to calculate blocked area in condition 2. 
 

 

Figure 5. The change in brightness of the star. x axis is time in 
seconds and y axis is the ratio of the brightness of the star.  
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Figure 6. The position of the celestial bodies in Kepler-19 system. 
 

 

Figure 7. The variation of period.  
 

 

Figure 8. The change in brightness of Kepler-19. x axis is time 
in seconds and y axis is the ratio of the brightness of the star.  

3. Conclusion 

I use python to simulate the gravitational effects on celestial bodies due to other 
celestial bodies, and I get the orbit of the planets orbiting around Kepler-19 and 
the light curve of Kepler-19. However, giving the limitation of my laptop, the 

https://doi.org/10.4236/jamp.2019.78127


Z. Y. Zeng 
 

 

DOI: 10.4236/jamp.2019.78127 1869 Journal of Applied Mathematics and Physics 
 

time step I use is not short enough to get accurate simulations. Using the time 
step of 100 seconds and a total time of 360,000,000 seconds, it takes 1 hour and 
20 minutes to run the program. To get a more accurate simulation, I need a bet-
ter computer to run the program. What’s more, I will try to do a program that 
can analyze the light curve of a star to get the information about the mass, radius, 
and many other properties of the planets which transits can be observed by us 
and of all the planets that are orbiting around the star. 
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Abstract 
Diffraction patterns of a rotated grating are investigated from both theoretical 
and experimental points of view. It is shown that as the grating rotates, the 
angle of deviation of each diffracted line relative to the incident light goes 
through a minimum, and that the angle between any two successive diffracted 
lines goes through a minimum value which is the same for all adjacent dif-
fracted lines. It is also shown that the angle between diffraction lines with 

1n =  and 1n = −  is not sensitive to small variations of the grating from 
being normal to the incident light. Finally, a method is suggested for deter-
mining the line distance of a diffraction grating with high accuracy. 
 

Keywords 
Diffraction Pattern, Rotated Grating, Angle of Deviation 

 

1. Introduction and Theory  

Rotating diffraction gratings have a number of applications. For example, a pair 
of counter rotating diffraction gratings can be used in laser beam scanners for 
obtaining a linear scan rate for a flat field recorder [1]. The Doppler frequency 
shift in various diffraction orders produced as a result of a rotating radial dif-
fraction grating can be used for optical modulation [2]. Rotating all-glass dif-
fraction gratings can be used as beam splitting frequency shifter in laser Doppler 
anemometers [3]. In this article, we study the general behavior of various dif-
fracted lines as a result of rotation of the diffraction grating. 

When a diffraction grating of line distance d is exposed to a light ray of wave-
length λ , the general equation for the condition of constructive interference is 
given by [4]  

( )sin sind nβ α λ− =                      (1) 

where n is any integer, β  is the angle of nth-order diffraction, and α  is the 
angle of incidence. Both α  and β  are considered positive if measured coun-
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terclockwise from the axis (normal to the diffraction grating) and negative if 
measured clockwise, as shown in Figure 1. 

Now suppose that we illuminate a diffraction grating by a monochromatic ray 
of light of wavelength λ  and then turn the grating, keeping the direction of the 
incident light fixed, starting from normal incidence, the angle through which the 
grating turns would become the angle of incidence for light, which is α  in Eq-
uation (1). However, instead of the diffraction angle β , let us study the angle of 
deviation θ  between a diffracted beam and the incident beam, as shown in 
Figure 2. As in the case of α  and β , the angle θ  is positive if measured 
counterclockwise from the direction of incident light and negative if measured 
clockwise. Obviously, in terms of the deviation angle θ , Equation (1) can be 
written as  

( )sin sin , 0, 1, 2,d n nθ α α λ+ − = = ± ±                (2) 

where α  is negative if the grating turns counterclockwise (Figure 2(a)) and 
positive if the grating turns clockwise (Figure 2(b)). 
 

 

 

Figure 1. Slant incidence of a monochromatic light on a diffraction 
grating. For the situation shown α  and 1β  are both positive. 

 

 

Figure 2. A diagram showing the angle of deviation θ  between a diffracted ray of light 
and the incident ray. The diffraction grating is rotated (a) counterclockwise ( 0α < ) and 
(b) clockwise ( 0α > ) relative to normal incidence. 
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The case 0n =  is trivial and leads to 0θ = . We are, however, interested in 
the higher-order diffractions and the behavior of θ  as a function of α . We 
shall only consider counterclockwise rotations of the diffraction grating ( 0α < ) 
since clockwise rotations can be obtained from the former by a symmetry opera-
tion on the experimental setup. From Equation (2) we have  

1sin sinn
d
λθ α α−  = + − 

 
                    (3) 

Let us investigate the behavior of this function, in particular, find out if there are 
any maxima or minima in θ ,  

2

d cos 1
d

1 sinn
d

θ α
α λ α

= −
 − + 
 

                   (4) 

This expression becomes zero when  

2

1 sin cosn
d
λ α α − + = 

 
                  (5) 

which reduces to  

sin
2
n

d
λα = −                          (6) 

and becomes infinity if  

2

1 sin 0n
d
λ α − + = 

 
                    (7) 

which reduces to  

sin 1n
d
λ α+ = ±                        (8) 

In the last equation, the positive root will not be considered since it gives 
0α >  (up to 5n =  for the choice of 632.8 nmλ =  and 3342 nmd = ), cor-

responding to a clockwise rotation. Therefore, the possibility of a minimum or 
maximum in Equation (3) exist only if one of the following conditions is satis-
fied:  

sin or sin 1
2
n n

d d
λ λα α= − = − −                   (9) 

We now consider each case separately. 

Case 1: sin
2
n

d
λα = −  

For the counterclockwise rotations ( 0α < ) that we are considering, we must 
have 0n > . Furthermore, substituting the above equation into Equation (2), we 
obtain  

( )sin
2
n

d
λθ α+ =                       (10) 
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Then adding the first of Equations (9) and (10) gives  

( )sin sin 0θ α α+ + =                     (11) 

or  

22sin cos 0
2 2

θ α θ+    =   
   

                  (12) 

which holds only if 2θ α= − . It is easily verified that under this condition, 
2 2d d 0θ α > , and hence θ  is a minimum. 

Case 2: sin 1 n
d
λα = − −  

Clearly this can hold only if 0n <  which corresponds to the diffracted rays 
below the normal to the grating (Figure 1). Substituting this result in Equation 
(1), we find sin 1β = −  or π 2β = − , which means that the diffracted ray is in 
the plane of the grating. 

Therefore, our theoretical analysis shows that when the diffraction grating 
turns counterclockwise the diffracted rays with 0n >  go through a minimum 
angle of deviation. The minimum angle of deviation for the nth-order diffracted 
beam takes place when the grating rotates through an angle nα  relative to the 
normal incidence, given by  

1sin
2n
n

d
λα −  = −  

 
                      (13) 

The minimum angle of deviation for the nth-order diffraction is then given by  

( ) 1min 2 2sin
2n n
n

d
λθ α −  = − =  

 
                (14) 

There are no other minima or maxima in the angle of deviation. 

2. Experiment and Results  

In order to test these results, we used a diffraction grating with a line distance of 
3342 10 nmd = ± , and a 0.95 mW He-Ne laser ( 632.8 nmλ = ). The line dis-

tance of the grating was obtained by measuring it at ten different points of the 
grating, using the laser light. 

Table 1 shows the results of our measurements and their comparison with the 
calculated values. Each measured value reported in the table is the average of ten 
runs along with its standard deviation. The standard deviations of the theoretical 
values are calculated using propagation of errors and the standard deviation in d. 
As can be seen from Table 1, the agreement between the measured values and 
the calculated values is excellent. 

Another interesting feature of these diffraction patterns is that the angle 
through which the grating has to turn for a diffraction line to go to its minimum 
deviation increases with the order of diffraction n. As a result, the angle between 
any two adjacent diffracted rays decreases first and then increases as the grating 
turns, resulting in a minimum value. To see this, we write Equation (3) for n and 
again for 1n + , and subtract them to get  
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Table 1. Calculated and measured values of the rotation angle of the grating ( nα− ) at 

which the angle of deviation becomes a minimum, ( )minnθ . All angles are in degree. 

 nα−  ( )minnθ  

n calc meas calc meas 

1 5.43 0.02±  5.5 0.1±  10.87 0.03±  10.93 0.02±  

2 10.91 0.03±  11.1 0.2±  21.83 0.07±  21.89 0.04±  

3 16.50 0.05±  16.6 0.3±  33.00 0.10±  33.14 0.03±  

4 22.25 0.07±  22.5 0.2±  44.51 0.14±  44.68 0.02±  

5 28.25 0.09±  28.6 0.2±  56.51 0.18±  56.75 0.02±  

 
( )1 1

1

1
sin sin sin sinn n

n n
d d

λ λθ θ α α− −
+

+   − = + − +     
        (15) 

Then differentiation of this equation with respect to α  gives  

( )
( )

1 2 2

d cos cos
d 1 1 sin1 sin

n n
nn
dd

α αθ θ
α λλ αα

+ − = −
+   − +− +     

    (16) 

which vanishes if and only if  

1 1sin
2

n
d
λα −   = − +    

                    (17) 

It can easily be verified that when this condition is met, 1n nθ θ+ −  is a minimum. 
Therefore, when α  satisfies Equation (17), the angle between diffraction lines 
of order n and 1n +  becomes a minimum with a value given by  

( ) 1
1 min

2sin
2n n d
λθ θ −

+
 − =  
 

                  (18) 

which is independent of n. Therefore the minimum angle reached between any 
two adjacent diffraction lines is the same. 

