[1]
|
Alessandrini, M., Preynat-Seauve, O., De Briun, K. and Pepper, M.S. (2019) Stem Cell Therapy for Neurological Disorders. South African Medical Journal, 109, 70-77. https://doi.org/10.7196/samj.2019.v109i8b.14009
|
[2]
|
Jiang, C., Lin, L., Long, S., Ke, X., Fukunaga, K., Lu, Y., et al. (2022) Signalling Pathways in Autism Spectrum Disorder: Mechanisms and Therapeutic Implications. Signal Transduction and Targeted Therapy, 7, Article No. 229. https://doi.org/10.1038/s41392-022-01081-0
|
[3]
|
Steinruecke, M., Mason, I., Keen, M., McWhirter, L., Carson, A.J., Stone, J., et al. (2024) Pain and Functional Neurological Disorder: A Systematic Review and Meta-Analysis. Journal of Neurology, Neurosurgery & Psychiatry, 95, 874-885. https://doi.org/10.1136/jnnp-2023-332810
|
[4]
|
Bhagavati, S. (2021) Autoimmune Disorders of the Nervous System: Pathophysiology, Clinical Features, and Therapy. Frontiers in Neurology, 12, Article 664664. https://doi.org/10.3389/fneur.2021.664664
|
[5]
|
Bonanni, R., Cariati, I., Tarantino, U., D’Arcangelo, G. and Tancredi, V. (2022) Physical Exercise and Health: A Focus on Its Protective Role in Neurodegenerative Diseases. Journal of Functional Morphology and Kinesiology, 7, Article 38. https://doi.org/10.3390/jfmk7020038
|
[6]
|
Simmons, S.B., Skolaris, A., Love, R., Fricker, T., Penko, A.L., Li, Y., et al. (2024) Intensive Aerobic Cycling Is Feasible and Elicits Improvements in Gait Velocity in Individuals with Multiple Sclerosis: A Preliminary Study. International Journal of MS Care, 26, 119-124. https://doi.org/10.7224/1537-2073.2023-042
|
[7]
|
Xunian, Z. and Kalluri, R. (2020) Biology and Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes. Cancer Science, 111, 3100-3110. https://doi.org/10.1111/cas.14563
|
[8]
|
Babaei, H., Kheirollah, A., Ranjbaran, M., Cheraghzadeh, M., Sarkaki, A. and Adelipour, M. (2023) Preconditioning Adipose-Derived Mesenchymal Stem Cells with Dimethyl Fumarate Promotes Their Therapeutic Efficacy in the Brain Tissues of Rats with Alzheimer’s Disease. Biochemical and Biophysical Research Communications, 672, 120-127. https://doi.org/10.1016/j.bbrc.2023.06.045
|
[9]
|
Han, Y., Yang, J., Fang, J., Zhou, Y., Candi, E., Wang, J., et al. (2022) The Secretion Profile of Mesenchymal Stem Cells and Potential Applications in Treating Human Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 92. https://doi.org/10.1038/s41392-022-00932-0
|
[10]
|
Ohori-Morita, Y., Niibe, K., Limraksasin, P., Nattasit, P., Miao, X., Yamada, M., et al. (2022) Novel Mesenchymal Stem Cell Spheroids with Enhanced Stem Cell Characteristics and Bone Regeneration Ability. Stem Cells Translational Medicine, 11, 434-449. https://doi.org/10.1093/stcltm/szab030
|
[11]
|
Kulus, M., Sibiak, R., Stefańska, K., Zdun, M., Wieczorkiewicz, M., Piotrowska-Kempisty, H., et al. (2021) Mesenchymal Stem/Stromal Cells Derived from Human and Animal Perinatal Tissues—Origins, Characteristics, Signaling Pathways, and Clinical Trials. Cells, 10, Article 3278. https://doi.org/10.3390/cells10123278
