k-Product Cordial Labeling of Path Graphs

Abstract

In 2012, Ponraj et al. defined a concept of k-product cordial labeling as follows: Let f be a map from V( G ) to { 0,1,,k1 } where k is an integer, 1k| V( G ) | . For each edge uv assign the label f( u )f( v )( modk ) . f is called a k-product cordial labeling if | v f ( i ) v f ( j ) |1 , and | e f ( i ) e f ( j ) |1 , i,j{ 0,1,,k1 } , where v f ( x ) and e f ( x ) denote the number of vertices and edges respectively labeled with x ( x=0,1,,k1 ). Motivated by this concept, we further studied and established that several families of graphs admit k-product cordial labeling. In this paper, we show that the path graphs P n admit k-product cordial labeling.

Share and Cite:

Sabibha, R. , Daisy, K. , Jeyanthi, P. and Youssef, M. (2025) k-Product Cordial Labeling of Path Graphs. Open Journal of Discrete Mathematics, 15, 1-29. doi: 10.4236/ojdm.2025.151001.

1. Introduction

All graphs considered here are simple, finite, connected and undirected. We follow the basic notations and terminology of graph theory as in [1]. While studying graph theory, one that has gained a lot of popularity during the last 60 years is the concept of labelings of graphs due to its wide range of applications. Labeling is a function that allocates the elements of a graph to real numbers, usually positive integers. In 1967, Rosa [2] published a pioneering paper on graph labeling problems. Thereafter, several authors have studied many types of graph labeling techniques. Gallian in his survey [3] beautifully classified them. Cordial labeling is one such labelings defined by Cahit [4] as follows: Let f be a function from the vertices of G to { 0,1 } and for each edge xy assign the label | f( x )f( y ) | . f is called a cordial labeling of G if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most 1, and the number of edges labeled 0 and the number of edges labeled 1 differ at most by 1. This concept was extended and defined product cordial labeling by Sundaram et al. [5] as follows: Let f be a function from V( G ) to { 0,1 } . For each edge uv , assign the label f( u )f( v ) . Then f is called product cordial labeling if | v f ( 0 ) v f ( 1 ) |1 and | e f ( 0 ) e f ( 1 ) |1 where v f ( i ) and e f ( i ) denotes the number of vertices and edges respectively labeled with i( i=0,1 ) . Some of the researchers have shown interest in this topic and published their results. An interested reader can refer to [6]-[11].

Ponraj et al. [12] further extended the concept of product cordial labeling and defined a new labeling called k-product cordial labeling. The same authors [13] established that the 4-product cordial behaviour of graphs such as subdivision star, wheel, K 2 +m K 1 , K 2,n and K n c +2 K 2 . For further results on 3-product and 4-product cordial labeling one can refer to [3]. Inspired by the concept of k-product cordial labeling and the results in [12], we further studied and showed that several families of graphs admit k-product cordial labeling in our published papers [14]-[21]. In [22], it is proved that P n is 3-product cordial for every positive integer n. In this paper, we made an attempt to characterize the values of positive integer k2 for which the path graph P n is k-product cordial for every positive integer n.

2. Terminology and Definitions

We use the following terminology and definitions to prove our main results.

The pigeonhole principle is, if m pigeons occupy n pigeonholes and m>n , then at least one pigeonhole has two or more pigeons roosting in it [23].

Let x be any real number. Then x stands for the largest integer less than or equal to x and x stands for the smallest integer greater than or equal to x.

Definition 1. An integer p>1 is called a prime number if 1 and p are the only divisor of p.

Definition 2. Let f be a map from V( G ) to { 0,1,,k1 } where k is an integer, 1k| V( G ) | . For each edge uv assign the label f( u )f( v )( modk ) . f is called a k-product cordial labeling if | v f ( i ) v f ( j ) |1 , and | e f ( i ) e f ( j ) |1 , i,j{ 0,1,,k1 } , where v f ( x ) and e f ( x ) denote the number of vertices and edges respectively labeled with x ( x=0,1,,k1 ).

3. Main Results

In this section, we study the k-product cordial labeling of path graph P n where k=5,6,7,10,11 and 15. Also, we show that not all paths are p 2 -product cordial when p is odd prime. In all the results, we consider the vertex and edge set of P n be V( P n )={ v i ; 1in } and E( P n )={ ( v i , v i+1 ) ; 1in1 } respectively.

Theorem 3. For n3 , the path P n is 5-product cordial.

Proof. Define f:V( P n ){ 0,1,2,3,4 } as follows:

f( v i )=0 ; 1i n 5 .

For i= n 5 +j ; 1jn n 5 ,

f( v i )={ 4 ifj1,6( mod8 ) 1 ifj2,5( mod8 ) 2 ifj3,7( mod8 ) 3 ifj4,0( mod8 )

From the above labeling pattern, we have the following cases.

Case (i): If n1( mod5 ) ,

e f ( i )= n 5 for 0i4 .

For n is even, v f ( i )={ n 5 ifi=0,2,3,4 n 5 +1 ifi=1

For n is odd, v f ( i )={ n 5 ifi=0,1,2,3 n 5 +1 ifi=4

Hence, P n is a 5-product cordial graph if n1( mod5 ) .

Case (ii): If n2( mod5 ) ,

v f ( i )={ n 5 ifi=0,2,3 n 5 +1 ifi=1,4

e f ( i )={ n 5 ifi=0,1,2,3 n 5 +1 ifi=4

Hence, P n is a 5-product cordial graph if n2( mod5 ) .