Table 2 shows the values of α  and ( )1 minn nθ θ+ −  calculated from Equa-
tions (17) and (18), respectively. In this case it was difficult to find the value of 
α  for which ( )1n nθ θ+ −  goes to a minimum by watching the diffracted beams, 
as both nθ  and 1nθ +  changed with α . We, therefore. measured nθ  and 

1nθ +  each as a function of α  and then plotted 1n nθ θ+ −  as a function of α . 
The minimum of each graph did in fact take place at a value of α  very close to 
that predicted by Equation (17). The measured values of ( )1 minn nθ θ+ −  are giv-
en in the last column of Table 2. 

It should be pointed out that some of the results discussed in this work were 
experimentally observed by Lock [5]. However, as explained in the next section, 
he only provided a limited semi-quantitative analysis for his observations. Fur-
thermore, the common practice in the diffraction grating measurements where 
the angle of diffraction is measured on both sides of the central maximum and 
then the average is calculated, is not falsified by the above asymmetric behavior  
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Table 2. Calculated and measured values of the minimum angle between adjacent 
diffraction line, and the rotation angles of the grating at which they occur. All angles are 
in degree. 

 ( )1 minn nθ θ+ −  

α−  calc meas 

5.4 10.87 10.90 

16.5 10.87 10.87 

28.3 10.87 10.88 

41.5 10.87 10.93 

58.4 10.87 10.88 

 
of the diffraction angles. In fact, it turns out that the angle between the diffrac-
tion maxima with 1n =  and 1n = −  is not sensitive to small deviations of the 
grating from being normal to the incident beam. To see this we consider the an-
gle between the diffraction maxima with n and n− :  

1 1sin sin sin sinn n
n n
d d
λ λθ θ α α− −

−
−   − = + − +   

   
          (19) 

Taking the derivative of this angle with respect to α , we find  

( )
2 2

d cos cos
d

1 sin 1 sin
n n

n n
d d

α αθ θ
α λ λα α

−− = −
   − + − −   
   

       (20) 

which vanishes if and only if 0α = . Therefore, the angle n nθ θ−−  having a sta-
tionary value at 0α = , is not affected appreciably by small deviations of α  
from zero. 

Finally, as an application of the above results, we rewrite Equation (14) as  

( )min
2sin

2
n

nd λ
θ

=
 
 
 

                    (21) 

Since nθ  as a function of α  has a very flat minimum, ( )minnθ  can be 
measured very accurately for a grating and hence the line distance d can be ob-
tained from Equations (21) with high accuracy. Furthermore, in a single experi-
ment data can be collected on several diffraction orders, resulting in a statisti-
cally even more accurate measurement of d. In these measurements the task of 
making the diffraction grating perpendicular to the incident light, which is nor-
mally required in the usual diffraction experiments, is eliminated. 

3. Summary  

We investigated the diffraction patters of a rotated grating, from both theoretical 
and experimental points of view. The results of this investigation show several 
interesting behaviors of the system. First, as the grating rotates, the angle of dev-
iation of each diffracted line relative to the incident light goes through a mini-
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mum. Although this behavior has been reported by Lock [5], he only provided a 
semi-quantitative analysis of the problem based on two competing effects. Fur-
thermore, Lock only considered the first- and second-order diffraction lines. In 
this work, we have provided a complete quantitative analysis of the problem and 
have considered up to the fifth-order diffraction. 

Second, we have shown that the rotation angle of the grating that results in a 
minimum angle of deviation for a given diffracted line increases with the order 
of diffraction. As a result, the angle between any two successive diffracted lines 
first decreases and then increases, resulting in a minimum value which is the 
same for any two adjacent diffracted lines. This result has not been reported pre-
viously. 

Third, it is shown that the angle between diffraction lines with 1n =  and 
1n = −  is not sensitive to small variations of the grating from being normal to 

the incident light, which justifies the commonly practiced procedure in diffrac-
tion experiments, again, an observation that is missing from previous investiga-
tions. 

Finally, we have suggested a new method for determining the line distance of 
a diffraction grating with high accuracy. 
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Abstract 
Volterra type integral equations have diverse applications in scientific and 
other fields. Modelling physical phenomena by employing integral equations 
is not a new concept. Similarly, extensive research is underway to find accu-
rate and efficient solution methods for integral equations. Some of 
noteworthy methods include Adomian Decomposition Method (ADM), Var-
iational Iteration Method (VIM), Method of Successive Approximation 
(MSA), Galerkin method, Laplace transform method, etc. This research is 
focused on demonstrating Elzaki transform application for solution of linear 
Volterra integral equations which include convolution type equations as well 
as one system of equations. The selected problems are available in literature 
and have been solved using various analytical, semi-analytical and numerical 
techniques. Results obtained after application of Elzaki transform have been 
compared with solutions obtained through other prominent semi-analytic 
methods i.e. ADM and MSA (limited to first four iterations). The results 
substantiate that Elzaki transform method is not only a compatible alternate 
approach to other analytic methods like Laplace transform method but also 
simple in application once compared with methods ADM and MSA. 
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Elzaki Transform, Linear Volterra Integral Equation, Adomian  
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1. Introduction 

Integral equations find their application in physical sciences, finance, etc. Dif-
fraction problems, water waves, scattering in quantum mechanics are often 
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modelled using integral equations [1]. The unknown function which is required 
to be determined is denoted by u(x) and it appears under the sign of integration. 
K(x, t) is called “kernel” function whereas g(x) and h(x) are the limits of integra-
tion. [1] has provided excellent introduction on Integral equations along with 
solution methods. General form of an Integral equation can be given as under: 

( ) ( ) ( ) ( )( )
( ) , d

g x

h x
u x f x k x t u t tλ= + ∫                  (1) 

An Integro-differential equation is a bit different from Integral equation as it 
contains unknown function u(x) which appears under integral sign and also has 
ordinary derivative of unknown function. For the Integro-differential equation, 
general form can be given as: 

( ) ( ) ( ) ( )( )
( ) , d

g xn
h x

u x f x k x t u t tλ= + ∫                 (2) 

The system of integral or Integro-differential equations has two or more equa-
tions with two or more variables which are required to be determined. Volterra 
integral, integro-differential as well as related system of equations contains at 
least one variable limit of integration. Extensive mathematical techniques are 
available for finding analytic (exact), approximate analytic as well as numerical 
solutions of integral equations. Some of the techniques include Adomian De-
composition Method (ADM), Homotopy Perturbation Method (HPM), Homo-
topy Analysis Method (HAM), Variational Iteration Method (VIE), etc. Trans-
formation methods like Sumudu transform, Laplace transform, etc. are also be-
ing used to find solution of integral equations of various types and classes. 
However, new methods are continuously being explored throughout the world. 
Elzaki transform has been introduced by [2] and there is a growing interest of 
researchers in finding various applications of said transformation method. A 
large number of mathematical problems have been solved using Elzaki trans-
form method. However, with respect to finding its new applications, there is 
great potential available. Volterra type integral equations have been earlier 
solved using numerous methods available by mathematicians. In this paper 
some new applications of Elzaki transform have been discussed to find analytic 
solution of linear Volterra type integral equations which include convolution 
type as well as system of equations. The problems selected for demonstrating 
Elzaki transform application are those which have not been solved earlier using 
said transformation method. The analytic solutions obtained after application of 
Elzaki transform have been compared with results obtained through famous 
semi-analytical methods i.e. ADM and MSA (which have been restricted to first 
four iterations). The results establish the accuracy and simplicity of Elzaki 
transform method and also attest its compatibility with Laplace transform. 

2. Literature Review  

Integro-differential equations with bulge function have been examined by [3]. 
Numerical solution has been obtained by applying trapezoidal rule. For finding 
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the exact solution; Elzaki and inverse Elzaki transform as well as Taylor series 
expansion and convolution theorem have been used. Through examples, it has 
been shown that the approximate solutions acquired by trapezoidal rule are in 
good agreement with exact solutions obtained through transformation method. 
[4] conducted comparative study between Adomian Decomposition Method 
(ADM) and Elzaki transform. Both methods have been used to solve linear par-
tial differential equations with constant coefficients. Elzaki transform method 
has been used by [5] for solution of systems of linear Integro-differential equa-
tions with constant coefficients. Fundamental properties of Elzaki transform 
have been discussed by [6] and Elzaki transform for comprehensive list of func-
tions has been provided. Furthermore, more general shift theorems have been 
introduced. Laplace-Elzaki Duality (LED) invoked a complex inverse Elzaki 
transform, as a Bromwich contour integral formula. [7] researched practical 
formulae for differentiation of integral transforms used for differential equations 
with variable coefficients. The transforms which have been checked are Laplace, 
Sumudu and Elzaki. Moreover, it has been argued that proposed formulae can 
be applied to almost every equation. [8] proposed shifting theorems for the El-
zaki transform to solve initial value problems arising in control engineering. The 
proposed theorems are composed of u-shifting theorem and time shifting, and 
the proof is compared with established ones. [9] provided Romberg method for 
solution of linear Volterra integral equations of second kind. The examples pre-
sented in paper show superiority of Romberg method over quadrature method. 
[10] solved Volterra integral equations with separable kernels using the differen-
tial transform method. Approximate solution has been calculated in form of a 
series with easily calculable terms. Exact solutions of linear as well as nonlinear 
integral equations have been presented. Results exemplify the reliability of the 
differential transform method. Collocation method has been presented by [11] 
for linear Volterra integral equation of the second kind by using Sinc basis 
functions. Approximate solutions are provided and auxiliary basis functions 
satisfy four different boundary conditions. Numerical results have been in-
cluded to confirm efficiency and accuracy of method. [12] solved Volterra 
integral equations of second kind (convolution type) by using the Elzaki 
transform. Solution of integro-differential equations using Elzaki transform 
has been discussed by [13]. Numerical solution of a system of two first order 
Volterra integro-differential equations arising in ultimate ruin theory has been 
discussed by [14]. Existence and Uniqueness of Solution of Volterra Integral 
Equations has been studied by [15]. [16] has used Finite Difference Method for 
Smooth Solution of Linear Volterra Integral Equations. Numerical Solutions of 
Volterra Integral Equations Using Galerkin method with Hermite Polynomials 
have been discussed by [17]. 