|
[12]
|
Giovannelli, L., Bari, E., Jommi, C., Tartara, F., Armocida, D., Garbossa, D., et al. (2023) Mesenchymal Stem Cell Secretome and Extracellular Vesicles for Neurodegenerative Diseases: Risk-Benefit Profile and Next Steps for the Market Access. Bioactive Materials, 29, 16-35. https://doi.org/10.1016/j.bioactmat.2023.06.013
|
[13]
|
Ferreira, J.R., Teixeira, G.Q., Santos, S.G., Barbosa, M.A., Almeida-Porada, G. and Gonçalves, R.M. (2018) Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-Conditioning. Frontiers in Immunology, 9, Article 2837. https://doi.org/10.3389/fimmu.2018.02837
|
[14]
|
Laloze, J., Lacoste, M., Marouf, F., Carpentier, G., Vignaud, L., Chaput, B., et al. (2023) Specific Features of Stromal Cells Isolated from the Two Layers of Subcutaneous Adipose Tissue: Roles of Their Secretion on Angiogenesis and Neurogenesis. Journal of Clinical Medicine, 12, Article 4214. https://doi.org/10.3390/jcm12134214
|
[15]
|
Lamptey, R.N.L., Chaulagain, B., Trivedi, R., Gothwal, A., Layek, B. and Singh, J. (2022) A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. International Journal of Molecular Sciences, 23, Article 1851. https://doi.org/10.3390/ijms23031851
|
[16]
|
Jia, Y., Yu, L., Ma, T., Xu, W., Qian, H., Sun, Y., et al. (2022) Small Extracellular Vesicles Isolation and Separation: Current Techniques, Pending Questions and Clinical Applications. Theranostics, 12, 6548-6575. https://doi.org/10.7150/thno.74305
|
[17]
|
Yari, H., Mikhailova, M.V., Mardasi, M., Jafarzadehgharehziaaddin, M., Shahrokh, S., Thangavelu, L., et al. (2022) Emerging Role of Mesenchymal Stromal Cells (MSCs)-Derived Exosome in Neurodegeneration-Associated Conditions: A Groundbreaking Cell-Free Approach. Stem Cell Research & Therapy, 13, Article No. 423. https://doi.org/10.1186/s13287-022-03122-5
|
[18]
|
Goenka, V., Borkar, T., Desai, A. and Das, R.K. (2020) Therapeutic Potential of Mesenchymal Stem Cells in Treating Both Types of Diabetes Mellitus and Associated Diseases. Journal of Diabetes & Metabolic Disorders, 19, 1979-1993. https://doi.org/10.1007/s40200-020-00647-5
|
[19]
|
Miceli, V., Bulati, M., Iannolo, G., Zito, G., Gallo, A. and Conaldi, P.G. (2021) Therapeutic Properties of Mesenchymal Stromal/Stem Cells: The Need of Cell Priming for Cell-Free Therapies in Regenerative Medicine. International Journal of Molecular Sciences, 22, Article 763. https://doi.org/10.3390/ijms22020763
|
[20]
|
Yang, J. and Liu, Z. (2022) Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Frontiers in Endocrinology, 13, Article 816400. https://doi.org/10.3389/fendo.2022.816400
|
[21]
|
Zang, L., Hao, H., Liu, J., Li, Y., Han, W. and Mu, Y. (2017) Mesenchymal Stem Cell Therapy in Type 2 Diabetes Mellitus. Diabetology & Metabolic Syndrome, 9, Article No. 36. https://doi.org/10.1186/s13098-017-0233-1
|
[22]
|
Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., et al. (2021) Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. Signal Transduction and Targeted Therapy, 6, Article No. 263. https://doi.org/10.1038/s41392-021-00658-5