Case (iii): If n3( mod5 ) ,

v f ( i )={ n 5 ifi=0,3 n 5 +1 ifi=1,2,4

For n is even, e f ( i )={ n 5 ifi=0,1,2 n 5 +1 ifi=3,4

For n is odd, e f ( i )={ n 5 ifi=0,1,3 n 5 +1 ifi=2,4

Hence, P n is a 5-product cordial graph if n3( mod5 ) .

Case (iv): If n4( mod5 ) ,

v f ( i )={ n 5 ifi=0 n 5 +1 ifi=1,2,3,4

For n is even, e f ( i )={ n 5 ifi=0,3 n 5 +1 ifi=1,2,4

For n is odd, e f ( i )={ n 5 ifi=0,2 n 5 +1 ifi=1,3,4

Hence, P n is a 5-product cordial graph if n4( mod5 ) .

Case (v): If n0( mod5 ) ,

v f ( i )= n 5 for 0i4 .

For n is even, e f ( i )={ n 5 1 ifi=2 n 5 ifi=0,1,3,4

For n is odd, e f ( i )={ n 5 1 ifi=3 n 5 ifi=0,1,2,4

Hence, P n is a 5-product cordial graph if n0( mod5 ) . □

An example of 5-product cordial labeling of P 12 is shown in Figure 1.

Figure 1. 5-product cordial labeling of P12.

Theorem 4. For n3 , the path P n is 7-product cordial.

Proof. Define f:V( P n ){ 0,1,2,3,4,5,6 } as follows:

f( v i )=0 ; 1i n 7 .

For i= n 7 +j ; 1jn n 7 ,

f( v i )={ 6 ifj1,8( mod12 ) 1 ifj2,7( mod12 ) 2 ifj3,10( mod12 ) 5 ifj4,9( mod12 ) 3 ifj5,0( mod12 ) 4 ifj6,11( mod12 )

From the above labeling pattern, we have the following cases.

Case (i): If n1( mod7 ) ,

e f ( i )= n 7 for 0i6 .

For n is even, v f ( i )={ n 7 ifi=0,2,3,4,5,6 n 7 +1 ifi=1

For n is odd, v f ( i )={ n 7 ifi=0,1,2,3,4,5 n 7 +1 ifi=6

Hence, P n is a 7-product cordial graph if n1( mod7 ) .

Case (ii): If n2( mod7 ) .

v f ( i )={ n 7 ifi=0,2,3,4,5 n 7 +1 ifi=1,6

e f ( i )={ n 7 ifi=0,1,2,3,4,5 n 7 +1 ifi=6

Hence, P n is a 7-product cordial graph if n2( mod7 ) .

Case (iii): If n3( mod7 ) ,

e f ( i )={ n 7 ifi=0,1,3,4,5 n 7 +1 ifi=2,6

For n is odd, v f ( i )={ n 7 ifi=0,3,4,5 n 7 +1 ifi=1,2,6

For n is even, v f ( i )={ n 7 ifi=0,2,3,4 n 7 +1 ifi=1,5,6

Hence, P n is a 7-product cordial graph if n3( mod7 ) .

Case (iv): If n4( mod7 ) ,

v f ( i )={ n 7 ifi=0,3,4 n 7 +1 ifi=1,2,5,6

e f ( i )={ n 7 ifi=0,1,4,5 n 7 +1 ifi=2,3,6

Hence, P n is a 7-product cordial graph if n4( mod7 ) .

Case (v): If n5( mod7 ) ,

e f ( i )={ n 7 ifi=0,4,5 n 7 +1 ifi=1,2,3,6

For n is odd, v f ( i )={ n 7 ifi=0,4 n 7 +1 ifi=1,2,3,5,6

For n is even, v f ( i )={ n 7 ifi=0,3 n 7 +1 ifi=1,2,4,5,6

Hence, P n is a 7-product cordial graph if n5( mod7 ) .

Case (vi): If n6( mod7 ) ,

v f ( i )={ n 7 ifi=0 n 7 +1 ifi=1,2,3,4,5,6

e f ( i )={ n 7 ifi=0,4 n 7 +1 ifi=1,2,3,5,6

Hence, P n is a 7-product cordial graph if n6( mod7 ) .

Case (vii): If n0( mod7 ) ,

v f ( i )= n 7 for 0i6 , e f ( i )={ n 7 1 ifi=4 n 7 ifi=0,1,2,3,5,6

Hence, P n is a 7-product cordial graph if n0( mod7 ) . □

An example of 7-product cordial labeling of P 11 is shown in Figure 2.

Figure 2. 7-product cordial labeling of P11.

Theorem 5. For n3 , the path P n is 11-product cordial.

Proof. Define f:V( P n ){ 0,1,2,,10 } as follows:

f( v i )=0 ; 1i n 11 .

For i= n 11 +j ; 1jn n 11 ,

f( v i )={ 10 ifj1,12( mod20 ) 1 ifj2,11( mod20 ) 9 ifj3,14( mod20 ) 2 ifj4,13( mod20 ) 7 ifj5,16( mod20 ) 4 ifj6,15( mod20 ) 3 ifj7,18( mod20 ) 8 ifj8,17( mod20 ) 6 ifj9,0( mod20 ) 5 ifj10,19( mod20 )

From the above labeling pattern, we have the following cases.

Case (i): If n1( mod11 ) ,

e f ( i )= n 11 for 0i10 .

