[1]
|
Vogel, A., Meyer, T., Sapisochin, G., Salem, R. and Saborowski, A. (2022) Hepatocellular Carcinoma. The Lancet, 400, 1345-1362. https://doi.org/10.1016/s0140-6736(22)01200-4
|
[2]
|
Ge, E.J., Bush, A.I., Casini, A., Cobine, P.A., Cross, J.R., DeNicola, G.M., et al. (2021) Connecting Copper and Cancer: From Transition Metal Signalling to Metalloplasia. Nature Reviews Cancer, 22, 102-113. https://doi.org/10.1038/s41568-021-00417-2
|
[3]
|
Chen, L., Min, J. and Wang, F. (2022) Copper Homeostasis and Cuproptosis in Health and Disease. Signal Transduction and Targeted Therapy, 7, Article No. 378. https://doi.org/10.1038/s41392-022-01229-y
|
[4]
|
Xie, J., Yang, Y., Gao, Y. and He, J. (2023) Cuproptosis: Mechanisms and Links with Cancers. Molecular Cancer, 22, Article No. 46. https://doi.org/10.1186/s12943-023-01732-y
|
[5]
|
Feng, Y., Yang, Z., Wang, J. and Zhao, H. (2024) Cuproptosis: Unveiling a New Frontier in Cancer Biology and Therapeutics. Cell Communication and Signaling, 22, Article No. 249. https://doi.org/10.1186/s12964-024-01625-7
|
[6]
|
Liu, Z., Liu, X., Liang, J., Liu, Y., Hou, X., Zhang, M., et al. (2021) Immunotherapy for Hepatocellular Carcinoma: Current Status and Future Prospects. Frontiers in Immunology, 12, Article 765101. https://doi.org/10.3389/fimmu.2021.765101
|
[7]
|
Wang, X., Chen, D., Shi, Y., Luo, J., Zhang, Y., Yuan, X., et al. (2023) Copper and Cuproptosis-Related Genes in Hepatocellular Carcinoma: Therapeutic Biomarkers Targeting Tumor Immune Microenvironment and Immune Checkpoints. Frontiers in Immunology, 14, Article 1123231. https://doi.org/10.3389/fimmu.2023.1123231
|
[8]
|
Xing, T., Li, L., Chen, Y., Ju, G., Li, G., Zhu, X., et al. (2023) Targeting the TCA Cycle through Cuproptosis Confers Synthetic Lethality on Arid1A-Deficient Hepatocellular Carcinoma. Cell Reports Medicine, 4, Article 101264. https://doi.org/10.1016/j.xcrm.2023.101264
|
[9]
|
Brown, Z.J., Tsilimigras, D.I., Ruff, S.M., Mohseni, A., Kamel, I.R., Cloyd, J.M., et al. (2023) Management of Hepatocellular Carcinoma. JAMA Surgery, 158, 410-420. https://doi.org/10.1001/jamasurg.2022.7989
|
[10]
|
Kulik, L. and El-Serag, H.B. (2019) Epidemiology and Management of Hepatocellular Carcinoma. Gastroenterology, 156, 477-491.E1. https://doi.org/10.1053/j.gastro.2018.08.065
|
[11]
|
Zhou, H. and Song, T. (2021) Conversion Therapy and Maintenance Therapy for Primary Hepatocellular Carcinoma. BioScience Trends, 15, 155-160. https://doi.org/10.5582/bst.2021.01091
|
[12]
|
Pinato, D.J., Guerra, N., Fessas, P., Murphy, R., Mineo, T., Mauri, F.A., et al. (2020) Immune-Based Therapies for Hepatocellular Carcinoma. Oncogene, 39, 3620-3637. https://doi.org/10.1038/s41388-020-1249-9
|
[13]
|
Zhou, F., Shang, W., Yu, X. and Tian, J. (2017) Glypican-3: A Promising Biomarker for Hepatocellular Carcinoma Diagnosis and Treatment. Medicinal Research Reviews, 38, 741-767. https://doi.org/10.1002/med.21455
|
[14]
|