|
[23]
|
Fuloria, S., Subramaniyan, V., Dahiya, R., Dahiya, S., Sudhakar, K., Kumari, U., et al. (2021) Mesenchymal Stem Cell-Derived Extracellular Vesicles: Regenerative Potential and Challenges. Biology, 10, Article 172. https://doi.org/10.3390/biology10030172
|
[24]
|
Shandil, R.K., Dhup, S. and Narayanan, S. (2022) Evaluation of the Therapeutic Potential of Mesenchymal Stem Cells (MSCs) in Preclinical Models of Autoimmune Diseases. Stem Cells International, 2022, Article ID: 6379161. https://doi.org/10.1155/2022/6379161
|
[25]
|
Bullock, J., Rizvi, S.A.A., Saleh, A.M., Ahmed, S.S., Do, D.P., Ansari, R.A., et al. (2018) Rheumatoid Arthritis: A Brief Overview of the Treatment. Medical Principles and Practice, 27, 501-507. https://doi.org/10.1159/000493390
|
[26]
|
Huo, J., Feng, Q., Pan, S., Fu, W., Liu, Z. and Liu, Z. (2023) Diabetic Cardiomyopathy: Early Diagnostic Biomarkers, Pathogenetic Mechanisms, and Therapeutic Interventions. Cell Death Discovery, 9, Article No. 256. https://doi.org/10.1038/s41420-023-01553-4
|
[27]
|
Bevaart, L., Vervoordeldonk, M.J. and Tak, P.P. (2009) Collagen-Induced Arthritis in Mice. In: Proetzel, G. and Wiles, M., Eds., Mouse Models for Drug Discovery, Humana Press, 181-192. https://doi.org/10.1007/978-1-60761-058-8_11
|
[28]
|
Augello, A., Tasso, R., Negrini, S.M., Cancedda, R. and Pennesi, G. (2007) Cell Therapy Using Allogeneic Bone Marrow Mesenchymal Stem Cells Prevents Tissue Damage in Collagen-Induced Arthritis. Arthritis & Rheumatism, 56, 1175-1186. https://doi.org/10.1002/art.22511
|
[29]
|
Liu, Y., Mu, R., Wang, S., Long, L., Liu, X., Li, R., et al. (2010) Therapeutic Potential of Human Umbilical Cord Mesenchymal Stem Cells in the Treatment of Rheumatoid Arthritis. Arthritis Research & Therapy, 12, Article No. R210. https://doi.org/10.1186/ar3187
|
[30]
|
García-Carrasco, M., Mendoza Pinto, C., Solís Poblano, J.C., et al. (2013) Systemic Lupus Erythematosus. In: Anaya, J.M., Shoenfeld, Y., Rojas-Villarraga, A., et al., Eds., Autoimmunity: From Bench to Bedside, El Rosario University Press, 12. https://www.ncbi.nlm.nih.gov/books/NBK459474/
|
[31]
|
Kang, N., Liu, X., You, X., Sun, W., Haneef, K., Sun, X., et al. (2022) Aberrant B-Cell Activation in Systemic Lupus Erythematosus. Kidney Diseases, 8, 437-445. https://doi.org/10.1159/000527213
|
[32]
|
Salari, V., Mengoni, F., Del Gallo, F., Bertini, G. and Fabene, P.F. (2020) The Anti-Inflammatory Properties of Mesenchymal Stem Cells in Epilepsy: Possible Treatments and Future Perspectives. International Journal of Molecular Sciences, 21, Article 9683. https://doi.org/10.3390/ijms21249683
|
[33]
|
Peutz-Kootstra, C.J., de Heer, E., Hoedemaeker, P.J., Abrass, C.K. and Bruijn, J.A. (2001) Lupus Nephritis: Lessons from Experimental Animal Models. Journal of Laboratory and Clinical Medicine, 137, 244-260. https://doi.org/10.1067/mlc.2001.113755
|
[34]
|