For n is even, v f ( i )={ n 11 ifi=0,2,3,4,5,6,7,8,9,10 n 11 +1 ifi=1

For n is odd, v f ( i )={ n 11 ifi=0,1,2,3,4,5,6,7,8,9 n 11 +1 ifi=10

Hence, P n is a 11-product cordial graph if n1( mod11 ) .

Case (ii): If n2( mod11 ) .

v f ( i )={ n 11 ifi=0,2,3,4,5,6,7,8,9 n 11 +1 ifi=1,10

e f ( i )={ n 11 ifi=0,1,2,3,4,5,6,7,8,9 n 11 +1 ifi=10

Hence, P n is a 11-product cordial graph if n2( mod11 ) .

Case (iii): If n3( mod11 ) ,

e f ( i )={ n 11 ifi=0,1,2,3,4,5,6,7,8 n 11 +1 ifi=9,10

For n is even, v f ( i )={ n 11 ifi=0,3,4,5,6,7,8,9 n 11 +1 ifi=1,2,10

For n is odd, v f ( i )={ n 11 ifi=0,2,3,4,5,6,7,8 n 11 +1 ifi=1,9,10

Hence, P n is a 11-product cordial graph if n3( mod11 ) .

Case (iv): If n4( mod11 ) .

v f ( i )={ n 11 ifi=0,3,4,5,6,7,8 n 11 +1 ifi=1,2,9,10

e f ( i )={ n 11 ifi=0,1,2,3,4,5,6,8 n 11 +1 ifi=7,9,10

Hence, P n is a 11-product cordial graph if n4( mod11 ) .

Case (v): If n5( mod11 ) ,

e f ( i )={ n 11 ifi=0,1,2,4,5,6,8 n 11 +1 ifi=3,7,9,10

For n is even, v f ( i )={ n 11 ifi=0,3,5,6,7,8 n 11 +1 ifi=1,2,4,9,10

For n is odd, v f ( i )={ n 11 ifi=0,3,4,5,6,8 n 11 +1 ifi=1,2,7,9,10

Hence, P n is a 11-product cordial graph if n5( mod11 ) .

Case (vi): If n6( mod11 ) .

v f ( i )={ n 11 ifi=0,3,5,6,8 n 11 +1 ifi=1,2,4,7,9,10

e f ( i )={ n 11 ifi=0,1,2,4,5,8 n 11 +1 ifi=3,6,7,9,10

Hence, P n is a 11-product cordial graph if n6( mod11 ) .

Case (vii): If n7( mod11 ) ,

e f ( i )={ n 11 ifi=0,2,4,5,8 n 11 +1 ifi=1,3,6,7,9,10

For n is even, v f ( i )={ n 11 ifi=0,3,5,6 n 11 +1 ifi=1,2,4,7,8,9,10

For n is odd, v f ( i )={ n 11 ifi=0,5,6,8 n 11 +1 ifi=1,2,3,4,7,9,10

Hence, P n is a 11-product cordial graph if n7( mod11 ) .

Case (viii): If n8( mod11 ) .

v f ( i )={ n 11 ifi=0,5,6 n 11 +1 ifi=1,2,3,4,7,8,9,10

e f ( i )={ n 11 ifi=0,4,5,8 n 11 +1 ifi=1,2,3,6,7,9,10

Hence, P n is a 11-product cordial graph if n8( mod11 ) .

Case (ix): If n9( mod11 ) ,

e f ( i )={ n 11 ifi=0,5,8 n 11 +1 ifi=1,2,3,4,6,7,9,10

For n is even, v f ( i )={ n 11 ifi=0,6 n 11 +1 ifi=1,2,3,4,5,7,8,9,10

For n is odd, v f ( i )={ n 11 ifi=0,5 n 11 +1 ifi=1,2,3,4,6,7,8,9,10

Hence, P n is a 11-product cordial graph if n9( mod11 ) .

Case (x): If n10( mod11 ) .

v f ( i )={ n 11 ifi=0 n 11 +1 if1i10

e f ( i )={ n 11 ifi=0,5 n 11 +1 ifi=1,2,3,4,6,7,8,9,10

Hence, P n is a 11-product cordial graph if n10( mod11 ) .

Case (xi): If n0( mod11 ) .

v f ( i )= n 11 for 0i10 .

e f ( i )={ n 11 1 ifi=5 n 11 ifi=0,1,2,3,4,6,7,8,9,10

Hence, P n is a 11-product cordial graph if n0( mod11 ) . □

An example of 11-product cordial labeling of P 8 is shown in Figure 3.

Figure 3. 11-product cordial labeling of P8.

As a consequence of Theorems 3, 4 and 5 we propose Conjecture 6.

Conjecture 6. For all n3 , the path P n is k-product cordial graph if k is prime.

Theorem 7. For n3 , the path P n is 6-product cordial.

Proof. Define f:V( P n ){ 0,1,2,3,4,5 } .

We have the following six cases.

Case (i): If n1( mod6 ) ,

f( v i )={ 0 if1i n 6 3 if n 6 +1i2 n 6

For i=4 n 6 +2j ; 1j2 n 6 +1 ,

f( v 4 n 6 +2j )={ 1 ifj1,0( mod4 ) 5 ifj2,3( mod4 )

For i=4 n 6 +1+j ; 1j2 n 6 ,

f( v 4 n 6 +1+j )={ 4 ifj1,0( mod4 ) 2 ifj2,3( mod4 )

Therefore,

e f ( i )= n 6 for 0i5 .

For n 6 is odd,

v f ( i )={ n 6 fori=0,1,2,3,4 n 6 +1 fori=5

For n 6 is even,

v f ( i )={ n 6 fori=0,2,3,4,5 n 6 +1 fori=1

Hence, P n is a 6-product cordial graph if n1( mod6 ) .