Lu, F., Ma, X., Jin, W., Luo, Y. and Li, X. (2021) Neoantigen Specific T Cells Derived from T Cell-Derived Induced Pluripotent Stem Cells for the Treatment of Hepatocellular Carcinoma: Potential and Challenges. Frontiers in Immunology, 12, Article 690565. https://doi.org/10.3389/fimmu.2021.690565
|
[15]
|
Llovet, J.M., Castet, F., Heikenwalder, M., Maini, M.K., Mazzaferro, V., Pinato, D.J., et al. (2021) Immunotherapies for Hepatocellular Carcinoma. Nature Reviews Clinical Oncology, 19, 151-172. https://doi.org/10.1038/s41571-021-00573-2
|
[16]
|
Donne, R. and Lujambio, A. (2023) The Liver Cancer Immune Microenvironment: Therapeutic Implications for Hepatocellular Carcinoma. Hepatology, 77, 1773-1796. https://doi.org/10.1002/hep.32740
|
[17]
|
Wang, Z., Wang, Y., Gao, P. and Ding, J. (2023) Immune Checkpoint Inhibitor Resistance in Hepatocellular Carcinoma. Cancer Letters, 555, Article 216038. https://doi.org/10.1016/j.canlet.2022.216038
|
[18]
|
Kang, Y., Cai, Y. and Yang, Y. (2021) The Gut Microbiome and Hepatocellular Carcinoma: Implications for Early Diagnostic Biomarkers and Novel Therapies. Liver Cancer, 11, 113-125. https://doi.org/10.1159/000521358
|
[19]
|
Schwabe, R.F. and Greten, T.F. (2020) Gut Microbiome in HCC—Mechanisms, Diagnosis and Therapy. Journal of Hepatology, 72, 230-238. https://doi.org/10.1016/j.jhep.2019.08.016
|
[20]
|
Schneider, K.M., Mohs, A., Gui, W., Galvez, E.J.C., Candels, L.S., Hoenicke, L., et al. (2022) Imbalanced Gut Microbiota Fuels Hepatocellular Carcinoma Development by Shaping the Hepatic Inflammatory Microenvironment. Nature Communications, 13, Article No. 3694. https://doi.org/10.1038/s41467-022-31312-5
|
[21]
|
Inesi, G. (2016) Molecular Features of Copper Binding Proteins Involved in Copper Homeostasis. IUBMB Life, 69, 211-217. https://doi.org/10.1002/iub.1590
|
[22]
|
Garza, N.M., Swaminathan, A.B., Maremanda, K.P., Zulkifli, M. and Gohil, V.M. (2023) Mitochondrial Copper in Human Genetic Disorders. Trends in Endocrinology & Metabolism, 34, 21-33. https://doi.org/10.1016/j.tem.2022.11.001
|
[23]
|
Li, Y. (2020) Copper Homeostasis: Emerging Target for Cancer Treatment. IUBMB Life, 72, 1900-1908. https://doi.org/10.1002/iub.2341
|
[24]
|
Himoto, T. and Masaki, T. (2024) Current Trends on the Involvement of Zinc, Copper, and Selenium in the Process of Hepatocarcinogenesis. Nutrients, 16, Article 472. https://doi.org/10.3390/nu16040472
|
[25]
|
Wang, X., Zhou, M., Liu, Y. and Si, Z. (2023) Cope with Copper: From Copper Linked Mechanisms to Copper-Based Clinical Cancer Therapies. Cancer Letters, 561, Article 216157. https://doi.org/10.1016/j.canlet.2023.216157
|
[26]
|
Richards, M.P. (1989) Recent Developments in Trace Element Metabolism and Function: Role of Metallothionein in Copper and Zinc Metabolism. The Journal of Nutrition, 119, 1062-1070. https://doi.org/10.1093/jn/119.7.1062
|
[27]
|
Baker, Z.N., Cobine, P.A. and Leary, S.C. (2017) The Mitochondrion: A Central Architect of Copper Homeostasis. Metallomics, 9, 1501-1512. https://doi.org/10.1039/c7mt00221a
|
[28]
|