Jang, E., Jeong, M., Kim, S., Jang, K., Kang, B., Lee, D.Y., et al. (2016) Infusion of Human Bone Marrow-Derived Mesenchymal Stem Cells Alleviates Autoimmune Nephritis in a Lupus Model by Suppressing Follicular Helper T-Cell Development. Cell Transplantation, 25, 1-15. https://doi.org/10.3727/096368915x688173
|
[35]
|
Lee, J.C., Cha, C.I., Kim, D. and Choe, S.Y. (2015) Therapeutic Effects of Umbilical Cord Blood Derived Mesenchymal Stem Cell-Conditioned Medium on Pulmonary Arterial Hypertension in Rats. Journal of Pathology and Translational Medicine, 49, 472-480. https://doi.org/10.4132/jptm.2015.09.11
|
[36]
|
Admou, B., Eddehbi, F., Elmoumou, L., Elmojadili, S., Salami, A., Oujidi, M., et al. (2022) Anti-double Stranded DNA Antibodies: A Rational Diagnostic Approach in Limited-Resource Settings. Practical Laboratory Medicine, 31, e00285. https://doi.org/10.1016/j.plabm.2022.e00285
|
[37]
|
Schwarzenbach, H. and Gahan, P.B. (2021) Exosomes in Immune Regulation. Non-Coding RNA, 7, Article 4. https://doi.org/10.3390/ncrna7010004
|
[38]
|
Berebichez-Fridman, R. and Montero-Olvera, P.R. (2018) Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-Art Review. Sultan Qaboos University Medical Journal, 18, e264-e277. https://doi.org/10.18295/squmj.2018.18.03.002
|
[39]
|
Kalluri, R. and LeBleu, V.S. (2016) Discovery of Double-Stranded Genomic DNA in Circulating Exosomes. Cold Spring Harbor Symposia on Quantitative Biology, 81, 275-280. https://doi.org/10.1101/sqb.2016.81.030932
|
[40]
|
Lin, Z., Wu, Y., Xu, Y., Li, G., Li, Z. and Liu, T. (2022) Mesenchymal Stem Cell-Derived Exosomes in Cancer Therapy Resistance: Recent Advances and Therapeutic Potential. Molecular Cancer, 21, Article No. 179. https://doi.org/10.1186/s12943-022-01650-5
|
[41]
|
NCI (2023) Acute Myeloid Leukemia Treatment. https://www.cancer.gov/types/leukemia/patient/adult-aml-treatment-pdq
|
[42]
|
Lynch, O. and Calvi, L. (2022) Immune Dysfunction, Cytokine Disruption, and Stromal Changes in Myelodysplastic Syndrome: A Review. Cells, 11, Article 580. https://doi.org/10.3390/cells11030580
|
[43]
|
Szwedowicz, U., Łapińska, Z., Gajewska-Naryniecka, A. and Choromańska, A. (2022) Exosomes and Other Extracellular Vesicles with High Therapeutic Potential: Their Applications in Oncology, Neurology, and Dermatology. Molecules, 27, Article 1303. https://doi.org/10.3390/molecules27041303
|
[44]
|
Ju, Y., Hu, Y., Yang, P., Xie, X. and Fang, B. (2023) Extracellular Vesicle-Loaded Hydrogels for Tissue Repair and Regeneration. Materials Today Bio, 18, Article ID: 100522. https://doi.org/10.1016/j.mtbio.2022.100522
|
[45]
|
Aguiar Koga, B.A., Fernandes, L.A., Fratini, P., Sogayar, M.C. and Carreira, A.C.O. (2023) Role of MSC-Derived Small Extracellular Vesicles in Tissue Repair and Regeneration. Frontiers in Cell and Developmental Biology, 10, Article 1047094. https://doi.org/10.3389/fcell.2022.1047094
|
[46]
|
Li, S., Zhang, J., Feng, G., Jiang, L., Chen, Z., Xin, W., et al. (2022) The Emerging Role of Extracellular Vesicles from Mesenchymal Stem Cells and Macrophages in Pulmonary Fibrosis: Insights into Mirna Delivery. Pharmaceuticals, 15, Article 1276. https://doi.org/10.3390/ph15101276
