[1]
|
Sheikhansari, G., Aghebati-Maleki, L., Nouri, M., Jadidi-Niaragh, F. and Yousefi, M. (2018) Current Approaches for the Treatment of Premature Ovarian Failure with Stem Cell Therapy. Biomedicine & Pharmacotherapy, 102, 254-262. https://doi.org/10.1016/j.biopha.2018.03.056
|
[2]
|
Zhang, C. (2020) The Roles of Different Stem Cells in Premature Ovarian Failure. Current Stem Cell Research & Therapy, 15, 473-481. https://doi.org/10.2174/1574888x14666190314123006
|
[3]
|
Kuang, H., Han, D., Xie, J., Yan, Y., Li, J. and Ge, P. (2013) Profiling of Differentially Expressed Micrornas in Premature Ovarian Failure in an Animal Model. Gynecological Endocrinology, 30, 57-61. https://doi.org/10.3109/09513590.2013.850659
|
[4]
|
Takahashi, A., Yousif, A., Hong, L. and Chefetz, I. (2021) Premature Ovarian Insufficiency: Pathogenesis and Therapeutic Potential of Mesenchymal Stem Cell. Journal of Molecular Medicine, 99, 637-650. https://doi.org/10.1007/s00109-021-02055-5
|
[5]
|
Omu, F.E., Elbiaa, A., Ghafour, A., Gadalla, I. and Omu, A.E. (2016) Beneficial Effects of Tibolone on Sexual Dys-Function in Women with Premature Ovarian Failure (POF). Health, 8, 857-867. https://doi.org/10.4236/health.2016.89090
|
[6]
|
Ullah, I., Subbarao, R.B. and Rho, G.J. (2015) Human Mesenchymal Stem Cells—Current Trends and Future Prospective. Bioscience Reports, 35, e00191. https://doi.org/10.1042/bsr20150025
|
[7]
|
Li, Y., Zhang, H., Cai, C., Mao, J., Li, N., Huang, D., et al. (2023) Microfluidic Encapsulation of Exosomes Derived from Lipopolysaccharide-Treated Mesenchymal Stem Cells in Hyaluronic Acid Methacryloyl to Restore Ovarian Function in Mice. Advanced Healthcare Materials, 13, e2303068. https://doi.org/10.1002/adhm.202303068
|
[8]
|
Yang, M., Lin, L., Sha, C., Li, T., Zhao, D., Wei, H., et al. (2020) Bone Marrow Mesenchymal Stem Cell-Derived Exosomal miR-144-5p Improves Rat Ovarian Function After Chemotherapy-Induced Ovarian Failure by Targeting PTEN. Laboratory Investigation, 100, 342-352. https://doi.org/10.1038/s41374-019-0321-y
|
[9]
|
Zhang, Q., Sun, J., Huang, Y., Bu, S., Guo, Y., Gu, T., et al. (2019) Human Amniotic Epithelial Cell-Derived Exosomes Restore Ovarian Function by Transferring MicroRNAs against Apoptosis. Molecular Therapy—Nucleic Acids, 16, 407-418. https://doi.org/10.1016/j.omtn.2019.03.008
|
[10]
|
Thabet, E., Yusuf, A., Abdelmonsif, D.A., Nabil, I., Mourad, G. and Mehanna, R.A. (2020) Extracellular Vesicles Mirna-21: A Potential Therapeutic Tool in Premature Ovarian Dysfunction. Molecular Human Reproduction, 26, 906-919. https://doi.org/10.1093/molehr/gaaa068
|
[11]
|
Huang, B., Lu, J., Ding, C., Zou, Q., Wang, W. and Li, H. (2018) Exosomes Derived from Human Adipose Mesenchymal Stem Cells Improve Ovary Function of Premature Ovarian Insufficiency by Targeting SMAD. Stem Cell Research & Therapy, 9, Article No. 216. https://doi.org/10.1186/s13287-018-0953-7
|
[12]
|
Di-Battista, A., Moysés-Oliveira, M. and Melaragno, M.I. (2020) Genetics of Premature Ovarian Insufficiency and the Association with X-Autosome Translocations. Reproduction, 160, R55-R64. https://doi.org/10.1530/rep-20-0338
|
[13]
|
Baronchelli, S., Conconi, D., Panzeri, E., Bentivegna, A., Redaelli, S., Lissoni, S., et al. (2011) Cytogenetics of Premature Ovarian Failure: An Investigation on 269 Affected Women. BioMed Research International, 2011, Article ID: 370195. https://doi.org/10.1155/2011/370195