3. Mathematical Foundations of Elzaki Transform  

Elzaki transform has been derived from classical Fourier Integral. 
By definition, Elzaki transform is defined for given set A as: 
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( ) ( ) ( ) [ )1 2| , 0 | e , if, 1 0,j

t
jkA f t M k k f t M t

−  = ∃ > < ∈ − × ∞ 
  

      (3) 

For the given function M should be finite however k1 and k2 may be finite or 
infinite. 

Elzaki transform is denoted by E(.) and is given as 

( ) ( ) ( )
0

e d , 0t pE f t T p p f t t t
∞ −= = ≥   ∫ , 1 2k p k≤ ≤          (4) 

here ( )T p  is Elzaki transform of integral function ( ).f t  
For ( )f t  we assume that the integral given in Equation (4) exists. 
Let ( ) 1f t =  

[ ] ( ) 2
0

1 1 e dt pE T p p t p
∞ −= = ⋅ =∫                  (5) 

Let ( )f t t=  

[ ] ( ) 3
0

e d
t
pE t T p p t t p

−∞
= = ⋅ =∫                   (6) 

For the nth order  

2!n nE t n p +=                           (7) 

3.1. Elzaki Transform of Common Functions  

Elzaki transform of some common functions is given as under Elzaki transform 
of exponential function 

( ) ( )
2

0
e e e d

1

t
at at p pE T p p t

ap

−∞
= =⋅=

−∫                (8) 

Elzaki transform of Sin function 

( )( )
3

2 2sin
1

apE at
a p

=
+

                        (9) 

Elzaki transform of Cosine function 

( )( )
2

2 2cos
1

pE at
a p

=
+

                       (10) 

Elzaki transform of Sin hyperbolic function 

( )( )
3

2 2sinh
1

apE at
a p

=
−

                       (11) 

Similarly Elzaki transform for derivatives of a function can be given as 

( )( ) ( ) ( )0
T p

E f t vf
p

′ = −                       (12) 

( )( ) ( ) ( ) ( )2 0 0
T p

E f t f vf
p

′′ ′= − −                    (13) 
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( )( ) ( ) ( )1 2
0 0nn n k k

n k

T p
E f t p f

p
− − +
=

= −∑                (14) 

3.2. Laplace Elzaki Duality (LED) 

For function f(t) which belongs to set A, 

( ) ( ) ( ) ( ) [ )1 2| , , 0, such that | e , if 1 0,j

t
jkf t A f t M k k f t M t

  ∈ = ∃ > < ∈ − × ∞ 
  

(15) 

Since Laplace transform is given as 

( ) ( )( ) ( )
0

e dstF s L f t f t t
∞ −= = ∫                   (16) 

Inter-conversion between Laplace and Elzaki transform can be given by 

( ) 1T v vF
v

 =  
 

                          (17) 

( ) 1F s sT
s

 =  
 

                          (18) 

4. Examples 

Example 4.1 

( ) ( )2
0

4 2 d
x

u x x x u t t= + − ∫                    (19) 

This problem has been taken from [18]. 
Taking Elzaki transform on both sides of Equation (19)  

( ) ( ) ( ) ( )2
0

4 2 d
x

E u x E x E x E u t t  = + −           ∫           (20) 

[ ] ( ) [ ]3 2 2 4 2 2!T v v v vT v+= + −                  (21) 

[ ] [ ]3 44 4T v v v vT v= + −                   (22)  

[ ] [ ] ( )3 44T v vT v v v+ = +                    (23) 

[ ] ( )34 1
1

v v
T v

v
+

=
+

                       (24  

After simplification, 

[ ] 34T v v=                           (25) 

Taking Inverse Elzaki transform on both sides of Equation (25), we get, 

( ) 4u x x=                           (26) 

Hence, required analytic solution is obtained. 
Example 4.2 

( ) ( ) ( )( )2 4
0

1 d
12

x
u x x x t x u t t= + + −∫                (27) 

This problem has been discussed by [18]. 
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Taking derivatives and applying Leibniz rule to equation Equation (27) 

( ) ( )3
0

12 d
3

x
u x x x u t t′ = + − ∫                   (28) 

( ) ( )22u x x u x′′ = + −                        (29) 

( ) ( ) 22u u xx x′′ + = + , with ( ) ( )0 0, 0 0u u′= =           (30) 

Since, 

( ) [ ] ( ) ( )2 0 0
T v

E u x u vu
v

′′ ′= − −                    (31) 

After plugging initial values we obtain, 

( ) [ ]
2

T v
E u x

v
′′ =                          (32) 

Hence, the Elzaki transform of given equation will be 

( ) ( ) [ ] 22E u x E u x E E x′′ + = +                           (33) 

Or, 

[ ] [ ] 42 2
T v

T v v
v

+ = +                     (34) 

[ ] [ ] ( )2 2 2 42T v v T v v v v+ = +                   (35) 

[ ]
( )2 2 4

2

2

1

v v v
T v

v

+
=

+
                     (36) 

Taking inverse Elzaki transform on both sides of Equation (36) we get, 

( )
( )2 2 4

1
2

2

1

v v v
u x E

v
−
 +
 =

+  
                  (37) 

( ) 1 42u x E v−=                         (38) 

( ) 2u x x=                          (39) 

Hence, required analytic solution is obtained. 
Example 4.3 
Consider Volterra Integral equation of Convolution type: 

( ) ( ) ( )
0

2 d
x

u x x t u t t= + −∫                   (40) 

This problem has been taken from [18], 
Taking Elzaki transform on both sides of Equation (40), 

( ) [ ] ( ) ( )( )
0

2 d
x

E u x E E x t u t t = + −     ∫             (41) 

[ ] [ ]2 312T v v v T v
v
 = +                        (42) 

[ ] [ ]2 22T v v v T v= +                       (43) 

https://doi.org/10.4236/jamp.2019.78129


S. Sharjeel, M. A. K. Barakzai 
 

 

DOI: 10.4236/jamp.2019.78129 1883 Journal of Applied Mathematics and Physics 
 

[ ] [ ]2 22T v v T v v− =                       (44) 

[ ]
2

2

2
1

vT v
v

=
−

                        (45) 

Taking Inverse Elzaki transform on both sides of Equation (45), 

( ) 2coshu x x=                       (46)  

Hence, required analytic solution is obtained. 
Example 4.4 
This problem has been solved by [11] using Sinc basis functions, 

( ) ( ) ( )( )
3 4

2
0

d ,0 1
6 12

xx xu x x x t x u t t x= − + − + − ≤ ≤∫        (47) 

Taking Elzaki transform on both sides of Equation (47), 

[ ] [ ] ( ) ( )( )2 3 4
0

1 1 d
6 12

x
E u E x E x E x E x E t x u t t         

 = − + − −  +  ∫   (48) 

[ ] [ ] [ ]( )3 4 5 6 12 2T v v v v v E t E u
v

= − + − −            (49) 

[ ] [ ]3 4 5 6 22 2T v v v v v v T v= − + − −               (50) 

[ ] 3 42T v v v= −                       (51) 

Taking Inverse Elzaki transform on both sides, 

( ) 2u x x x= −                        (52) 

Hence, required analytic solution is obtained. 
Example 4.5 
Consider convolution type linear Volterra integral equation. [10] solved the 

problem using Differential Transform Method (DTM),  

( ) ( ) ( )( )
2

0
1 d ,0 1

2
xxu x x x t u t t x= − − + − < <∫           (53) 

Taking Elzaki transform on both sides of Equation (53),  

( ) [ ] [ ] ( ) ( )( )
2

0
1 d

2
xxE u x E E x E E x t u t t

   = − − + −        
∫     (54) 

[ ] [ ] [ ]2 3 4 1T v v v v E t E u
v
 = − − +                 (55) 

[ ] [ ]2 3 4 2T v v v v v T v= − − +                  (56) 

[ ]
2 3 4

21
v v vT v

v
− −

=
−

                     (57) 

Through Taylor expansion about 0v = , 

[ ] 2 3 5 7 9T v v v v v v= − − − − −                  (58) 

Taking Inverse Elzaki transform on both sides of Equation (58),  
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[ ]1 1 2 1 3 1 5 1 7E T v E v E v E v E v− − − − −         = − − − −                  (59) 

In series form, 

( ) ( )
3 5 7 9

111
6 120 5040 362880
x x x xu x x O x

 
= − + + + + + 

 
         (60) 

In closed form, 

( ) ( )1 sinhu x x= −                        (61) 

Similarly we can also use LED and demonstrate that it gives same result as 
obtained using Taylor expansion. Since, 

( ) 1F s sT
s

 =  
 

 

We can write Equation as, 

( ) ( )

4 3 2

1
2

1 1 1

11
s

s
s s s

F s x

s

−

       − − +               =  
  −     

             (62) 

( ) e e 1
2 2

x x

u x
−

= − +                        (63) 

Writing in closed form, 

( ) ( )1 sinhu x x= −  

Hence, required analytic solution is obtained. 
Example 4.6 
This system of equations has been solved by [19] using rationalized Haar 

functions. 

( ) ( ) 2
1 20

d 1
t

y t y s s t− = −∫                     (64) 

( ) ( )2 10
d

t
y t y s s t− =∫                      (65) 

Take Elzaki transform on both sides of Equation (64) we have, 

( ) ( ) [ ] 2
1 20

d 1
t

E y t E y s s E E t − = −     
  ∫              (66) 

[ ] [ ] 2 4
1 2 2y v vy v v v− = −                     (67) 

Similarly take Elzaki transform of second equation i.e. Equation (65), 

( ) ( ) [ ]2 10
d

t
E y t E y s s E t 

 
 − =∫                  (68) 

[ ] [ ] 3
2 1y v vy v v− =                        (69) 

After simplification, 

[ ] 3
2 2y v v=                           (70) 

Take Inverse Elzaki transform of Equation (70) we have, 
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[ ]1 1 3
2 2E y v E v− −  =                        (71) 

( )2 2y t t=                         (72) 

And from Equation (69) we have, 

[ ] [ ] 3
2 1y v vy v v− =  

[ ] 2
1y v v=                          (73) 

Take Inverse Elzaki transform of Equation (73) we have, 

[ ]1 1 2
1E y v E v− −  =                         (74) 

( )1 1y t =                          (75) 

Equation (72) and Equation (75) provides analytic solution. 