|
[47]
|
Matsuzaka, Y. and Yashiro, R. (2022) Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. International Journal of Molecular Sciences, 23, Article 6480. https://doi.org/10.3390/ijms23126480
|
[48]
|
Yang, L., Wan, N., Gong, F., Wang, X., Feng, L. and Liu, G. (2023) Transcription Factors and Potential Therapeutic Targets for Pulmonary Hypertension. Frontiers in Cell and Developmental Biology, 11, Article 1132060. https://doi.org/10.3389/fcell.2023.1132060
|
[49]
|
Majood, M., Rawat, S. and Mohanty, S. (2022) Delineating the Role of Extracellular Vesicles in Cancer Metastasis: A Comprehensive Review. Frontiers in Immunology, 13, Article 966661. https://doi.org/10.3389/fimmu.2022.966661
|
[50]
|
Li, Q., Cai, S., Li, M., Salma, K.I., Zhou, X., Han, F., et al. (2021) Tumor-Derived Extracellular Vesicles: Their Role in Immune Cells and Immunotherapy. International Journal of Nanomedicine, 16, 5395-5409. https://doi.org/10.2147/ijn.s313912
|
[51]
|
Xu, Z., Zeng, S., Gong, Z. and Yan, Y. (2020) Exosome-Based Immunotherapy: A Promising Approach for Cancer Treatment. Molecular Cancer, 19, Article No. 160. https://doi.org/10.1186/s12943-020-01278-3
|
[52]
|
Wu, R., Fan, X., Wang, Y., Shen, M., Zheng, Y., Zhao, S., et al. (2022) Mesenchymal Stem Cell-Derived Extracellular Vesicles in Liver Immunity and Therapy. Frontiers in Immunology, 13, Article 833878. https://doi.org/10.3389/fimmu.2022.833878
|
[53]
|
Bonowicz, K., Mikołajczyk, K., Faisal, I., Qamar, M., Steinbrink, K., Kleszczyński, K., et al. (2022) Mechanism of Extracellular Vesicle Secretion Associated with TGF-β-Dependent Inflammatory Response in the Tumor Microenvironment. International Journal of Molecular Sciences, 23, Article 15335. https://doi.org/10.3390/ijms232315335
|
[54]
|
Nakane, M. (2020) Biological Effects of the Oxygen Molecule in Critically Ill Patients. Journal of Intensive Care, 8, Article No. 95. https://doi.org/10.1186/s40560-020-00505-9
|
[55]
|
Hernández, A.E. and García, E. (2021) Mesenchymal Stem Cell Therapy for Alzheimer’s Disease. Stem Cells International, 2021, Article ID: 7834421. https://doi.org/10.1155/2021/7834421
|
[56]
|
Sharma, A., Chakraborty, A. and Jaganathan, B.G. (2021) Review of the Potential of Mesenchymal Stem Cells for the Treatment of Infectious Diseases. World Journal of Stem Cells, 13, 568-593. https://doi.org/10.4252/wjsc.v13.i6.568
|
[57]
|
Hui, C., Tadi, P., Khan Suheb, M.Z., et al. (2024) Ischemic Stroke. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK499997/
|
[58]
|
DeSai, C. and Hays Shapshak, A. (2023) Cerebral Ischemia. StatPearls. http://www.ncbi.nlm.nih.gov/books/NBK560510/
|
[59]
|
Xu, R., Ni, B., Wang, L., Shan, J., Pan, L., He, Y., et al. (2022) CCR2-Overexpressing Mesenchymal Stem Cells Targeting Damaged Liver Enhance Recovery of Acute Liver Failure. Stem Cell Research & Therapy, 13, Article No. 55. https://doi.org/10.1186/s13287-022-02729-y
|
[60]
|