Migocka, M. (2015) Copper-Transporting ATPases: The Evolutionarily Conserved Machineries for Balancing Copper in Living Systems. IUBMB Life, 67, 737-745. https://doi.org/10.1002/iub.1437
|
[29]
|
Guthrie, L.M., Soma, S., Yuan, S., Silva, A., Zulkifli, M., Snavely, T.C., et al. (2020) Elesclomol Alleviates Menkes Pathology and Mortality by Escorting Cu to Cuproenzymes in Mice. Science, 368, 620-625. https://doi.org/10.1126/science.aaz8899
|
[30]
|
Shribman, S., Poujois, A., Bandmann, O., Czlonkowska, A. and Warner, T.T. (2021) Wilson’s Disease: Update on Pathogenesis, Biomarkers and Treatments. Journal of Neurology, Neurosurgery & Psychiatry, 92, 1053-1061. https://doi.org/10.1136/jnnp-2021-326123
|
[31]
|
Cai, H., Cheng, X. and Wang, X. (2022) ATP7B Gene Therapy of Autologous Reprogrammed Hepatocytes Alleviates Copper Accumulation in a Mouse Model of Wilson’s Disease. Hepatology, 76, 1046-1057. https://doi.org/10.1002/hep.32484
|
[32]
|
Fang, C., Peng, Z., Sang, Y., Ren, Z., Ding, H., Yuan, H., et al. (2023) Copper in Cancer: From Transition Metal to Potential Target. Human Cell, 37, 85-100. https://doi.org/10.1007/s13577-023-00985-5
|
[33]
|
Su, Y., Zhang, X., Li, S., Xie, W. and Guo, J. (2022) Emerging Roles of the Copper–CTR1 Axis in Tumorigenesis. Molecular Cancer Research, 20, 1339-1353. https://doi.org/10.1158/1541-7786.mcr-22-0056
|
[34]
|
Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al. (2022) Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science, 375, 1254-1261. https://doi.org/10.1126/science.abf0529
|
[35]
|
Liu, W., Lin, W., Yan, L., Xu, W. and Yang, J. (2023) Copper Homeostasis and Cuproptosis in Cancer Immunity and Therapy. Immunological Reviews, 321, 211-227. https://doi.org/10.1111/imr.13276
|
[36]
|
Xiong, C., Ling, H., Hao, Q. and Zhou, X. (2023) Cuproptosis: P53-Regulated Metabolic Cell Death? Cell Death & Differentiation, 30, 876-884. https://doi.org/10.1038/s41418-023-01125-0
|
[37]
|
Tsvetkov, P., Detappe, A., Cai, K., Keys, H.R., Brune, Z., Ying, W., et al. (2019) Mitochondrial Metabolism Promotes Adaptation to Proteotoxic Stress. Nature Chemical Biology, 15, 681-689. https://doi.org/10.1038/s41589-019-0291-9
|
[38]
|
Dreishpoon, M.B., Bick, N.R., Petrova, B., Warui, D.M., Cameron, A., Booker, S.J., et al. (2023) FDX1 Regulates Cellular Protein Lipoylation through Direct Binding to Lias. Journal of Biological Chemistry, 299, Article 105046. https://doi.org/10.1016/j.jbc.2023.105046
|
[39]
|
Gao, W., Huang, Z., Duan, J., Nice, E.C., Lin, J. and Huang, C. (2021) Elesclomol Induces Copper-Dependent Ferroptosis in Colorectal Cancer Cells via Degradation of ATP7A. Molecular Oncology, 15, 3527-3544. https://doi.org/10.1002/1878-0261.13079
|
[40]
|
Yang, Z., Feng, R. and Zhao, H. (2024) Cuproptosis and Cu: A New Paradigm in Cellular Death and Their Role in Non-Cancerous Diseases. Apoptosis. https://doi.org/10.1007/s10495-024-01993-y
|
[41]
|
Zhang Y.J., Zhao D.H. and Huang C.X. (1994) The Changes in Copper Contents and Its Clinical Significance in Patients with Liver Cirrhosis and Hepatocarcinoma. Chinese Journal of Internal Medicine, 33, 113-116.