5. Results and Discussions 

It has been established that Elzaki transform can be easily implemented to find 
analytic solution of Volterra type integral equations as discussed through various 
problems in section 4. In this section we shall provide the solution for domain 0 
to 1 and for comparison purposes, semi-analytic methods (ADM and MSA with 
zero as initial guess) solutions (limited to first four iterations), have also been 
given. It is likely that results of semi-analytic methods will converge to analytic 
solution if more iteration is carried out; but same will be at cost of increased 
computational work. All computational work has been carried out in Mathema-
tica version 9.  

For Example 4.1 the analytic solution is ( ) 4u x x=  which has also been 
achieved through application of Elzaki transform while the error for ADM and 
MSA once restricted to the first four iterations is evident (Table 1). However, 
ADM in this case produced better results once compared with MSA. Significant 
deviation of MSA from analytic results is obvious in Figure 1. 

For Example 4.2 the analytic solution is ( ) 2u x x=  which has also been 
achieved through application of Elzaki transform while the error for ADM and 
MSA once restricted to first four iterations is apparent (Table 2). However, 
ADM in this case has much better results as compared to MSA. MSA is showing 
large deviation from analytic results (Figure 2). 

For Example 4.3 the analytic solution is ( ) 2coshu x x=  which has also been 
achieved through application of Elzaki transform. ADM has slightly better accu-
racy once compared with MSA. Table 3 and Figure 3 depict results in numeric 
and graphical form respectively. 

For Example 4.4 the analytic solution is ( ) 2u x x x= −  which has also been 
achieved through application of Elzaki transform while the error for ADM and 
MSA once restricted to first four iterations is shown in Table 4. Figure 4 depicts 
results in graphical form. 

Graph plot shows considerable variation of results of MSA from analytic re-
sult. 

https://doi.org/10.4236/jamp.2019.78129


S. Sharjeel, M. A. K. Barakzai 
 

 

DOI: 10.4236/jamp.2019.78129 1886 Journal of Applied Mathematics and Physics 
 

Table 1. Solution of Example 4.1 using different methods and absolute errors for 
approximate analytic methods. 

x Analytic ADM MSA Abs Error MSA Abs Error ADM 

0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.400000 0.400000 0.400183 0.000183 0.000000 

0.2 0.800000 0.799989 0.801600 0.001600 0.000011 

0.3 1.200000 1.199919 1.205850 0.005850 0.000081 

0.4 1.600000 1.599659 1.614933 0.014933 0.000341 

0.5 2.000000 1.998958 2.031250 0.031250 0.001042 

0.6 2.400000 2.397408 2.457600 0.057600 0.002592 

0.7 2.800000 2.794398 2.897183 0.097183 0.005602 

0.8 3.200000 3.189077 3.353600 0.153600 0.010923 

0.9 3.600000 3.580317 3.830850 0.230850 0.019683 

1 4.000000 3.966667 4.333333 0.333333 0.033333 

 
Table 2. Solution of Example 4.2 using different methods and absolute errors for 
approximate analytic methods. 

x Analytic ADM MSA Abs Error ADM Abs Error MSA 

0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.010000 0.010000 0.009958 0.000000 0.000042 

0.2 0.040000 0.040002 0.039333 0.000002 0.000667 

0.3 0.090000 0.090027 0.086625 0.000027 0.003375 

0.4 0.160000 0.160146 0.149334 0.000146 0.010666 

0.5 0.250000 0.250531 0.223964 0.000531 0.026036 

0.6 0.360000 0.361484 0.306023 0.001484 0.053977 

0.7 0.490000 0.493435 0.390038 0.003435 0.099962 

0.8 0.640000 0.646858 0.469566 0.006858 0.170434 

0.9 0.810000 0.822055 0.537223 0.012055 0.272777 

1 1.000000 1.018750 0.584722 0.018750 0.415278 

 
Table 3. Solution of Example 4.3 using different methods and absolute errors. 

x Analytic ADM MSA Abs Error ADM Abs Error MSA 

0 2.000000 2.000000 2.000000 0.000000 0.000000 

0.1 2.010008 2.010008 2.010008 0.000000 0.000000 

0.2 2.040134 2.040134 2.040133 0.000000 0.000000 

0.3 2.090677 2.090677 2.090675 0.000000 0.000002 

0.4 2.162145 2.162145 2.162133 0.000000 0.000011 

0.5 2.255252 2.255252 2.255208 0.000000 0.000044 

0.6 2.370930 2.370930 2.370800 0.000001 0.000130 

0.7 2.510338 2.510335 2.510008 0.000003 0.000330 

0.8 2.674870 2.674862 2.674133 0.000008 0.000737 

0.9 2.866173 2.866151 2.864675 0.000022 0.001498 

1 3.086161 3.086111 3.083333 0.000050 0.002828 
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Table 4. Solution of Example 4.4 using different methods and absolute errors. 

x Analytic ADM MSA Abs Error ADM Abs Error MSA 

0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.090000 0.090001 0.089708 0.000001 0.000292 

0.2 0.160000 0.160021 0.158000 0.000021 0.002000 

0.3 0.210000 0.210147 0.204376 0.000147 0.005624 

0.4 0.240000 0.240560 0.229339 0.000560 0.010661 

0.5 0.250000 0.251516 0.234402 0.001516 0.015598 

0.6 0.240000 0.243278 0.222093 0.003278 0.017907 

0.7 0.210000 0.215998 0.195971 0.005998 0.014029 

0.8 0.160000 0.169574 0.160641 0.009574 0.000641 

0.9 0.090000 0.103489 0.121770 0.013489 0.031770 

1 0.000000 0.016667 0.086111 0.016667 0.086111 

 

 

Figure 1. Comparison graph of solution for Example 4.1. 
 

 

Figure 2. Comparison graph of solution for Example 4.2. 
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Figure 3. Comparison graph of solution for Example 4.3. 
 

 

Figure 4. Comparison graph of solution for Example 4.4. 
 
For Example 4.5 the analytic solution is ( ) ( )1 sinhu x x= −  which has also 

been achieved through application of Elzaki transform while the error for ADM 
and MSA once restricted to first four iterations is evident (Table 5). Figure 5 is 
showing graphical comparison between methods. 

Deviation of MSA solution from analytic result is clearly evident. 
For Example 4.6 one analytic solution is ( ) ( )1 1u t y t= =  which has also been 

achieved through application of Elzaki transform. ADM and MSA are showing 
large deviation from analytic result. Results have been depicted in Table 6(a) 
while comparison graph between methods has been illustrated at Figure 6(a). 

ADM and MSA are showing large deviation from analytic result. 
For example 4.6 the second analytic solution is ( ) ( )2 2v t y t t= =  which has 

also been achieved through application of Elzaki transform while the error for 
ADM and MSA once restricted to first four iterations is obvious. Table 6(b) 
provides results in numeric form while comparison plot between methods has 
been given at Figure 6(b).  
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Table 5. Solution of Example 4.5 using different methods and absolute errors. 

x Analytic ADM MSA Abs Error ADM Abs Error MSA 

0 1.000000 1.000000 1.000000 0.000000 0.000000 

0.1 0.899833 0.899833 0.899499 0.000000 0.000334 

0.2 0.798664 0.798664 0.795972 0.000000 0.002692 

0.3 0.695480 0.695480 0.686282 0.000000 0.009197 

0.4 0.589248 0.589248 0.567061 0.000000 0.022186 

0.5 0.478905 0.478905 0.434570 0.000000 0.044334 

0.6 0.363346 0.363346 0.284548 0.000000 0.078798 

0.7 0.241416 0.241415 0.112043 0.000001 0.129373 

0.8 0.111894 0.111890 -0.088768 0.000004 0.200662 

0.9 -0.026517 -0.026526 -0.324779 0.000010 0.298262 

1 -0.175201 -0.175223 -0.604167 0.000022 0.428965 

 
Table 6. (a) Solution of Example 4.6 using different methods and absolute errors for 
( ) ( )1u t y t= . (b) Solution of Example 4.6 using different methods and absolute errors for 

( ) ( )2v t y t= . 

(a) 

x Analytic ADM MSA Abs Error ADM Abs Error MSA 

0 1.000000 1.000000 1.000000 0.000000 0.000000 

0.1 1.000000 1.000158 0.999992 0.000158 0.000008 

0.2 1.000000 1.001195 0.999867 0.001195 0.000133 

0.3 1.000000 1.003785 0.999325 0.003784 0.000675 

0.4 1.000000 1.008363 0.997867 0.008363 0.002133 

0.5 1.000000 1.015104 0.994792 0.015104 0.005208 

0.6 1.000000 1.023904 0.989200 0.023904 0.010800 

0.7 1.000000 1.034357 0.979992 0.034357 0.020008 

0.8 1.000000 1.045739 0.965867 0.045739 0.034133 

0.9 1.000000 1.056984 0.945325 0.056983 0.054675 

1 1.000000 1.066667 0.916667 0.066667 0.083333 

(b) 

x Analytic ADM MSA Abs Error ADM Abs Error MSA 

0 0.000000 0.000000 0 0.000000 0.000000 

0.1 0.200000 0.200000 0.199833 0.000000 0.000167 

0.2 0.400000 0.399995 0.398667 0.000005 0.001333 

0.3 0.600000 0.599960 0.5955 0.000040 0.004500 

0.4 0.800000 0.799829 0.789333 0.000171 0.010667 

0.5 1.000000 0.999479 0.979167 0.000521 0.020833 

0.6 1.200000 1.198704 1.164 0.001296 0.036000 

0.7 1.400000 1.397199 1.342833 0.002801 0.057167 

0.8 1.600000 1.594539 1.514667 0.005461 0.085333 

0.9 1.800000 1.790159 1.6785 0.009842 0.121500 

1 2.000000 1.983333 1.833333 0.016667 0.166667 
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Figure 5. Comparison graph of solution for Example 4.5. 
 