Case (ii): If n2( mod6 ) ,

f( v i )={ 0 for1i n 6 3 for n 6 +1i2 n 6

For i=4 n 6 +3j ; 1j2 n 6 +2 ,

f( v 4 n 6 +3j )={ 1 forj1,0( mod4 ) 5 forj2,3( mod4 )

For i=4 n 6 +2+j ; 1j2 n 6 ,

f( v 4 n 6 +2+j )={ 4 forj1,0( mod4 ) 2 forj2,3( mod4 )

Therefore,

v f ( i )={ n 6 fori=0,2,3,4 n 6 +1 fori=1,5

e f ( i )={ n 6 fori=0,1,2,3,4 n 6 +1 fori=5

Hence, P n is a 6-product cordial graph if n2( mod6 ) .

Case (iii): If n3( mod6 ) .

Subcase (i): If n 6 is odd.

We label the vertices v i ( 1in1 ) as in Case (ii), then assign 2 to v n .

Subcase (ii): If n 6 is even.

We label the vertices v i ( 1in1 ) as in Case (ii), then assign 4 to v n .

Therefore,

e f ( i )={ n 6 fori=0,1,2,3 n 6 +1 fori=4,5

For n 10 is even,

v f ( i )={ n 6 fori=0,2,3 n 6 +1 fori=1,4,5

For n 6 is odd,

v f ( i )={ n 6 fori=0,3,4 n 6 +1 fori=1,2,5

Hence, P n is a 6-product cordial graph if n3( mod6 ) .

Case (iv): If n4( mod6 ) .

Subcase (i): If n 6 is odd.

We label the vertices v i ( 1in1 ) as in Case (iii) Subcase (i), then assign 4 to v n .

Subcase (ii): If n 6 is even.

We label the vertices v i ( 1in1 ) as in Case (iii) Subcase (ii), then assign 2 to v n .

Therefore,

v f ( i )={ n 6 fori=0,3 n 6 +1 fori=1,2,4,5

e f ( i )={ n 6 fori=0,1,3 n 6 +1 fori=2,4,5

Hence, P n is a 6-product cordial graph if n4( mod6 ) .

Case (v): If n5( mod6 ) ,

f( v i )={ 0 for1i n 6 3 for n 6 +1i2 n 6 +1

For i=4 n 6 +4j ; 1j2 n 6 +2 ,

f( v 4 n 6 +4j )={ 1 forj1,0( mod4 ) 5 forj2,3( mod4 )

For i=4 n 6 +3+j ; 1j2 n 6 +2 ,

f( v 4 n 6 +3+j )={ 4 forj1,0( mod4 ) 2 forj2,3( mod4 )

Therefore,

v f ( i )={ n 6 fori=0 n 6 +1 fori=1,2,3,4,5

e f ( i )={ n 6 fori=0,1 n 6 +1 fori=2,3,4,5

Hence, P n is a 6-product cordial graph if n5( mod6 ) .

Case (vi): If n0( mod6 ) ,

f( v i )={ 0 if1i n 6 3 if n 6 +1i2 n 6

For i=4 n 6 +1j ; 1j2 n 6 ,

f( v 4 n 6 +1j )={ 1 forj1,0( mod4 ) 5 forj2,3( mod4 )

For i=4 n 6 +j ; 1j2 n 6 ,

f( v 4 n 6 +j )={ 4 forj1,0( mod4 ) 2 forj2,3( mod4 )

Therefore,

v f ( i )= n 6 for 0i5 ,

e f ( i )={ n 6 fori=0,2,3,4,5 n 6 1 fori=1

Hence, P n is a 6-product cordial graph if n0( mod6 ) . □

Figure 4 shows the 6-product cordial labeling of P 9 .

Figure 4. 6-product cordial labeling of P9.

Theorem 8. For n3 , the path P n is 10-product cordial.

Proof. Define f:V( P n ){ 0,1,2,3,4,5,6,7,8,9 } .

We have the following four cases.

Case (i): If n=10 n 10 +t where t=1,2,3,4 then

f( v i )={ 0 if1i n 10 5 if n 10 +1i2 n 10

For i=6 n 10 +1+tj ; 1j4 n 10 +t where t=1,2,3,4 ,

f( v 6 n 10 +1+tj )={ 3 forj1,6( mod8 ) 7 forj2,5( mod8 ) 9 forj3,7( mod8 ) 1 forj4,0( mod8 )

For i=6 n 10 +t+j ; 1j4 n 10 ,

f( v 6 n 10 +t+j )={ 4 forj1,6( mod8 ) 6 forj2,5( mod8 ) 8 forj3,0( mod8 ) 2 forj4,7( mod8 )

From the above labeling we have the following subcases:

Subcase (i): If t=1 ,

e f ( i )= n 10 for 0i9 .