|
[14]
|
Franić, D. (2016) Genetic Etiology of Primary Premature Ovarian Insufficiency. Acta Clinica Croatica, 55, 629-635. https://doi.org/10.20471/acc.2016.55.04.14
|
[15]
|
Zinn, A. (2001) The X Chromosome and the Ovary. Journal of the Society for Gynecologic Investigation, 8, S34-S36. https://doi.org/10.1016/s1071-5576(00)00104-0
|
[16]
|
Lu, C., Chen, Y., Syu, S., Lu, H., Ho, H. and Chen, H. (2019) Generation of Induced Pluripotent Stem Cell Line-Ntuhi001-A from a Premature Ovarian Failure Patient with Turner’s Syndrome Mosaicism. Stem Cell Research, 37, Article ID: 101422. https://doi.org/10.1016/j.scr.2019.101422
|
[17]
|
Yuemaier, M., Tuerhong, M., Keremu, A., Kadeer, N., Aimaiti, A., Wushouer, X., et al. (2018) Research on Establishment of Abnormal Phlegmatic Syndrome with Premature Ovarian Failure Rat Model and Effects of Balgham Munziq Treatment. Evidence-Based Complementary and Alternative Medicine, 2018, Article ID: 3858209. https://doi.org/10.1155/2018/3858209
|
[18]
|
Czakó, M., Till, Á., Zima, J., Zsigmond, A., Szabó, A., Maász, A., et al. (2021) Xp11.2 Duplication in Females: Unique Features of a Rare Copy Number Variation. Frontiers in Genetics, 12, Article 635458. https://doi.org/10.3389/fgene.2021.635458
|
[19]
|
Sherman, S.L. (2000) Premature Ovarian Failure among Fragile X Premutation Carriers: Parent-Of-Origin Effect? The American Journal of Human Genetics, 67, 11-13. https://doi.org/10.1086/302985
|
[20]
|
Holland, C.M. (2001) 47, XXX in an Adolescent with Premature Ovarian Failure and Autoimmune Disease. Journal of Pediatric and Adolescent Gynecology, 14, 77-80. https://doi.org/10.1016/s1083-3188(01)00075-4
|
[21]
|
Deng, P. and Klyachko, V.A. (2021) Channelopathies in Fragile X Syndrome. Nature Reviews Neuroscience, 22, 275-289. https://doi.org/10.1038/s41583-021-00445-9
|
[22]
|
Rehnitz, J., Alcoba, D.D., Brum, I.S., Dietrich, J.E., Youness, B., Hinderhofer, K., et al. (2018) FMR1 Expression in Human Granulosa Cells Increases with Exon 1 CGG Repeat Length Depending on Ovarian Reserve. Reproductive Biology and Endocrinology, 16, Article No. 65. https://doi.org/10.1186/s12958-018-0383-5
|
[23]
|
Cao, Y., Peng, Y., Kong, H.E., Allen, E.G. and Jin, P. (2020) Metabolic Alterations in FMR1 Premutation Carriers. Frontiers in Molecular Biosciences, 7, Article 571092. https://doi.org/10.3389/fmolb.2020.571092
|
[24]
|
Welt, C.K., Smith, P.C. and Taylor, A.E. (2004) Evidence of Early Ovarian Aging in Fragile X Premutation Carriers. The Journal of Clinical Endocrinology & Metabolism, 89, 4569-4574. https://doi.org/10.1210/jc.2004-0347
|
[25]
|
Ruth, K.S., Day, F.R., Hussain, J., Martínez-Marchal, A., Aiken, C.E., Azad, A., et al. (2021) Genetic Insights into Biological Mechanisms Governing Human Ovarian Ageing. Nature, 596, 393-397. https://doi.org/10.1038/s41586-021-03779-7
|
[26]
|
Thakur, M., Feldman, G. and Puscheck, E.E. (2017) Primary Ovarian Insufficiency in Classic Galactosemia: Current Understanding and Future Research Opportunities. Journal of Assisted Reproduction and Genetics, 35, 3-16. https://doi.org/10.1007/s10815-017-1039-7
|
[27]
|
Bouazzi, L., Sproll, P., Eid, W. and Biason-Lauber, A. (2019) The Transcriptional Regulator CBX2 and Ovarian Function: A Whole Genome and Whole Transcriptome Approach. Scientific Reports, 9, Article No. 17033. https://doi.org/10.1038/s41598-019-53370-4