|
[42]
|
Tamai, Y., Iwasa, M., Eguchi, A., Shigefuku, R., Sugimoto, K., Hasegawa, H., et al. (2020) Serum Copper, Zinc and Metallothionein Serve as Potential Biomarkers for Hepatocellular Carcinoma. PLOS ONE, 15, e0237370. https://doi.org/10.1371/journal.pone.0237370
|
[43]
|
Koizumi, M., Fujii, J., Suzuki, K., Inoue, T., Inoue, T., Gutteridge, J.M.C., et al. (1998) A Marked Increase in Free Copper Levels in the Plasma and Liver of LEC Rats: An Animal Model for Wilson Disease and Liver Cancer. Free Radical Research, 28, 441-450.
https://doi.org/10.3109/10715769809066881
|
[44]
|
Gunjan, D., Shalimar,, Nadda, N., Kedia, S., Nayak, B., Paul, S.B., et al. (2017) Hepatocellular Carcinoma: An Unusual Complication of Longstanding Wilson Disease. Journal of Clinical and Experimental Hepatology, 7, 152-154. https://doi.org/10.1016/j.jceh.2016.09.012
|
[45]
|
Blockhuys, S., Celauro, E., Hildesjö, C., Feizi, A., Stål, O., Fierro-González, J.C., et al. (2017) Defining the Human Copper Proteome and Analysis of Its Expression Variation in Cancers. Metallomics, 9, 112-123. https://doi.org/10.1039/c6mt00202a
|
[46]
|
Casaril, M., Capra, F., Marchiori, L., Gabrielli, G.B., Nicoli, N., Corso, F., et al. (1989) Serum Copper and Ceruloplasmin in Early and in Advanced Hepatocellular Carcinoma: Diagnostic and Prognostic Relevance. Tumori Journal, 75, 498-502. https://doi.org/10.1177/030089168907500521
|
[47]
|
Himoto, T., Fujita, K., Nomura, T., Tani, J., Miyoshi, H., Morishita, A., et al. (2016) Roles of Copper in Hepatocarcinogenesis via the Activation of Hypoxia-Inducible Factor-1α. Biological Trace Element Research, 174, 58-64. https://doi.org/10.1007/s12011-016-0702-7
|
[48]
|
Li, Z., Zhou, H., Zhai, X., Gao, L., Yang, M., An, B., et al. (2023) MELK Promotes HCC Carcinogenesis through Modulating Cuproptosis-Related Gene DLAT-Mediated Mitochondrial Function. Cell Death & Disease, 14, Article No. 733. https://doi.org/10.1038/s41419-023-06264-3
|
[49]
|
Torrez, C.Z., Easley, A., Bouamar, H., Zheng, G., Gu, X., Yang, J., et al. (2024) STEAP2 Promotes Hepatocellular Carcinoma Progression via Increased Copper Levels and Stress-Activated MAP Kinase Activity. Scientific Reports, 14, Article No. 12753. https://doi.org/10.1038/s41598-024-63368-2
|
[50]
|
Zhang, Z., Zeng, X., Wu, Y., Liu, Y., Zhang, X. and Song, Z. (2022) Cuproptosis-Related Risk Score Predicts Prognosis and Characterizes the Tumor Microenvironment in Hepatocellular Carcinoma. Frontiers in Immunology, 13, Article 925618. https://doi.org/10.3389/fimmu.2022.925618
|
[51]
|
Peng, X., Zhu, J., Liu, S., Luo, C., Wu, X., Liu, Z., et al. (2022) Signature Construction and Molecular Subtype Identification Based on Cuproptosis-Related Genes to Predict the Prognosis and Immune Activity of Patients with Hepatocellular Carcinoma. Frontiers in Immunology, 13, Article 990790. https://doi.org/10.3389/fimmu.2022.990790
|
[52]
|