For n 10 is even,

v f ( i )={ n 10 fori=0,1,2,4,5,6,7,8,9 n 10 +1 fori=3

For n 10 is odd,

v f ( i )={ n 10 fori=0,1,2,3,4,5,6,8,9 n 10 +1 fori=7

Subcase (ii): If t=2 ,

e f ( i )={ n 10 fori=0,2,3,4,5,6,7,8,9 n 10 +1 fori=1

v f ( i )={ n 10 fori=0,1,2,4,5,6,8,9 n 10 +1 fori=3,7

Subcase (iii): If t=3 ,

v f ( i )={ n 10 fori=0,1,2,4,5,6,8 n 10 +1 fori=3,7,9

For n 10 is even,

e f ( i )={ n 10 fori=0,2,4,5,6,7,8,9 n 10 +1 fori=1,3

For n 10 is odd,

e f ( i )={ n 10 fori=0,2,3,4,5,6,8,9 n 10 +1 fori=1,7

Subcase (iv): If t=4 ,

v f ( i )={ n 10 fori=0,1,2,4,5,6,8 n 10 +1 fori=1,3,7,9

For n 10 is even,

e f ( i )={ n 10 fori=0,2,4,5,6,7,8 n 10 +1 fori=1,3,9

For n 10 is odd,

e f ( i )={ n 10 fori=0,2,3,4,5,6,8 n 10 +1 fori=1,7,9

Hence, P n is a 10-product cordial graph if n=10 n 10 +t where

t=1,2,3,4 .

Case (ii): If n=10 n 10 +5 ,

f( v i )={ 0 for1i n 10 5 for n 10 +1i2 n 10 +1

For i=6 n 10 +6j ; 1j4 n 10 +4 ,

f( v 6 n 10 +6j )={ 3 forj1,6( mod8 ) 7 forj2,5( mod8 ) 9 forj3,7( mod8 ) 1 forj4,0( mod8 )

For i=6 n 10 +5+j ; 1j4 n 10 ,

f( v 6 n 10 +5+j )={ 4 forj1,6( mod8 ) 6 forj2,5( mod8 ) 8 forj3,0( mod8 ) 2 forj4,7( mod8 )

Therefore, v f ( i )={ n 10 fori=0,2,4,6,8 n 10 +1 fori=1,3,5,7,9

For n 10 is even,

e f ( i )={ n 10 fori=0,2,4,6,7,8 n 10 +1 fori=1,3,5,9

For n 10 is odd,

e f ( i )={ n 10 fori=0,2,3,4,6,8 n 10 +1 fori=1,5,7,9

Hence, P n is a 10-product cordial graph if n=10 n 10 +5 .

Case (iii): If n=10 n 10 +t where t=6,7,8,9 then

f( v i )={ 0 if1i n 10 +1 5 if n 10 +2i2 n 10 +2

For i=6 n 10 +7j ; 1j4 n 10 +4 ,

f( v 6 n 10 +7j )={ 3 forj1,6( mod8 ) 7 forj2,5( mod8 ) 9 forj3,7( mod8 ) 1 forj4,0( mod8 )

For i=6 n 10 +6+j ; 1j4 n 10 +t6 where t=6,7,8,9 ,

f( v 6 n 10 +6+j )={ 4 forj1,6( mod8 ) 6 forj2,5( mod8 ) 8 forj3,0( mod8 ) 2 forj4,7( mod8 )

From the above labeling we have the following subcases:

Subcase (i): If t=6 ,

v f ( i )={ n 10 fori=2,4,6,8 n 10 +1 fori=0,1,3,5,7,9

For n 10 is even,

e f ( i )={ n 10 fori=2,4,6,7,8 n 10 +1 fori=0,1,3,5,9

For n 10 is odd,

e f ( i )={ n 10 fori=2,3,4,6,8 n 10 +1 fori=0,1,5,7,9

Subcase (ii): If t=7 .

For n 10 is even,

v f ( i )={ n 10 fori=2,6,8 n 10 +1 fori=0,1,3,4,5,7,9 ,

e f ( i )={ n 10 fori=4,6,7,8 n 10 +1 fori=0,1,2,3,5,9

For n 10 is odd,

v f ( i )={ n 10 fori=2,4,8 n 10 +1 fori=0,1,3,5,6,7,9 ,

e f ( i )={ n 10 fori=3,4,6,8 n 10 +1 fori=0,1,2,5,7,9

Subcase (iii): If t=8 ,

v f ( i )={ n 10 fori=2,8 n 10 +1 fori=0,1,3,4,5,6,7,9

For n 10 is even,

e f ( i )={ n 10 fori=6,7,8 n 10 +1 fori=0,1,2,3,4,5,9

For n 10 is odd,

v f ( i )={ n 10 fori=3,6,8 n 10 +1 fori=0,1,2,4,5,7,9

Subcase (iv): If t=9 .

For n 10 is even,

v f ( i )={ n 10 fori=2 n 10 +1 fori=0,1,3,4,5,6,7,8,9 ,

e f ( i )={ n 10 fori=6,7 n 10 +1 fori=0,1,2,3,4,5,8,9 .

For n 10 is odd,

v f ( i )={ n 10 fori=8 n 10 +1 fori=0,1,2,3,4,5,6,7,9 ,

e f ( i )={ n 10 fori=3,6 n 10 +1 fori=0,1,2,4,5,7,8,9 .

Hence, P n is a 10-product cordial graph if n=10 n 10 +t where

t=6,7,8,9 .

Case (iv): If n=10 n 10 .

Subcase (i): If n 10 is even.

We label the vertices v i ( 1in1 ) as in Case (iii), then assign 8 to v n .

Subcase (ii): If n 10 is odd.

We label the vertices v i ( 1in1 ) as in Case (iii), then assign 2 to v n .

From this label we get,

v f ( i )= n 10 for 0i9 .

For n 10 is odd,

e f ( i )={ n 10 1 fori=7 n 10 fori=0,1,2,3,4,5,6,8,9 .

For n 10 is even,

e f ( i )={ n 10 fori=3 n 10 +1 fori=0,1,2,4,5,6,7,8,9 .