Marquez-Curtis, L.A. and Janowska-Wieczorek, A. (2013) Enhancing the Migration Ability of Mesenchymal Stromal Cells by Targeting the SDF-1/CXCR4 Axis. BioMed Research International, 2013, Article ID: 561098. https://doi.org/10.1155/2013/561098
|
[61]
|
Namestnikova, D.D., Gubskiy, I.L., Revkova, V.A., Sukhinich, K.K., Melnikov, P.A., Gabashvili, A.N., et al. (2021) Intra-Arterial Stem Cell Transplantation in Experimental Stroke in Rats: Real-Time MR Visualization of Transplanted Cells Starting with Their First Pass through the Brain with Regard to the Therapeutic Action. Frontiers in Neuroscience, 15, Article 641970. https://doi.org/10.3389/fnins.2021.641970
|
[62]
|
Musiał-Wysocka, A., Kot, M. and Majka, M. (2019) The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell Transplantation, 28, 801-812. https://doi.org/10.1177/0963689719837897
|
[63]
|
Luo, R., Lu, Y., Liu, J., Cheng, J. and Chen, Y. (2019) Enhancement of the Efficacy of Mesenchymal Stem Cells in the Treatment of Ischemic Diseases. Biomedicine & Pharmacotherapy, 109, 2022-2034. https://doi.org/10.1016/j.biopha.2018.11.068
|
[64]
|
Correale, J. and Marrodan, M. (2022) Multiple Sclerosis and Obesity: The Role of Adipokines. Frontiers in Immunology, 13, Article 1038393. https://doi.org/10.3389/fimmu.2022.1038393
|
[65]
|
Phan, J., Kumar, P., Hao, D., Gao, K., Farmer, D. and Wang, A. (2018) Engineering Mesenchymal Stem Cells to Improve Their Exosome Efficacy and Yield for Cell-Free Therapy. Journal of Extracellular Vesicles, 7, Article ID: 1522236. https://doi.org/10.1080/20013078.2018.1522236
|
[66]
|
Morris, J. (2015) Amyotrophic Lateral Sclerosis (ALS) and Related Motor Neuron Diseases: An Overview. The Neurodiagnostic Journal, 55, 180-194. https://doi.org/10.1080/21646821.2015.1075181
|
[67]
|
El Ouaamari, Y., Van den Bos, J., Willekens, B., Cools, N. and Wens, I. (2023) Neurotrophic Factors as Regenerative Therapy for Neurodegenerative Diseases: Current Status, Challenges and Future Perspectives. International Journal of Molecular Sciences, 24, Article 3866. https://doi.org/10.3390/ijms24043866
|
[68]
|
Lin, T., Cheng, K., Wu, L., Lai, W., Ling, T., Kuo, Y., et al. (2022) Potential of Cellular Therapy for ALS: Current Strategies and Future Prospects. Frontiers in Cell and Developmental Biology, 10, Article 851613. https://doi.org/10.3389/fcell.2022.851613
|
[69]
|
Nowak, B., Rogujski, P., Janowski, M., Lukomska, B. and Andrzejewska, A. (2021) Mesenchymal Stem Cells in Glioblastoma Therapy and Progression: How One Cell Does It All. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1876, Article ID: 188582. https://doi.org/10.1016/j.bbcan.2021.188582
|
[70]
|
Campero-Romero, A.N., Real, F.H., Santana-Martínez, R.A., Molina-Villa, T., Aranda, C., Ríos-Castro, E., et al. (2023) Extracellular Vesicles from Neural Progenitor Cells Promote Functional Recovery after Stroke in Mice with Pharmacological Inhibition of Neurogenesis. Cell Death Discovery, 9, Article No. 272. https://doi.org/10.1038/s41420-023-01561-4
|
[71]
|