Zhang, G., Sun, J. and Zhang, X. (2022) A Novel Cuproptosis-Related LncRNA Signature to Predict Prognosis in Hepatocellular Carcinoma. Scientific Reports, 12, Article No. 11325. https://doi.org/10.1038/s41598-022-15251-1
|
[53]
|
Nagai, M., Vo, N.H., Shin Ogawa, L., Chimmanamada, D., Inoue, T., Chu, J., et al. (2012) The Oncology Drug Elesclomol Selectively Transports Copper to the Mitochondria to Induce Oxidative Stress in Cancer Cells. Free Radical Biology and Medicine, 52, 2142-2150. https://doi.org/10.1016/j.freeradbiomed.2012.03.017
|
[54]
|
Zheng, P., Zhou, C., Lu, L., Liu, B. and Ding, Y. (2022) Elesclomol: A Copper Ionophore Targeting Mitochondrial Metabolism for Cancer Therapy. Journal of Experimental & Clinical Cancer Research, 41, Article No. 271. https://doi.org/10.1186/s13046-022-02485-0
|
[55]
|
Subastri, A., Suyavaran, A., Preedia Babu, E., Nithyananthan, S., Barathidasan, R. and Thirunavukkarasu, C. (2017) Troxerutin with Copper Generates Oxidative Stress in Cancer Cells: Its Possible Chemotherapeutic Mechanism against Hepatocellular Carcinoma. Journal of Cellular Physiology, 233, 1775-1790. https://doi.org/10.1002/jcp.26061
|
[56]
|
Voli, F., Valli, E., Lerra, L., Kimpton, K., Saletta, F., Giorgi, F.M., et al. (2020) Intratumoral Copper Modulates PD-L1 Expression and Influences Tumor Immune Evasion. Cancer Research, 80, 4129-4144. https://doi.org/10.1158/0008-5472.can-20-0471
|
[57]
|
Zhang, P., Zhou, C., Ren, X., Jing, Q., Gao, Y., Yang, C., et al. (2024) Inhibiting the Compensatory Elevation of Xct Collaborates with Disulfiram/Copper-Induced GSH Consumption for Cascade Ferroptosis and Cuproptosis. Redox Biology, 69, Article 103007. https://doi.org/10.1016/j.redox.2023.103007
|
[58]
|
Zhou, B., Guo, L., Zhang, B., Liu, S., Zhang, K., Yan J., et al. (2019) Disulfiram Combined with Copper Induces Immunosuppression via PD-L1 Stabilization in Hepatocellular Carcinoma. American Journal of Cancer Research, 9, 2442-2455.
|
[59]
|
Yang, M., Wu, X., Li, L., Li, S., Li, N., Mao, M., et al. (2021) COMMD10 Inhibits Tumor Progression and Induces Apoptosis by Blocking Nf-κB Signal and Values up BCLC Staging in Predicting Overall Survival in Hepatocellular Carcinoma. Clinical and Translational Medicine, 11, e403. https://doi.org/10.1002/ctm2.403
|
[60]
|
Yang, M., Wu, X., Hu, J., Wang, Y., Wang, Y., Zhang, L., et al. (2022) COMMD10 Inhibits Hif1α/CP Loop to Enhance Ferroptosis and Radiosensitivity by Disrupting Cu-Fe Balance in Hepatocellular Carcinoma. Journal of Hepatology, 76, 1138-1150. https://doi.org/10.1016/j.jhep.2022.01.009
|
[61]
|
Liu, Z., Ma, H. and Lai, Z. (2023) The Role of Ferroptosis and Cuproptosis in Curcumin against Hepatocellular Carcinoma. Molecules, 28, Article 1623. https://doi.org/10.3390/molecules28041623
|
[62]
|
Quan, B., Liu, W., Yao, F., Li, M., Tang, B., Li, J., et al. (2023) LINC02362/ hsa-miR-18a-5p/FDX1 Axis Suppresses Proliferation and Drives Cuproptosis and Oxaliplatin Sensitivity of Hepatocellular Carcinoma. American Journal of Cancer Research, 13, 5590-5609.