|
[28]
|
Chai, P., Li, F., Fan, J., Jia, R., Zhang, H. and Fan, X. (2017) Functional Analysis of a Novel FOXL2 Indel Mutation in Chinese Families with Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome Type I. International Journal of Biological Sciences, 13, 1019-1028. https://doi.org/10.7150/ijbs.19532
|
[29]
|
Patton, B.K., Madadi, S., Briley, S.M., Ahmed, A.A. and Pangas, S.A. (2023) Sumoylation Regulates Functional Properties of the Oocyte Transcription Factors SOHLH1 and NOBOX. The FASEB Journal, 37, e22747. https://doi.org/10.1096/fj.202201481r
|
[30]
|
Lakhal, B., Ben-Hadj-Khalifa, S., Bouali, N., Philipert, P., Audran, F., Braham, R., et al. (2012) Mutational Screening of SF1 and WNT4 in Tunisian Women with Premature Ovarian Failure. Gene, 509, 298-301. https://doi.org/10.1016/j.gene.2012.08.007
|
[31]
|
Kim, H., Chun, S., Gu, B.S., Ku, S., Kim, S.H. and Kim, J.G. (2011) Relationship between Inhibin-α Gene Polymorphisms and Premature Ovarian Failure in Korean Women. Menopause, 18, 1232-1236. https://doi.org/10.1097/gme.0b013e31821d6f7e
|
[32]
|
Gao, H., Gao, L. and Wang, W. (2022) Advances in the Cellular Immunological Pathogenesis and Related Treatment of Primary Ovarian Insufficiency. American Journal of Reproductive Immunology, 88, e13622. https://doi.org/10.1111/aji.13622
|
[33]
|
Luborsky, J. (2002) Ovarian Autoimmune Disease and Ovarian Autoantibodies. Journal of Women’s Health & Gender-Based Medicine, 11, 585-599. https://doi.org/10.1089/152460902760360540
|
[34]
|
Chernyshov, V.P., Radysh, T.V., Gura, I.V., Tatarchuk, T.P. and Khominskaya, Z.B. (2001) Immune Disorders in Women with Premature Ovarian Failure in Initial Period. American Journal of Reproductive Immunology, 46, 220-225. https://doi.org/10.1034/j.1600-0897.2001.d01-5.x
|
[35]
|
Forges, T. (2004) Autoimmunity and Antigenic Targets in Ovarian Pathology. Human Reproduction Update, 10, 163-175. https://doi.org/10.1093/humupd/dmh014
|
[36]
|
Jankowska, K. (2017) Premature Ovarian Failure. Menopausal Review, 2, 51-56. https://doi.org/10.5114/pm.2017.68592
|
[37]
|
Guerreiro, D.D., Lima, L.F.d., Rodrigues, G.Q., Carvalho, A.d.A., Castro, S.V., Campello, C.C., et al. (2016) In Situ Cultured Preantral Follicles Is a Useful Model to Evaluate the Effect of Anticancer Drugs on Caprine Folliculogenesis. Microscopy Research and Technique, 79, 773-781. https://doi.org/10.1002/jemt.22697
|
[38]
|
Lambertini, M., Ceppi, M., Poggio, F., Peccatori, F.A., Azim, H.A., Ugolini, D., et al. (2015) Ovarian Suppression Using Luteinizing Hormone-Releasing Hormone Agonists during Chemotherapy to Preserve Ovarian Function and Fertility of Breast Cancer Patients: A Meta-Analysis of Randomized Studies. Annals of Oncology, 26, 2408-2419. https://doi.org/10.1093/annonc/mdv374
|
[39]
|
Di Prospero, F., Luzi, S. and Iacopini, Z. (2004) Cigarette Smoking Damages Women’s Reproductive Life. Reproductive BioMedicine Online, 8, 246-247. https://doi.org/10.1016/s1472-6483(10)60525-1
|
[40]
|
Camlin, N.J., McLaughlin, E.A. and Holt, J.E. (2014) Through the Smoke: Use of in Vivo and in Vitro Cigarette Smoking Models to Elucidate Its Effect on Female Fertility. Toxicology and Applied Pharmacology, 281, 266-275. https://doi.org/10.1016/j.taap.2014.10.010
|
[41]
|