Hence, P n is a 10-product cordial graph if n=10 n 10 . □

Figure 5 shows the 10-product cordial labeling of P 10 .

Figure 5. 10-product cordial labeling of P10.

Theorem 9 For n3 , the path P n is 15-product cordial.

Proof. Define f:V( P n ){ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 } .

We have the following five cases.

Case (i): If n=15 n 15 +t where 1t8 then

f( v i )=0 ; 1i n 15 .

For t=1,2,3,5 and i=3 n 15 +1j ; 1j2 n 15 ,

f( v 3 n 15 +1j )={ 5 forj1,0( mod4 ) 10 forj2,3( mod4 )

For t=4,6,7,8 and i=3 n 15 +1j ; 1j2 n 15 ,

f( v 3 n 15 +1j )={ 10 forj1,0( mod4 ) 5 forj2,3( mod4 )

For i=11 n 15 +1+tj ; 1j8 n 15 +t where 1t8 ,

f( v 11 n 15 +1+tj )={ 2 forj1( mod8 ) 8 forj2( mod8 ) 11 forj3( mod8 ) 13 forj4( mod8 ) 14 forj5( mod8 ) 4 forj6( mod8 ) 1 forj7( mod8 ) 7 forj0( mod8 )

For i=11 n 15 +t+j ; 1j4 n 15 ,

f( v 11 n 15 +t+j )={ 6 forj1,6( mod8 ) 9 forj2,5( mod8 ) 12 forj3,0( mod8 ) 3 forj4,7( mod8 )

From the above labeling we have the following subcases:

Subcase (i): If t=1 ,

v f ( i )={ n 15 ifi=0,1,3,4,5,6,7,8,9,10,11,12,13,14 n 15 +1 ifi=2

e f ( i )= n 15 ; 0i14 .

Subcase (ii): If t=2 ,

v f ( i )={ n 15 ifi=0,1,3,4,5,6,7,9,10,11,12,13,14 n 15 +1 ifi=2,8

e f ( i )={ n 15 ifi=0,2,3,4,5,6,7,8,9,10,11,12,13,14 n 15 +1 ifi=1

Subcase (iii): If t=3 ,

v f ( i )={ n 15 ifi=0,1,3,4,5,6,7,9,10,12,13,14 n 15 +1 ifi=2,8,11

e f ( i )={ n 15 ifi=0,2,3,4,5,6,7,8,9,10,11,12,14 n 15 +1 ifi=1,13

Subcase (iv): If t=4 ,

v f ( i )={ n 15 ifi=0,1,3,4,5,6,7,9,10,12,14 n 15 +1 ifi=2,8,11,13

e f ( i )={ n 15 ifi=0,2,3,4,5,6,7,9,10,11,12,14 n 15 +1 ifi=1,13,8

Subcase (v): If t=5 ,

v f ( i )={ n 15 ifi=0,1,3,4,5,6,7,9,10,11,12 n 15 +1 ifi=2,8,11,13,14

e f ( i )={ n 15 ifi=0,3,4,5,6,7,9,10,11,12,14 n 15 +1 ifi=1,2,8,13

Subcase (vi): If t=6 ,

v f ( i )={ n 15 ifi=0,1,3,5,6,7,9,10,12 n 15 +1 ifi=2,4,8,11,13,14

e f ( i )={ n 15 ifi=0,3,4,5,6,7,9,10,12,14 n 15 +1 ifi=1,2,8,11,13

Subcase (vii): If t=7 ,

v f ( i )={ n 15 ifi=0,3,5,6,7,9,10,12 n 15 +1 ifi=1,2,4,8,11,13,14

e f ( i )={ n 15 ifi=0,3,5,6,7,9,10,12,14 n 15 +1 ifi=1,2,4,8,11,13

Subcase (viii): If t=8 ,

v f ( i )={ n 15 ifi=0,3,5,6,9,10,12 n 15 +1 ifi=1,2,4,7,8,11,13,14

e f ( i )={ n 15 ifi=0,3,5,6,9,10,12,14 n 15 +1 ifi=1,2,4,7,8,11,13

Therefore, P n is a 15-product cordial graph if n=15 n 15 +t where

1t8 .

Case (ii): If n=15 n 15 +t , where 9t12 then

f( v i )=0 ; 1i n 15 .

For i=3 n 15 +1j ; 1j2 n 15 ,

f( v 3 n 15 +1j )={ 10 forj1,0( mod4 ) 5 forj2,3( mod4 )

For i=11 n 15 +9j ; 1j8 n 15 +8 ,

f( v 11 n 15 +9j )={ 2 forj1( mod8 ) 8 forj2( mod8 ) 11 forj3( mod8 ) 13 forj4( mod8 ) 14 forj5( mod8 ) 4 forj6( mod8 ) 1 forj7( mod8 ) 7 forj0( mod8 )

For i=11 n 15 +8+j ; 1j4 n 15 +t8 where 9t12 ,

f( v 11 n 15 +8+j )={ 6 forj1,6( mod8 ) 9 forj2,5( mod8 ) 12 forj3,0( mod8 ) 3 forj4,7( mod8 )

From the above labeling we have the following subcases:

Subcase (i): If t=9 ,

e f ( i )={ n 15 ifi=0,3,5,6,9,10,14 n 15 +1 ifi=1,2,4,7,8,11,12,13

For n 15 is even, v f ( i )={ n 15 ifi=0,3,5,9,10,12 n 15 +1 ifi=1,2,4,6,7,8,11,13,14