|
[63]
|
Cao, F., Qi, Y., Wu, W., Li, X. and Yang, C. (2023) Single-Cell and Genetic Multi-Omics Analysis Combined with Experiments Confirmed the Signature and Potential Targets of Cuproptosis in Hepatocellular Carcinoma. Frontiers in Cell and Developmental Biology, 11, Article 1240390. https://doi.org/10.3389/fcell.2023.1240390
|
[64]
|
Yang, F., Jia, L., Zhou, H., Huang, J., Hou, M., Liu, F., et al. (2023) Deep Learning Enables the Discovery of a Novel Cuproptosis-Inducing Molecule for the Inhibition of Hepatocellular Carcinoma. Acta Pharmacologica Sinica, 45, 391-404. https://doi.org/10.1038/s41401-023-01167-7
|
[65]
|
Shao, J., Li, M., Guo, Z., Jin, C., Zhang, F., Ou, C., et al. (2019) TPP-Related Mitochondrial Targeting Copper (II) Complex Induces p53-Dependent Apoptosis in Hepatoma Cells through ROS-Mediated Activation of Drp1. Cell Communication and Signaling, 17, Article No. 149. https://doi.org/10.1186/s12964-019-0468-6
|
[66]
|
Xu, Q., Hu, H., Mo, Z., Chen, T., He, Q. and Xu, Z. (2023) A Multifunctional Nanotheranostic Agent Based on Lenvatinib for Multimodal Synergistic Hepatocellular Carcinoma Therapy with Remarkably Enhanced Efficacy. Journal of Colloid and Interface Science, 638, 375-391. https://doi.org/10.1016/j.jcis.2023.01.144
|
[67]
|
Zhou, J., Yu, Q., Song, J., Li, S., Li, X., Kang, B., et al. (2023) Photothermally Triggered Copper Payload Release for Cuproptosis-Promoted Cancer Synergistic Therapy. Angewandte Chemie International Edition, 62, e202213922. https://doi.org/10.1002/anie.202213922
|
[68]
|
Qiao, L., Zhu, G., Jiang, T., Qian, Y., Sun, Q., Zhao, G., et al. (2023) Self-Destructive Copper Carriers Induce Pyroptosis and Cuproptosis for Efficient Tumor Immunotherapy against Dormant and Recurrent Tumors. Advanced Materials, 36, Article 2308241. https://doi.org/10.1002/adma.202308241
|
[69]
|
Deng, J., Zhuang, H., Shao, S., Zeng, X., Xue, P., Bai, T., et al. (2024) Mitochondrial-Targeted Copper Delivery for Cuproptosis-Based Synergistic Cancer Therapy. Advanced Healthcare Materials, 13, Article 2304522. https://doi.org/10.1002/adhm.202304522
|
[70]
|
Lu, J., Miao, Y. and Li, Y. (2024) Cuproptosis: Advances in Stimulus-Responsive Nanomaterials for Cancer Therapy. Advanced Healthcare Materials, 13, Article 2400652. https://doi.org/10.1002/adhm.202400652
|
[71]
|
Huang, X., Shen, J., Huang, K., Wang, L., Sethi, G. and Ma, Z. (2024) Cuproptosis in Cancers: Function and Implications from Bench to Bedside. Biomedicine & Pharmacotherapy, 176, Article 116874. https://doi.org/10.1016/j.biopha.2024.116874
|