Matikainen, T., Perez, G.I., Jurisicova, A., Pru, J.K., Schlezinger, J.J., Ryu, H., et al. (2001) Aromatic Hydrocarbon Receptor-Driven Bax Gene Expression Is Required for Premature Ovarian Failure Caused by Biohazardous Environmental Chemicals. Nature Genetics, 28, 355-360. https://doi.org/10.1038/ng575
|
[42]
|
Huang, X.C., Jiang, Y.N., Bao, H.J., et al. (2024) Role and Mechanism of Epigenetic Regulation in the Aging of Germ Cells: Prospects for Targeted Interventions. Aging and Disease. https://doi.org/10.14336/AD.2024.0126
|
[43]
|
Colafrancesco, S., Perricone, C., Tomljenovic, L. and Shoenfeld, Y. (2013) Human Papilloma Virus Vaccine and Primary Ovarian Failure: Another Facet of the Autoimmune/Inflammatory Syndrome Induced by Adjuvants. American Journal of Reproductive Immunology, 70, 309-316. https://doi.org/10.1111/aji.12151
|
[44]
|
Little, D.T. and Ward, H.R.G. (2012) Premature Ovarian Failure 3 Years after Menarche in a 16-Year-Old Girl Following Human Papillomavirus Vaccination. BMJ Case Reports, 2012, bcr2012006879. https://doi.org/10.1136/bcr-2012-006879
|
[45]
|
Kushnir, M.M., Naessen, T., Kirilovas, D., Chaika, A., Nosenko, J., Mogilevkina, I., et al. (2009) Steroid Profiles in Ovarian Follicular Fluid from Regularly Menstruating Women and Women after Ovarian Stimulation. Clinical Chemistry, 55, 519-526. https://doi.org/10.1373/clinchem.2008.110262
|
[46]
|
Kim, Y., Kang, M., Choi, J., Lee, B.H., Kim, G., Ohn, J.H., et al. (2014) A Review of the Literature on Common CYP17A1 Mutations in Adults with 17-Hydroxylase/17, 20-Lyase Deficiency, a Case Series of Such Mutations among Koreans and Functional Characteristics of a Novel Mutation. Metabolism, 63, 42-49. https://doi.org/10.1016/j.metabol.2013.08.015
|
[47]
|
Rabinovici, J., Blankstein, J., Goldman, B., Rudak, E., Dor, Y., Pariente, C., et al. (1989) In Vitro Fertilization and Primary Embryonic Cleavage Are Possible in 17α-Hydroxylase Deficiency Despite Extremely Low Intrafollicular 17β-Estradiol. The Journal of Clinical Endocrinology & Metabolism, 68, 693-697. https://doi.org/10.1210/jcem-68-3-693
|
[48]
|
Hewlett, M. and Mahalingaiah, S. (2015) Update on Primary Ovarian Insufficiency. Current Opinion in Endocrinology, Diabetes & Obesity, 22, 483-489. https://doi.org/10.1097/med.0000000000000206
|
[49]
|
Chen, H., Xiao, L., Li, J., Cui, L. and Huang, W. (2019) Adjuvant Gonadotropin-Releasing Hormone Analogues for the Prevention of Chemotherapy-Induced Premature Ovarian Failure in Premenopausal Women. Cochrane Database of Systematic Reviews, No. 3, CD008018. https://doi.org/10.1002/14651858.cd008018.pub3
|
[50]
|
Rossouw, J.E., Prentice, R.L., Manson, J.E., Wu, L., Barad, D., Barnabei, V.M., et al. (2007) Postmenopausal Hormone Therapy and Risk of Cardiovascular Disease by Age and Years since Menopause. JAMA, 297, 1465-1477. https://doi.org/10.1001/jama.297.13.1465
|
[51]
|
Kalantaridou, S.N., Naka, K.K., Papanikolaou, E., Kazakos, N., Kravariti, M., Calis, K.A., et al. (2004) Impaired Endothelial Function in Young Women with Premature Ovarian Failure: Normalization with Hormone Therapy. The Journal of Clinical Endocrinology & Metabolism, 89, 3907-3913. https://doi.org/10.1210/jc.2004-0015
|
[52]
|
Jang, H., Lee, O., Lee, Y., Yoon, H., Chang, E.M., Park, M., et al. (2016) Melatonin Prevents Cisplatin-Induced Primordial Follicle Loss via Suppression of PTEN/AKT/FOXO3a Pathway Activation in the Mouse Ovary. Journal of Pineal Research, 60, 336-347. https://doi.org/10.1111/jpi.12316
|
[53]
|