 
(a) 

 
(b) 

Figure 6. (a). Comparison graph of solution for example 4.6 (for ( ) ( )1u t y t= ); 

(b) Comparison graph of solution for Example 4.6 (for ( ) ( )2v t y t= ). 
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ADM has considerably good accuracy once compared with MSA. 
Accurate analytic solution achievement is useful advantage of Elzaki trans-

form. Moreover, the application process is very simple. Methods like ADM de-
spite having extensive applications and advantages, has not been able to produce 
analytic results for problems once restricted to fewer iterations (in this case four 
iterations). MSA further produced results of lower accuracy once compared with 
ADM.  

6. Conclusion 

In this research Elzaki transform has been successfully applied to linear Volterra 
type integral equations to find analytic solutions. It has been established that El-
zaki transform is a robust compatible alternative to other well-known analytic 
methods. Moreover, in comparison to notable semi/approximate analytic me-
thods like Adomian Decomposition Method and Method of Successive Ap-
proximations, it is not only accurate but often easier to apply. Results presented 
in research substantiate this claim. The research can be further extended by dis-
cussing application of Elzaki transform for linear Volterra type integral equa-
tions with separable kernels.  
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Abstract 
In this paper, a block method with one hybrid point for solving Jerk equa-
tions is presented. The hybrid point is chosen to optimize the local truncation 
errors of the main formulas for the solution and the derivative at the end of 
the block. Analysis of the method is discussed, and some numerical examples 
show that the proposed method is efficient and accurate. 
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1. Introduction 

Jerk is the rate of acceleration change in physics; that is, the time derivative of 
acceleration, and as such the second velocity derivative, or the third time posi-
tion derivative. The jerk is important in several mechanics and acoustics applica-
tions. The Jerk vector is here resolved into tangential-normal and radial-transverse 
components for planar motion, and the normal component is expressed as an 
affine differential invariant recognized as the aberrancy. Several geometric 
properties of the Jerk vector are established for plane motion using known aber-
rancy properties of curves [1]. 

Nonlinear third-order differential equations, known as nonlinear Jerk equa-
tions, involving the third temporal displacement derivative, are of great interest 
in analyzing some structures which exhibit rotating and translating movements, 
such as robots or machine tools, where excessive Jerk leads to accelerated wear 
of transmissions and bearing elements, noisy operations and large contouring 
errors in discontinuities (such as corners) in the machining path [2]. 
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Many authors have studied the numerical solutions of the Jerk equation, har-
monic balance approach to periodic solutions is used in [3], in [4] they have 
written the high-order ordinary differential equation in terms of its differential 
invariants. New algorithm for the numerical solutions of nonlinear third-order 
differential equations was used jacobi-gauss collocation method in [5], He’s var-
iational iteration method was used in [6] for nonlinear Jerk equations. Modified 
harmonic balance method was used for nonlinear Jerk equations in [7]. In this 
paper, we consider a Jerk equation of the form  

( ), , .y J y y y′′′ ′ ′′=                         (1) 

With initial conditions ( ) ( ) ( )0 0, 0 , 0 0y y B y′ ′′= = = . The most general 
function of Jerk, which is invariant in time-reversal and space-reversal and only 
nonlinear cubic, can be written as  

2 2 3 0,y yy y y y y y y yα β δ γ′′′ ′ ′′ ′ ′′ ′ ′ ′+ + + + + =            (2) 

where the parameters are , , ,α β δ   and γ  is constants. The current work is 
motivated by optimizing local truncation errors in order to find a hybrid point 
in a two-step block method to have the most accurate solution for Jerk Equation 
(1). We organize this paper as follows: The next section illustrates the method 
derivation, Section 3 presents the analysis of the method involving order four, 
Section 4 presents the numerical examples showing the productivity of the new 
technique when it is contrasted with the different strategies proposed in the 
scientific writing. 

2. Methodology  

To derive two steps hybrid block method with one off-step point we have a po-
lynomial of degree 6 as follows:  

( ) ( )
6

0
,j

j
j

y x p x a x
=

= ∑                     (3) 

with third derivative given by  

( ) ( ) ( )( )
6

3

3
1 2 .j

j
j

y x p x j j j a x −

=

′′′ ′′′ = − −∑             (4) 

Substituting Equation (4) into Equation (3) gives  

( ) ( )( )
6

3

3
, , , 1 2 .j

j
j

f x y y y j j j a x −

=

′ ′′ = − −∑              (5) 

By interpolating Equation (3) at , 0, ,1m jx j r+ =  and collocating Equation (5) 
at , 0, ,1, 2m jx j r+ =  we get a system of equations written in the matrix form  

2 3 4 5 6
0

2 3 4 5 6
1

2 3 4 5 6
21 1 1 1 1 1

2 3

2 3

2 3
1 1 1

2 3
2 2 2

1
1
1
0 0 0 6 24 60 120
0 0 0 6 24 60 120
0 0 0 6 24 60 120
0 0 0 6 24 60 120

m m m m m m

m r m r m r m r m r m r

m m m m m m

m m m

m r m r m r

m m m

m m m

ax x x x x x
ax x x x x x
ax x x x x x

x x x
x x x
x x x
x x x

+ + + + + +

+ + + + + +

+ + +

+ + +

+ + +
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m

m

m r

m

m

y
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y

a f
a f
a f
a f

+

+

+
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Solving the above system (by using Gaussian elimination method for solving 
the system of linear equations [8]) gives us the coefficients of the polynomial 

, 0,1, ,6ja j = 
. 

By making the substitution mx x th= + , the polynomial in Equation (3) may 
be written in the form:  

( ) ( )3
0 1 1 0 1 1 2 2m m r m r m m r m r m mp x th y y y h f f f fα α α β β β β+ + + + ++ = + + + + + + (6) 

where  

( )( )
0

1
,

r t t
r

α
− −

= −  

( )
( )

1
,

1r

t t
r r

α
−

=
−

 

( )
1 ,

1
t r t

r
α

−
=

−  

( )((
))

3
4 3 2 3 2

0

4 3 2

1 8 22 2 13
240
27 5 5 5 5 ,

h t t r r r rt rt
r

rt r t t t t

β = − − − + − +

− − + − + +
 

( ) ( )( )( )
3

4 3 2 4 3 2
2

1 5 5 5 5 5 5 ,
120 3 2r

h t t r r r r t t t t
r r r

β = − − − + + − + − −
− +

 

( ) ( )((
))

3
4 3 2 3 2

1

4 3 2

1 5 5 2 8
120 1

8 3 3 3 3 ,

h t t r r r rt rt
r

rt r t t t t

β = − − − + + + −
−

− − − + + +

 

( ) ( )((
))

3
4 3 2 3 2

2

4 3 2

1 2 2 2 3
240 2

3 .

h t t r r r rt rt
r

rt r t t t t

β = − − + + + −
−

− − − + + +

         (7) 

Now, by evaluating the solution approximation at the point 2mx + :  

( )
( ) ( )

( ) ( )

2 1

3 4 3 2 3 2

3 3 2 3 3

1 2

2 2 2 4
1 1

8 22 23 6 2 3

120 60
4 9 26 2 1

.
60 120

m m m r m

m m r

m m

r ry y y y
r r r r

h r r r r h r r
f f

r r
h r r r h r r

f f

+ + +

+

+ +

− −
= − + +

− −

− + − + − + +
− +

− + + − − + +
− +

    (8) 

Assess the approximation at the point of first derivative 2mx + :  

( )
( )

( )

2 1

3 4 3 2

3 4 3 2

2

3 3 4
1 1

3 24 66 67 12

240
5 5 5 4

(40 ( 3 2))

m m m r m

m

m r

r rhy y y y
r r r r

h r r r r
f

r
h r r r r

f
r r r

+ + +

+

− −′ = − + +
− −

− + − +
−

− + + −
−

− +
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( )
( )

( )
( )

3 4 3 2

1

3 4 3 2

2

3 15 15 137 116

120 1

2 2 3 12
.

80 2

m

m

h r r r r
f

r

h r r r r
f

r

+

+

− + + − +
−

−

− + + + −
+

−

               (9) 

Evaluate the second derivative approximation at the point 2mx + :  

( )
( )

( )

( )
( )

( )
( )

2
2 1

3 4 3 2

3 4 3 2

2

3 4 3 2

1

3 4 3 2

2

2 2 2
1 1

8 22 18 5

120
5 5 5 5

(60 ( 3 2))

5 5 75 77

60 1

2 2 42 81
.