For n 15 is odd, v f ( i )={ n 15 ifi=0,3,5,6,10,12 n 15 +1 ifi=1,2,4,7,8,9,11,13,14

Subcase (ii): If t=10 ,

v f ( i )={ n 15 ifi=0,3,5,10,12 n 15 +1 ifi=1,2,4,6,7,8,9,11,13,14

e f ( i )={ n 15 ifi=0,3,5,6,10,14 n 15 +1 ifi=1,2,4,7,8,9,11,12,13

Subcase (iii): If t=11 ,

e f ( i )={ n 15 ifi=0,5,6,10,14 n 15 +1 ifi=1,2,3,4,7,8,9,11,12,13

For n 15 is even, v f ( i )={ n 15 ifi=0,3,5,10 n 15 +1 ifi=1,2,4,6,7,8,9,11,12,13,14

For n 15 is odd, v f ( i )={ n 15 ifi=0,5,10,12 n 15 +1 ifi=1,2,3,4,6,7,8,9,11,13,14

Subcase (iv): If t=12 ,

v f ( i )={ n 15 ifi=0,5,10 n 15 +1 ifi=1,2,3,4,6,7,8,9,11,12,13,14

e f ( i )={ n 15 ifi=0,5,10,14 n 15 +1 ifi=1,2,3,4,6,7,8,9,11,12,13

Therefore, P n is a 15-product cordial graph if n=15 n 15 +t where

9t12 .

Case (iii): If n=15 n 15 +13 , then

f( v i )=0 ; 1i n 15 +1.

For i=3 n 15 +2j ; 1j2 n 15 ,

f( v 3 n 15 +2j )={ 10 forj1,0( mod4 ) 5 forj2,3( mod4 )

For i=11 n 15 +10j ; 1j8 n 15 +8 ,

f( v 11 n 15 +10j )={ 2 forj1( mod8 ) 8 forj2( mod8 ) 11 forj3( mod8 ) 13 forj4( mod8 ) 14 forj5( mod8 ) 4 forj6( mod8 ) 1 forj7( mod8 ) 7 forj0( mod8 )

For i=11 n 15 +9+j ; 1j4 n 15 +4 ,

f( v 11 n 15 +9+j )={ 6 forj1,6( mod8 ) 9 forj2,5( mod8 ) 12 forj3,0( mod8 ) 3 forj4,7( mod8 )

Therefore,

v f ( i )={ n 15 ifi=5,10 n 15 +1 ifi=0,1,2,3,4,6,7,8,9,11,12,13,14

e f ( i )={ n 15 ifi=5,10,14 n 15 +1 ifi=0,1,2,3,4,6,7,8,9,11,12,13

Hence, P n is a 15-product cordial graph if n=15 n 15 +13 .

Case (iv): If n=15 n 15 +14 , then

f( v i )=0 ; 1i n 15 +1.

For i=3 n 15 +2j ; 1j2 n 15 +1 ,

f( v 3 n 15 +2j )={ 10 forj1,0( mod4 ) 5 forj2,3( mod4 )

For i=11 n 15 +11j ; 1j8 n 15 +8 ,

f( v 11 n 15 +11j )={ 2 forj1( mod8 ) 8 forj2( mod8 ) 11 forj3( mod8 ) 13 forj4( mod8 ) 14 forj5( mod8 ) 4 forj6( mod8 ) 1 forj7( mod8 ) 7 forj0( mod8 )

For i=11 n 15 +10+j ; 1j4 n 15 +4 ,

f( v 11 n 15 +10+j )={ 6 forj1,6( mod8 ) 9 forj2,5( mod8 ) 12 forj3,0( mod8 ) 3 forj4,7( mod8 )

Therefore,

e f ( i )={ n 15 ifi=5,14 n 15 +1 ifi=0,1,2,3,4,6,7,8,9,10,11,12,13

For n 15 is even,

v f ( i )={ n 15 ifi=5 n 15 +1 ifi=0,1,2,3,4,6,7,8,9,10,11,12,13,14

For n 15 is odd,

v f ( i )={ n 15 ifi=10 n 15 +1 ifi=0,1,2,3,4,5,6,7,8,9,11,12,13,14

Hence, P n is a 15-product cordial graph if n=15 n 15 +14 .

Case (v): If n=15 n 15 , then

f( v i )=0 ; 1i n 15 .

For i=3 n 15 +1j ; 1j2 n 15 ,

f( v 3 n 15 +1j )={ 10 ifj1,0( mod4 ) 5 ifj2,3( mod4 )

For i=11 n 15 +1j ; 1j8 n 15 ,

f( v 11 n 15 +1j )={ 2 forj1( mod8 ) 8 forj2( mod8 ) 11 forj3( mod8 ) 13 forj4( mod8 ) 14 forj5( mod8 ) 4 forj6( mod8 ) 1 forj7( mod8 ) 7 forj0( mod8 )

For i=11 n 15 +j ; 1j4 n 15 ,

f( v 11 n 15 +j )={ 6 forj1,6( mod8 ) 9 forj2,5( mod8 ) 12 forj3,0( mod8 ) 3 forj4,7( mod8 )

Therefore,

v f ( i )= n 15 ; 0i14 .

e f ( i )={ n 15 ifi=14 n 15 +1 ifi=0,1,2,3,4,5,6,7,8,9,10,11,12,13

Hence, P n is a 15-product cordial graph if n=15 n 15 . □

Figure 6 shows the 15-product cordial labeling of P 16 .

Figure 6. 15-product cordial labeling of P16.