Fan, X., Zhang, Y., Li, X. and Fu, Q. (2020) Mechanisms Underlying the Protective Effects of Mesenchymal Stem Cell-Based Therapy. Cellular and Molecular Life Sciences, 77, 2771-2794. https://doi.org/10.1007/s00018-020-03454-6
|
[72]
|
Frykberg, R.G. and Banks, J. (2015) Challenges in the Treatment of Chronic Wounds. Advances in Wound Care, 4, 560-582. https://doi.org/10.1089/wound.2015.0635
|
[73]
|
Galieva, L.R., James, V., Mukhamedshina, Y.O. and Rizvanov, A.A. (2019) Therapeutic Potential of Extracellular Vesicles for the Treatment of Nerve Disorders. Frontiers in Neuroscience, 13, Article 163. https://doi.org/10.3389/fnins.2019.00163
|
[74]
|
Berglund, A.K., Fortier, L.A., Antczak, D.F. and Schnabel, L.V. (2017) Immunoprivileged No More: Measuring the Immunogenicity of Allogeneic Adult Mesenchymal Stem Cells. Stem Cell Research & Therapy, 8, Article No. 288. https://doi.org/10.1186/s13287-017-0742-8
|
[75]
|
Fernández-Francos, S., Eiro, N., Costa, L.A., Escudero-Cernuda, S., Fernández-Sánchez, M.L. and Vizoso, F.J. (2021) Mesenchymal Stem Cells as a Cornerstone in a Galaxy of Intercellular Signals: Basis for a New Era of Medicine. International Journal of Molecular Sciences, 22, Article 3576. https://doi.org/10.3390/ijms22073576
|
[76]
|
Goutman, S.A., Savelieff, M.G., Sakowski, S.A. and Feldman, E.L. (2019) Stem Cell Treatments for Amyotrophic Lateral Sclerosis: A Critical Overview of Early Phase Trials. Expert Opinion on Investigational Drugs, 28, 525-543. https://doi.org/10.1080/13543784.2019.1627324
|
[77]
|
Pittenger, M.F., Discher, D.E., Péault, B.M., Phinney, D.G., Hare, J.M. and Caplan, A.I. (2019) Mesenchymal Stem Cell Perspective: Cell Biology to Clinical Progress. NPJ Regenerative Medicine, 4, Article No. 22. https://doi.org/10.1038/s41536-019-0083-6
|
[78]
|
Zhou, T., Yuan, Z., Weng, J., Pei, D., Du, X., He, C., et al. (2021) Challenges and Advances in Clinical Applications of Mesenchymal Stromal Cells. Journal of Hematology & Oncology, 14, Article No. 24. https://doi.org/10.1186/s13045-021-01037-x
|
[79]
|
Ng, C.P., Mohamed Sharif, A.R., Heath, D.E., Chow, J.W., Zhang, C.B., Chan-Park, M.B., et al. (2014) Enhanced Ex Vivo Expansion of Adult Mesenchymal Stem Cells by Fetal Mesenchymal Stem Cell ECM. Biomaterials, 35, 4046-4057. https://doi.org/10.1016/j.biomaterials.2014.01.081
|
[80]
|
Wang, S., Wang, Z., Su, H., Chen, F., Ma, M., Yu, W., et al. (2021) Effects of Long-Term Culture on the Biological Characteristics and RNA Profiles of Human Bone-Marrow-Derived Mesenchymal Stem Cells. Molecular Therapy—Nucleic Acids, 26, 557-574. https://doi.org/10.1016/j.omtn.2021.08.013
|
[81]
|
Montazersaheb, S., Ehsani, A., Fathi, E. and Farahzadi, R. (2022) Cellular and Molecular Mechanisms Involved in Hematopoietic Stem Cell Aging as a Clinical Prospect. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2713483. https://doi.org/10.1155/2022/2713483
|
[82]
|
Rodriguez, R., Rubio, R., Masip, M., Catalina, P., Nieto, A., de la Cueva, T., et al. (2009) Loss of P53 Induces Tumorigenesis in P21-Deficient Mesenchymal Stem Cells. Neoplasia, 11, 397-407. https://doi.org/10.1593/neo.81620
|