This Book >>

  • 213pp. Published March 2020
  • Scientific Research Publishing,Inc.,USA
  • Category: Computer Science & Communications
  • ISBN: 978-1-61896-862-3
  • (Hardcover) USD 109.00
  • ISBN: 978-1-61896-861-6
  • (Paperback) USD 89.00
Authors/Editors Price: 40% off
Buy at: bookorder@scirp.org

Connect with SCIRP >>

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)
Home > Books > Advances in Earth Observation Satellite
Advances in Earth Observation Satellite
  • Description
  • Author(s) Information
An Earth observation satellite or Earth remote sensing satellite is a satellite used or designed for Earth observation from orbit, similar to spy satellites but intended for non-military uses such as environmental monitoring, meteorology, map making etc. The first occurrence of satellite remote sensing can be dated to the launch of the first artificial satellite, Sputnik 1, by the Soviet Union on October 4, 1957. Sputnik 1 sent back radio signals, which scientists used to study the ionosphere. NASA launched the first American satellite, Explorer 1, in January 31, 1958. The information sent back from its radiation detector led to the discovery of the Earth's Van Allen radiation belts. The TIROS-1 spacecraft, launched on April 1, 1960 as part of NASA's TIROS (Television Infrared Observation Satellite) Program, sent back the first television footage of weather patterns to be taken from space. As of 2008, more than 150 Earth observation satellites were in orbit, recording data with both passive and active sensors and acquiring more than 10 terabits of data daily.
Components of the Book:
  • Chapter 1
    Satellite swarm survey and new conceptual design for Earth observation applications
  • Chapter 2
    Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites
  • Chapter 3
    Estimating spatio-temporal air temperature in London (UK) using machine learning and earth observation satellite data
  • Chapter 4
    Comparison of MDO Methods for an Earth Observation Satellite
  • Chapter 5
    Towards dynamic real-time scheduling for multiple earth observation satellites
  • Chapter 6
    Data Warehouse Design For Earth Observation Satellites
  • Chapter 7
    Space-based response to the 2011 Great East Japan Earthquake: Lessons learnt from JAXA's support using earth observation satellites
  • Chapter 8
    Knowledge generation using satellite earth observations to support sustainable development goals (SDG): A use case on Land degradation
  • Chapter 9
    A satellite data driven approach to monitoring and reporting fire disturbance and recovery across boreal and temperate forests
  • Chapter 10
    Analysis of relationship between cereal yield and NDVI for selected regions of Central Europe based on MODIS satellite data
  • Chapter 11
    Embedded implementation of multispectral satellite image encryption using a chaos-based block cipher
  • Chapter 12
    Use of High Resolution Google Earth Satellite Imagery in Landuse Map Preparation for Urban Related Applications
  • Chapter 13
    Small satellites for space science: A COSPAR scientific roadmap
Readership: Students, academics, teachers and other people attending or interested in Earth Observation Satellite
comments powered by Disqus