Remark 10. [12] The path P n is 4-product cordial if and only if n11 .

Lemma 11. The path P 2 p 2 does not admit p2-product cordial labeling for every odd prime p.

Proof. Suppose that f is a p2-product cordial labeling of P 2 p 2 . Then v f ( i )=2 for ( i=0,1,2,3,, p 2 1 ) and e f ( i )=2 or 1 for ( i=0,1,2,3,, p 2 1 ). Obviously, v f ( 0 )=2 and 0 must be assigned consecutively at the beginning or end of the path or beginning and end of the path together. Otherwise e f ( 0 )>2 , which is not possible. Thus, e f ( 0 )=2 . Now v f ( ip )=2 for ( i=1,2,3,,p1 ) and each vertex labels ip must be labeled inconsecutively, otherwise e f ( 0 )>2 , which is not possible. These vertex labels with the other vertex labels produce the

edge labels ip and ( i=1,2,3,,p1 ), so i=1 p1 e f ( ip ) 4p6 and using the pigeonhole principle, we get at least i from the set { p,2p,,( p1 )p } such that e f ( i )>2 which contradicts that f is a p2-product cordial labeling of P 2 p 2 .

As a consequence of Theorems 7, 8, 9, Remark 10 and Lemma 11 we propose the following conjecture:

Conjecture 12. For all n3 , the path P n is k-product cordial graph if k is the product of two distinct prime numbers.

Acknowledgements

We would like to thank the referees for their valuable suggestions to improve the quality of the paper.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Harary, F. (1972) Graph Theory. Addison-Wesley.
[2] Rosa, A. (1967) On Certain Valuations of the Vertices of a Graph. Theory of Graphs (International Symposium, Rome, July 1966), Dunod Gordon & Breach Science Publishers, Inc., New York and Dunod Paris, 349-355.
[3] Gallian, J.A. (2021) A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, 1-644.
[4] Cahit, I. (1987) Cordial Graphs: A Weaker Version of Graceful and Harmonious Graphs. Ars Combinatoria, 23, 201-207.
[5] Sundaram, M., Ponraj, R. and Somasundaram, S. (2004) Product Cordial Labeling of Graphs. Bulletin of Pure and Applied Sciences, 23, 155-163.
[6] Rokad, A.H. (2019) Product Cordial Labeling of Double Wheel and Double Fan Related Graphs. Kragujevac Journal of Mathematics, 43, 7-13.
[7] Seoud, M.A. and Helmi, E.F. (2011) On Product Cordial Graphs. Ars Combinatoria, 101, 519-529.
[8] Vaidya, S.K. and Barasara, C.M. (2011) Product Cordial Labeling for Some New Graphs. Journal of Mathematics Research, 3, 206-211.
https://doi.org/10.5539/jmr.v3n2p206
[9] Vaidya, S.K. and Barasara, C.M. (2016) Product Cordial Labeling of Line Graph of Some Graphs. Kragujevac Journal of Mathematics, 40, 290-297.
[10] Vaidya, S.K. and Kanani, K.K. (2010) Some Cycle Related Product Cordial Graphs. International Journal of Algorithms, Computing and Mathematics, 3, 109-116.
[11] Vaidya, S.K. and Kanani, K.K. (2011) Some New Product Cordial Graphs. Mathematics Today, 27, 64-70.
[12] Ponraj, R., Sivakumar, M. and Sundaram, M. (2012) k-Product Cordial Labeling of Graphs. International Journal of Contemporary Mathematical Sciences, 7, 733-742.
[13] Ponraj, R., Sivakumar, M. and Sundaram, M. (2012) On 4-Product Cordial Graphs. International Journal of Mathematical Archive, 7, 2809-2814.
[14] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M.Z. (2022) k-Product Cordial Behaviour of Union of Graphs. Journal of the Indonesian Mathematical Society, 28, 1-7.
https://doi.org/10.22342/jims.28.1.1025.1-7
[15] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M.Z. (2022) k-Product Cordial Labeling of Cone Graphs. International Journal of Mathematical Combinatorics, 2, 72-80.
[16] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M.Z. (2022) k-Product Cordial Labeling of Napier Bridge Graphs. Nepal Journal of Mathematical Sciences, 3, 59-70.
https://doi.org/10.3126/njmathsci.v3i2.49201
[17] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M.Z. (2024) k-Product Cordial Labeling of Product of Graphs. Discrete Mathematics, Algorithms and Applications, 16, Article ID: 2250187.
https://doi.org/10.1142/S1793830922501877
[18] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M.Z. (2022) k-Product Cordial Labeling of Powers of Paths. Jordan Journal of Mathematics and Statistics, 15, 911-924.
[19] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M.Z. (2023) k-Product Cordial Labeling of Fan Graphs. Turkic World Mathematical Society Journal of Applied and Engineering Mathematics, 13, 11-20.
[20] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M.Z. (2024) k-Product Cordial Labeling of Splitting Graph of Star Graphs. Communications in Combinatorics, Cryptography & Computer Science, 1, 68-80.
[21] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M.Z. (2024) Further Results on k-Product Cordial Labeling. Turkic World Mathematical Society Journal of Applied and Engineering Mathematics, 14, 981-990.
[22] Jeyanthi, P. and Maheswari, A. (2012) 3-Product Cordial Labeling. SUT Journal of Mathematics, 48, 231-240.
[23] Grimaldi, R.P. (1994) Discrete and Combinatorial Mathematics: An Applied Introduction. 3rd Edition, Addison-Wesley.

Copyright © 2025 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.