120 2

m m m r m

m

m r

m

m

h y y y y
r r r r

h r r r r
f

r
h r r r r

f
r r r

h r r r r
f

r

h r r r r
f

r

+ + +

+

+

+

′′ = + −
− −

− + − + +
+

− + + +
−

− +

− + + − +
−

−

− + + + −
+

−

           (10) 

We choose to optimize the local truncation errors in the Equation (8), Equa-
tion (9) and Equation (10) to determine appropriate values for r Equation (8), 
Equation (9) and Equation (10). This choice at the end of the block 2my + , 2my +′  
and 2my +′′ , which result respectively in  

( )( )
( ) ( ) ( )
( ) ( ) ( )

2

77
5 4 3 2

88
6 5 4 3 2

;

3 18 24 24 53 10
10080

9 33 47 205 51 327 42 ,
100800

m

m

m

y x h

h y x
r r r r r

h y x
r r r r r r

+

= − − + + − +

− − − + + − +



 

( )( )
( ) ( )

( ) ( ) ( )

2

7 (7)
5 4 3 2

88
6 5 4 3 2

;

9 54 72 72 117 44
20160

27 99 141 615 237 729 556 ,
201600

m

m

m

y x h

h y x
r r r r r

h y x
r r r r r r

+′

= − + − − + +

+ − + + − − + +



 

( )( )
( ) ( ) ( )
( ) ( ) ( )

2

77
5 4 3 2

88
6 5 4 3 2

;

6 8 8 8 41
3360

9 33 47 205 205 135 1195 .
100800

m

m

m

y x h

h y x
r r r r r

h y x
r r r r r r

+′′

= − − + + + −

− − − + + + −



   (11) 

Determine the r values equating to zero the 7h  coefficients in the local trun-
cation error formulas in Equation (11), and we obtain the system  

5 4 3 23 18 24 24 53 10 0,r r r r r− + − − + − =  
5 4 3 29 54 72 72 117 44 0,r r r r r− + − − + + =  
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5 4 3 26 8 8 8 41 0.r r r r r− + − − − + =                (12) 

By solving Equation (12) and substituting r’s in Equation (11) we can choose 
the value r that gives the least truncation errors  

161757 36610681841 .
199636

r +
=  

Substituting r in the local truncation errors gives: 

( )( )
( )

( )
77

82;
211915m

h yy x h O h≈ +  

( )( )
( )

( )
88

917;
107192m

h yy x h O h′ ≈ − +  

( )( )
( )

( )
77

826;
84685m

h yy x h O h−′′ ≈ +  

To obtain a two-step hybrid block solution method for solving Equation (1), 
we evaluate ( ) ( ),p x p x′ ′′  at the points 1, ,m m r mx x x+ + , we get the following 
block of six equations  

( )
( )

( )
( )

( )
( )

( )
( )

1

3 3 2

3 3 2

2

3 3 2

1

3 3 2

2

1 1
1 1

8 22 5

240
5 5 5

120 3 2

5 5 3

120 1

2 2 1
,

240 2

m m m r m

m

m r

m

m

r rhy y y y
r r r r

h r r r
f

h r r r
f

r r

h r r r r
f

r

h r r r r
f

r

+ +

+

+

+

+′ = − − +
− −

− + −
+

− + +
+

− +

− + + −
+

−

− + + −
−

−

 

( )
( )

( )
( )

( )
( )

( )
( )

2
1

3 4 3 2

3 4 3 2

2

3 4 3 2

1

3 4 3 2

2

2 2 2
1 1

8 22 28 10

120
5 5 5 10

60 3 2

5 5 35 22

60 1

2 2 8 4
,

120 2

m m m r m

m

m r

m

m

h y y y y
r r r r

h r r r r
f

r
h r r r r

f
r r r

h r r r r
f

r

h r r r r
f

r

+ +

+

+

+

′′ = + −
− −

− + − +
−

− + + −
−

− +

− + + − +
−

−

− + + − +
+

−

 

( )
( )

1

3 4 3 2

1 2 1
1 1

2 13 28 22 5

240

m r m m r m

m

r r rhy y y y
r r r r

h r r r r
f

+ + +
− −′ = + −

− −

− + − +
+
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( )
( )

( )

( )
( )

3 3 2

3 3 2

1

3 4 3 2

2

4 15 10 5

120 2

2 7 2 3

120
2 5 2 2 1

,
240 2

m r

m

m

h r r r
f

r

h r r r r
f

h r r r r r
f

r

+

+

+

− + +
+

−

− + + −
+

− + + −
+

−

 

( )
( )

( )
( )

( )
( )

( )
( )

2
1

3 4 3 2

3 4 3 2

2

3 4 3 2

1

3 4 3 2

2

2 2 2
1 1

4 22 38 22 5

120
14 55 55 5 5

60 3 2

4 15 5 5 3

60 1

4 8 2 2 1
,

120 2

m r m m r m

m

m r

m

m

h y y y y
r r r r

h r r r r
f

r
h r r r r

f
r r r

h r r r r
f

r

h r r r r
f

r

+ + +

+

+

+

′′ = + −
− −

− + − +
+

− + − + +
−

− +

− + + −
−

−

− + + −
+

−

 

( )
( )

( )

( )

( )

1 1

3 4 3 2

3 2

3 3 2

1

3 3

2

1 1 2
1 1

8 22 21 6

240
2 3

120
4 9 8

120
2 1

,
240

m m m r m

m

m r

m

m

r rhy y y y
r r r r

h r r r r
f

r
h r r

f
r

h r r r
f

h r r
f

+ + +

+

+

+

− −′ = − + +
− −

− + − +
−

− + +
+

− + + −
−

− +
−

 

( )
( )

( )

( )
( )

( )
( )

2
1 1

3 4 3 2

3 4 3 2

2

3 4 3 2

1

3 4 3 2

2

2 2 2
1 1

8 22 28 10

120
5 5 5 10

60 ( 3 2)

5 5 35 22

60 1

2 2 8 4
.

120 2

m m m r m

m

m r

m

m

h y y y y
r r r r

h r r r r
f

r
h r r r r

f
r r r

h r r r r
f

r

h r r r r
f

r

+ + +

+

+

+

′′ = + −
− −

− + − +
−

− + + −
−

− +

− + + − +
−

−

− + + − +
+

−

           (13) 

3. Characteristics of the Method  

This section is presented the basic properties of the main method and analyzed it 
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to establish their validity. 

3.1. Order of the Method  

We can rewrite the hybrid block method in the form  
2 3

m m m mAY hBY h CY h VF′ ′′= + +                   (14) 

where , , ,A B C V  are matrices of coefficients of dimensions 9 4× , 

( )T
1 2, , ,m m m r m mY y y y y+ + += , 

( )T
1 2, , ,m m m r m mY y y y y+ + +′ ′ ′ ′ ′= , 

( )T
1 2, , ,m m m r m mY y y y y+ + +′′ ′′ ′′ ′′ ′′= , 

( )T
1 2, , ,m m m r m mF f f f f+ + += . 

If ( )z x  is a sufficiently differentiable function, the linear difference operator 
  associated with the implicit two-step block hybrid method is considered in 
Equation (8), Equation (9), Equation (10), Equation (13), that is given  

( ) ( ) ( )

( ) ( )2 3

;m j m j m
j

j m j m

z x h z x jh h z x jh

h z x jh h z x jh

κ τ

γ ξ

′  = + − + 

′′ ′′′− + − +

∑
         (15) 

0, ,1, 2j r=  where the , ,j j jκ τ γ  and jξ  are respectively the vector col-
umns of the matrices , ,A B C  and V. 

Expanding ( ) ( ) ( ), ,m m mz x jh z x jh z x jh′ ′′+ + +  and ( )mz x jh′′′ +  in Taylor 
series about mx  we get  

( ) ( ) ( ) ( ) ( ) ( )2
0 1 2; qq

m m m m q mz x h C y x C hy x C h y x C h y x′ ′′  = + + + + +    (16) 

with 0 1 2 6 0C C C C= = = = =  and  

( 6 20
7

4 4

3 5

4 3

9.437739543552612 10 , 9.617040306545119 10 ,

3.070200924962517 10 , 4.913128762599697 10 ,

2.144715335032775 10 ,8.823816935161847 10 ,

4.504524331158401 10 ,3.184040914146728 10 ,

1.14181

C − −

− −

− −

− −

= × − ×

− × − ×

× ×

− × ×

− )T23120360736 10−×

 

Note that the proposed method has order 4p =  at least [9]. 

3.2. Zero Stability  

We can write the method as a vector As 0h →  in Equation (14), we can write 
the method as a vector form. 

0 1 1 0m mA Y AY −− =  where  

( ) ( )T T
2 1 1 1 1, , , , ,m m m m r m m m m rY y y y Y y y y+ + + − − + −= =  

0

1 0.6017954608298602 1.471021404061736
0 1 0
0 0 1

A
− 

 =  
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1

0.1307740567681242 0 0
1 0 0
1 0 0

A
 
 =  
  

 

The first characteristic polynomial 
( ) [ ] ( ) 2

0 1det 1 0z A z A z zρ = − = − = , the roots of polynomials are  

1 2 30; 1z z z= = = . Hence the block method is zero -stable [9]. 

3.3. Consistency  

The block method has order 4p = , in case 1p ≥ , this is a sufficient condition 
to be consistent with the associated block method [10]. 

3.4. Convergence  

We can establish the convergence of the two-step with three points hybrid block 
method if and only if it is consistent and zero stable [11]. 

3.5. Region of Absolute Stability  

As we mentioned earlier, zero-stability is a concept of the numerical method 
behavior for 0h → . To decide whether a numerical method will produce good 
results with a given value of 0h > , we need a concept of stability that is differ-
ent from zero-stability. In most numerical methods intended to solve problems 
of third order, the stability properties are usually analyzed by considering the li-
near equation given by the Dalquist test [11].  

( )3y y xλ′′′ = −                         (17) 

This problem has bounded solutions for 0λ ≥  that tend to zero for x →∞ . 
We will define the region where the numerical method reproduces the manner 
of the exact solutions. Let us explain the procedure for obtaining such a region. 
Our method has nine equations in which there are four different terms of first 
derivatives: 1 2, , ,m m r m my y y y+ + +′ ′ ′ ′ , and second derivative: 1 2, , ,m m r m my y y y+ + +′′ ′′ ′′ ′′  and 
one intermediate values m ry + . Let us depict the procedure to gain such a region 
[12], We eliminated these terms from the equations system by using 
mathematica, and get a recurrence equation in the terms 1 2, ,m m my y y+ + . This 
recurrence equation reads  

( ) ( ) ( )2 1 0,m m mP z y Q z y S z y+ ++ + =                (18) 

where z hλ= , and  

( ) 109 107 3

106 6

1.433653893592262 10 5.520254762660736 10

3.674797669760869 10

P z z

z

= − × + ×

+ ×
 

( ) 109 108 3

107 6

5.734615574369057 10 8.898486741828162 10

3.679066781172749 10

Q z z

z

= × − ×

+ ×
 

( ) 109 109

108 3 107 4

106 6

4.300961680776793 10 2.867307787184524 10

1.211231358386333 10 6.261663213347228 10

4.300976789540145 10

S z z

z z
z

= − × + ×

− × − ×

+ ×

 (19) 
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Through its characteristic equation, we study the extent boundedness of their 
solutions to define the region of stability. The root causes of the characteristic 
equation  

(
) (

)

109 107 3

106 6 2 109

108 3 107 6

109

1.433653893592262 10 5.520254762660736 10

3.674797669760869 10 5.734615574369057 10

8.898486741828162 10 3.679066781172749 10

4.300961680776793 10 2.867307787184524 1

z

z x

z z x

− × + ×

+ × + ×

− × + ×

+ − × + ×(

)

109

108 3 107 4

106 6

0

1.211231358386333 10 6.261663213347228 10

4.300976789540145 10 0

z

z z

z

− × − ×

+ × =

    (20) 

are 

1 6 3

12 10

9

2
4509981306728599 67748616455391176 1759485240133103872

( (121468655749357324985383025377280 86645450698059554742358457188352

6085569311397395324399777440858112 266604101119524264596197

x
z z

z z

z

= −
+ −

× +

− − 7

6 4

3

1549077504

125054287321797496835881016603181056 93404454773980569973608059370471424

936741366582786806117795003533099008 1547894155123122963374310449590829056
77394707756156767979316399120475

z
z z
z z

+ −

− +
+

3 6

7504)

546043788941838592 22576103367311352 3518970480266213376)z z− + +  

2 6 3

12 10

9

2
4509981306728599 67748616455391176 1759485240133103872

( (121468655749357324985383025377280 86645450698059554742358457188352

6085569311397395324399777440858112 2666041011195242645961971

x
z z

z z

z

=
+ −

× +

− − 7

6 4

3

549077504

125054287321797496835881016603181056 93404454773980569973608059370471424

936741366582786806117795003533099008 1547894155123122963374310449590829056
773947077561567679793163991204757

z
z z
z z

+ −

− +
+

3 6

504)

546043788941838592 22576103367311352 3518970480266213376)z z+ − −  
The roots of the characteristic equation must be less than 1, for the method to 

be stable. The stability region for the method has shown in Figure 1. 

4. Numerical Examples 

Example 1: Consider the Jerk equation in the following form:  

y y yy y′′′ ′ ′ ′′= − +                        (21) 

With initial conditions: ( ) ( ) ( )0 0, 0 , 0 0y y B y′ ′′= = = , and exact solution:  

( ) ( ) ( ) ( ) ( )( )2 2 2
3sin 9 48 48 sin sin 3

96
B By x x B x B x= Ω + − − + Ω Ω − Ω
Ω Ω

 

where 21 4
2

BΩ = + . 

Tables 1-3 show the absolute Errors at 0.125,0.0125h =  and 
0.2,0.3,0.4B =  respectively. Example 1 was solved in [13], the comparison be-
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tween our method and result in [13] is proposed in Table 4 and Table 5. It is 
seen in Figures 2-4 the method gives a good approximation in the interval 

[ ]0,50x∈  and 0.2,0.3,0.4B =  respectively.  
Example 2: Consider the Jerk equation in the following form:  

2y y y y′′′ ′ ′ ′′= − −                       (22) 

With initial conditions: ( ) ( ) ( )0 0, 0 , 0 0y y B y′ ′′= = = , and exact solution:  

( ) ( ) ( ) ( )(
( ) ( ) ( ))

2 2 2
3

3 2 3 2 2

sin 9 48 48 sin
96

12 48 48 cos sin 3

B By x x B x

B x x B x

= Ω + − Ω − + Ω Ω
Ω Ω

+ Ω + Ω− Ω Ω − Ω Ω
 

where 2

12
4 B

Ω =
−

. 

 

 

Figure 1. Region of absolute stability. 
 

 

Figure 2. The solution of Example 1 at 0.125h = , 0.2B = . 
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Figure 3. The solution of Example 1 at 0.125h = , 0.3B = . 
 

 

Figure 4. The solution of Example 1 at 0.125h = , 0.4B = . 
 

Table 1. Absolute error of numerical solutions at 0.2B = . 

X 
Numerical Solution 
in Our method at 

0.125h =  

Exact Solution at 
0.125h =  

Error 
Numerical Solution 
in Our method at 

0.0125h =  

Exact Solution at 
0.0125h =  

Error 

0 0 0 0 0 0 0 

0.125 0.024934 0.024934 134.6952 10−×  0.024934 0.0249349 114.5195 10−×  

0.25 0.049480 0.049480 91.09357 10−×  0.049480 0.049480 91.39199 10−×  

0.375 0.073253 0.073253 99.03272 10−×  0.073253 0.073253 99.87559 10−×  

0.5 0.095881 0.095881 83.59222 10−×  0.095881 0.095881 83.81834 10−×  

0.625 0.117008 0.117008 89.9039 10−×  0.117008 0.117008 71.037 10−×  

0.75 0.136300 0.1363 72.14523 10−×  0.136300 0.1363 72.23488 10−×  

0.875 0.153453 0.153452 73.91443 10−×  0.153453 0.153452 74.0688 10−×  

1 0.168191 0.168191 76.24133 10−×  0.168191 0.168191 76.49333 10−×  

1.125 0.180281 0.18028 78.91573 10−×  0.180281 0.18028 79.29984 10−×  

1.25 0.189526 0.189525 61.15844 10−×  0.189526 0.189525 61.21443 10−×  

1.375 0.195778 0.195777 61.38459 10−×  0.195779 0.195777 61.46242 10−×  
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Continued 

1.5 0.198937 0.198935 61.53404 10−×  0.198937 0.198935 61.63819 10−×  

1.625 0.198949 0.198948 61.58573 10−×  0.198949 0.198948 61.72019 10−×  

1.75 0.195816 0.195815 61.53899 10−×  0.195817 0.195815 61.70703 10−×  

1.875 0.189589 0.189587 61.41336 10−×  0.189589 0.189587 61.61747 10−×  

2 0.180367 0.180365 61.24351 10−×  0.180367 0.180365 61.48465 10−×  

 
Table 2. Absolute error of numerical solutions at 0.3B = . 

X 
Numerical Solution 
in Our method at 

0.125h =  

Exact Solution at 
0.125h =  

Error 
Numerical Solution 
in Our method at 

0.0125h =  

Exact Solution at 
0.0125h =  

Error 

0 0 0 0 0 0 0 

0.125 0.037402 0.037402 106.28175 10−×  0.037402 0.037402 103.43214 10−×  

0.25 0.074220 0.074220 81.24193 10−×  0.074220 0.074220 81.05686 10−×  

0.375 0.109879 0.109878 87.99073 10−×  0.109878 0.109878 87.55001 10−×  

0.5 0.143814 0.143814 72.98246 10−×  0.143814 0.143814 72.89694 10−×  

0.625 0.17549 0.17549 77.99279 10−×  0.17549 0.17549 77.86251 10−×  

0.75 0.204399 0.204397 61.70916 10−×  0.204399 0.204397 61.69292 10−×  

0.875 0.230073 0.23007 63.09552 10−×  0.230073 0.23007 63.07827 10−×  

1 0.252093 0.252088 64.91735 10−×  0.252093 0.252088 64.90448 10−×  

1.125 0.270095 0.270088 67.01179 10−×  0.270095 0.270088 67.00958 10−×  

1.25 0.283778 0.283769 69.11212 10−×  0.283778 0.283769 69.13002 10−×  

1.375 0.292913 0.292902 0.000010 0.292913 0.292902 0.000010 

1.5 0.297344 0.297332 0.000012 0.297344 0.297332 0.000012 

1.625 0.296996 0.296984 0.000012 0.296996 0.296984 0.000012 

1.75 0.291876 0.291864 0.000012 0.291876 0.291864 0.000012 

1.875 0.28207 0.282059 0.000011 0.282071 0.282059 0.000011 

2 0.267745 0.267734 0.000010 0.267745 0.267734 0.000010 

 
Table 3. Absolute error of numerical solutions at 0.4B = . 

X 
Numerical Solution 
in Our method at 

0.125h =  

Exact Solution at 
0.125h =  

Error 
Numerical Solution 
in Our method at 

0.0125h =  

Exact Solution at 
0.0125h =  

Error 

0 0 0 0 0 0 0 

0.125 0.049869 0.049869 92.46607 10−×  0.049869 0.049869 91.4462 10−×  

0.25 0.098960 0.098960 85.11558 10−×  0.098961 0.098961 84.45237 10−×  

0.375 0.146501 0.146501 73.34007 10−×  0.146501 0.146501 73.17797 10−×  

0.5 0.191739 0.191738 61.25262 10−×  0.191739 0.191738 61.21922 10−×  

0.625 0.233947 0.233943 63.36066 10−×  0.233947 0.233943 63.30604 10−×  

0.75 0.272436 0.272428 67.18675 10−×  0.272436 0.272428 67.10926 10−×  

0.875 0.306566 0.306553 0.000013 0.306566 0.306553 0.000012 

1 0.33576 0.335739 0.000021 0.33576 0.335739 0.000020 

1.125 0.359513 0.359483 0.000029 0.359513 0.359483 0.000029 

1.25 0.377408 0.37737 0.000038 0.377408 0.37737 0.000037 

1.375 0.389127 0.389082 0.000045 0.389127 0.389082 0.000045 

1.5 0.39446 0.394409 0.000050 0.39446 0.394409 0.000050 
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Continued 

1.625 0.393308 0.393256 0.000052 0.393308 0.393256 0.000052 

1.75 0.385695 0.385643 0.000051 0.385695 0.385643 0.000051 

1.875 0.371756 0.371707 0.000048 0.371756 0.371707 0.000048 

2 0.351742 0.351698 0.000044 0.351742 0.351698 0.000044 

 
Table 4. Comparison between the numerical solution in our method and the method in [13], 0.2, 0.125B h= = . 

X Numerical Solution in our method Numerical Solution in [13] 

0 0 0 

0.125 0.024934 0.024934 

0.25 0.049480 0.049480 

0.375 0.073253 0.073254 

0.5 0.095881 0.095885 

0.625 0.117008 0.117019 

0.75 0.1363 0.136327 

0.875 0.153453 0.153508 

1 0.168191 0.168294 

1.125 0.180281 0.180453 

1.25 0.189526 0.189796 

1.375 0.195778 0.196178 

1.5 0.198937 0.199498 

1.625 0.198949 0.199706 

1.75 0.195816 0.196797 

1.875 0.189589 0.190817 

2 0.180367 0.181859 

 
Table 5. Comparsion between the numerical solution in our method and the method in [13], 0.4, 0.125B h= = . 

X Numerical Solution in our method Numerical Solution in [13] 

0 0 0 

0.125 0.049869 0.049869 

0.25 0.098960 0.098961 

0.375 0.146501 0.146509 

0.5 0.191739 0.191770 

0.625 0.233947 0.234038 

0.75 0.272436 0.272655 

0.875 0.306566 0.307017 

1 0.33576 0.336588 

1.125 0.359513 0.360907 

1.25 0.377408 0.379593 

1.375 0.389127 0.392357 

1.5 0.39446 0.398997 

1.625 0.393308 0.399412 

1.75 0.385695 0.393594 

1.875 0.371756 0.381634 

2 0.351742 0.363718 
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Tables 6-8 show the absolute Errors at 0.125,0.0125h =  and 
0.2,0.3,0.4B =  respectively. Example 2 was solved in [13], the comparison be-

tween our method and result in [13] is proposed in Table 9 and Table 10. It is 
seen in Figures 5-7 the method gives a good approximation in the interval 

[ ]0,50x∈  and 0.2,0.3,0.4B =  respectively. 
 

 

Figure 5. The solution of Example 2 at 0.125h = , 0.2B = . 
 

 

Figure 6. The solution of Example 2 at 0.125h = , 0.3B = . 
 

 

Figure 7. The solution of Example 2 at 0.125h = , 0.4B = . 
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Table 6. Absolute error of numerical solutions at 0.2B = . 

X 
Numerical Solution in 

Our method at 
0.125h =  
 

Exact Solution at 
0.125h =  

Error 
Numerical Solution 
in Our method at 

0.0125h =  

Exact Solution at 
0.0125h =  

Error 

0 0 0 0 0 0 0 

0.125 0.024934 0.024934 113.89579 10−×  0.024934 0.024934 118.68102 10−×  

0.25 0.049480 0.049480 92.37202 10−×  0.049480 0.049480 92.68466 10−×  

0.375 0.073253 0.073253 81.83415 10−×  0.073253 0.073253 81.92163 10−×  

0.5 0.095881 0.095881 87.26168 10−×  0.095881 0.095881 87.49309 10−×  

0.625 0.117008 0.117008 72.01662 10−×  0.117008 0.117008 72.06392 10−×  

0.75 0.1363 0.1363 74.44143 10−×  0.1363 0.1363 74.53178 10−×  

0.875 0.153452 0.153452 78.29786 10−×  0.153452 0.153452 78.45282 10−×  

1 0.168191 0.16819 61.3665 10−×  0.168191 0.16819 61.39175 10−×  

1.125 0.18028 0.180278 62.03637 10−×  0.18028 0.180278 62.07483 10−×  

1.25 0.189525 0.189522 62.79641 10−×  0.189525 0.189522 62.85251 10−×  

1.375 0.195777 0.195773 63.59097 10−×  0.195777 0.195773 63.66902 10−×  

1.5 0.198934 0.198929 64.36561 10−×  0.198934 0.198929 64.47017 10−×  

1.625 0.198945 0.19894 65.08301 10−×  0.198945 0.19894 65.21817 10−×  

1.75 0.195811 0.195805 65.73169 10−×  0.195811 0.195805 65.90079 10−×  

1.875 0.189581 0.189575 66.32606 10−×  0.189581 0.189575 66.53163 10−×  

2 0.180357 0.18035 66.89847 10−×  0.180357 0.18035 67.14149 10−×  

  
Table 7. Absolute error of numerical solutions at 0.3B = . 

X 
Numerical Solution 
in Our method at 

0.125h =  
 

Exact Solution at 
0.125h =  

Error 
Numerical Solution 
in Our method at 

0.0125h =  

Exact Solution at 
0.0125h =  

Error 

0 0 0 0 0 0 0 

0.125 0.037402 0.037402 109.40558 10−×  0.037402 0.037402 106.72264 10−×  

0.25 0.074220 0.074220 82.25371 10−×  0.074220 0.074220 82.07935 10−×  

0.375 0.109879 0.109878 71.53599 10−×  0.109878 0.109878 71.49427 10−×  

0.5 0.143814 0.143814 75.88902 10−×  0.143814 0.143814 75.80723 10−×  

0.625 0.17549 0.175489 61.61265 10−×  0.17549 0.175489 61.60006 10−×  

0.75 0.204399 0.204395 63.52997 10−×  0.204399 0.204395 63.51404 10−×  

0.875 0.230072 0.230066 66.57212 10−×  0.230072 0.230066 66.55487 10−×  

1 0.252091 0.25208 0.000010 0.252091 0.25208 0.000010 

1.125 0.27009 0.270074 0.000016 0.27009 0.270074 0.000016 

1.25 0.283769 0.283747 0.000022 0.283769 0.283747 0.000022 

1.375 0.292898 0.29287 0.000028 0.292898 0.29287 0.000028 

1.5 0.297321 0.297287 0.000034 0.297321 0.297287 0.000034 

1.625 0.296964 0.296924 0.000040 0.296964 0.296924 0.000040 

1.75 0.291832 0.291786 0.000045 0.291832 0.291786 0.000045 

1.875 0.282012 0.281962 0.000050 0.282013 0.281962 0.000050 

2 0.267672 0.267617 0.000054 0.267672 0.267617 0.000055 
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Table 8. Absolute error of numerical solutions at 0.4B = . 

X 

Numerical Solution 
in Our method at 

0.125h =  
 

Exact Solution at 
0.125h =  

Error 
Numerical Solution 
in Our method at 

0.0125h =  

Exact Solution at 
0.0125h =  

Error 

0 0 0 0 0 0 0 

0.125 0.049869 0.049869 93.86139 10−×  0.049869 0.049869 92.91296 10−×  

0.25 0.098960 0.098960 89.62982 10−×  0.098960 0.09896 89.01239 10−×  

0.375 0.146501 0.146501 76.62938 10−×  0.146501 0.146501 76.47732 10−×  

0.5 0.191739 0.191736 62.55096 10−×  0.191739 0.191736 62.51913 10−×  

0.625 0.233946 0.233939 66.99674 10−×  0.233946 0.233939 66.9439 10−×  

0.75 0.272434 0.272419 0.000015 0.272434 0.272419 0.000015 

0.875 0.306562 0.306533 0.000028 0.306561 0.306533 0.000028 

1 0.335749 0.335702 0.000046 0.335749 0.335702 0.000046 

1.125 0.359492 0.359422 0.000069 0.359492 0.359422 0.000069 

1.25 0.37737 0.377275 0.000095 0.37737 0.377275 0.000095 

1.375 0.389065 0.388942 0.000122 0.389065 0.388942 0.000122 

1.5 0.394363 0.394214 0.000149 0.394363 0.394214 0.000149 

1.625 0.393169 0.392994 0.000174 0.393169 0.392994 0.000174 

1.75 0.385503 0.385307 0.000196 0.385504 0.385307 0.000196 

1.875 0.371507 0.371289 0.000217 0.371507 0.371289 0.000217 

2 0.351432 0.351193 0.000238 0.351432 0.351193 0.000238 

 
Table 9. Comparsion between the numerical solution in our method and the method in [13], 0.2, 0.125B h= = . 

X Numerical Solution in our method Numerical Solution in [13] 

0 0 0 

0.125 0.024934 0.024934 

0.25 0.049480 0.049480 

0.375 0.073253 0.073254 

0.5 0.095881 0.095885 

0.625 0.117008 0.117019 

0.75 0.1363 0.136327 

0.875 0.153452 0.153508 

1 0.168191 0.168294 

1.125 0.18028 0.180453 

1.25 0.189525 0.189796 

1.375 0.195777 0.196178 

1.5 0.198934 0.199498 

1.625 0.198945 0.199706 

1.75 0.195811 0.196797 

1.875 0.189581 0.190817 

2 0.180357 0.181859 
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Table 10. Comparison between the numerical solution in our method and the method in [13], 0.4B = . 

X Numerical Solution in our method Numerical Solution in [13] 

0 0 0 

0.125 0.049869 0.049869 

0.25 0.098960 0.098961 

0.375 0.146501 0.146509 

0.5 0.191739 0.191770 

0.625 0.233946 0.234038 

0.75 0.272434 0.272655 

0.875 0.306562 0.307017 

1 0.335749 0.336588 

1.125 0.359492 0.360907 

1.25 0.37737 0.379593 

1.375 0.389065 0.392357 

1.5 0.394363 0.398997 

1.625 0.393169 0.399412 

1.75 0.385503 0.393594 

1.875 0.371507 0.381634 

2 0.351432 0.363718 

5. Conclusion 

A two-step with one hybrid point was proposed and proceeded as a self-starting 
method for solving nonlinear Jerk equations. We considered one hybrid point 
and specified for approximation after optimizing local truncation errors re-
lated to the main formula. Therefore, our method’s good convergent and sta-
bility properties make it attractive for the numerical solution of nonlinear 
problems. The method presented is zero stable, consistent and convergence of 
four-algebraic order. The numerical results and figures show their efficiency and 
precision compared to other methods in the literature.  
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