Lee, S.J., Schover, L.R., Partridge, A.H., Patrizio, P., Wallace, W.H., Hagerty, K., et al. (2006) American Society of Clinical Oncology Recommendations on Fertility Preservation in Cancer Patients. Journal of Clinical Oncology, 24, 2917-2931. https://doi.org/10.1200/jco.2006.06.5888
|
[54]
|
Huang, J., Shan, W., Li, N., Zhou, B., Guo, E., Xia, M., et al. (2021) Melatonin Provides Protection against Cisplatin-Induced Ovarian Damage and Loss of Fertility in Mice. Reproductive BioMedicine Online, 42, 505-519. https://doi.org/10.1016/j.rbmo.2020.10.001
|
[55]
|
Zhang, Q., Huang, Y., Sun, J., Gu, T., Shao, X. and Lai, D. (2019) Immunomodulatory Effect of Human Amniotic Epithelial Cells on Restoration of Ovarian Function in Mice with Autoimmune Ovarian Disease. Acta Biochimica et Biophysica Sinica, 51, 845-855. https://doi.org/10.1093/abbs/gmz065
|
[56]
|
Simon, A. and Laufer, N. (2012) Repeated Implantation Failure: Clinical Approach. Fertility and Sterility, 97, 1039-1043. https://doi.org/10.1016/j.fertnstert.2012.03.010
|
[57]
|
Kim, H.K. and Kim, T.J. (2024) Current Status and Future Prospects of Stem Cell Therapy for Infertile Patients with Premature Ovarian Insufficiency. Biomolecules, 14, Article 242. https://doi.org/10.3390/biom14020242
|
[58]
|
Gao, L., Huang, Z., Lin, H., Tian, Y., Li, P. and Lin, S. (2019) Bone Marrow Mesenchymal Stem Cells (BMSCs) Restore Functional Endometrium in the Rat Model for Severe Asherman Syndrome. Reproductive Sciences, 26, 436-444. https://doi.org/10.1177/1933719118799201
|
[59]
|
Sun, X., Luo, L. and Li, J. (2020) Lncrna MALAT1 Facilitates BM-MSCs Differentiation into Endothelial Cells via Targeting miR-206/VEGFA Axis. Cell Cycle, 19, 3018-3028. https://doi.org/10.1080/15384101.2020.1829799
|
[60]
|
Besikcioglu, H.E., Sarıbas, G.S., Ozogul, C., Tiryaki, M., Kilic, S., Pınarlı, F.A., et al. (2019) Determination of the Effects of Bone Marrow Derived Mesenchymal Stem Cells and Ovarian Stromal Stem Cells on Follicular Maturation in Cyclophosphamide Induced Ovarian Failure in Rats. Taiwanese Journal of Obstetrics and Gynecology, 58, 53-59. https://doi.org/10.1016/j.tjog.2018.11.010
|
[61]
|
Badawy, A., Sobh, M., Ahdy, M. and Abdelhafez, M. (2017) Bone Marrow Mesenchymal Stem Cell Repair of Cyclophosphamide-Induced Ovarian Insufficiency in a Mouse Model. International Journal of Women’s Health, 9, 441-447. https://doi.org/10.2147/ijwh.s134074
|
[62]
|
Fu, X., He, Y., Wang, X., Peng, D., Chen, X., Li, X., et al. (2017) Overexpression of Mir-21 in Stem Cells Improves Ovarian Structure and Function in Rats with Chemotherapy-Induced Ovarian Damage by Targeting PDCD4 and PTEN to Inhibit Granulosa Cell Apoptosis. Stem Cell Research & Therapy, 8, Article No. 187. https://doi.org/10.1186/s13287-017-0641-z
|
[63]
|
Kilic, S., Pinarli, F., Ozogul, C., Tasdemir, N., Naz Sarac, G. and Delibasi, T. (2013) Protection from Cyclophosphamide-Induced Ovarian Damage with Bone Marrow-Derived Mesenchymal Stem Cells during Puberty. Gynecological Endocrinology, 30, 135-140. https://doi.org/10.3109/09513590.2013.860127
|
[64]
|
Chen, X., Wang, Q., Li, X., Wang, Q., Xie, J. and Fu, X. (2018) Heat Shock Pretreatment of Mesenchymal Stem Cells for Inhibiting the Apoptosis of Ovarian Granulosa Cells Enhanced the Repair Effect on Chemotherapy-Induced Premature Ovarian Failure. Stem Cell Research & Therapy, 9, Article No. 240. https://doi.org/10.1186/s13287-018-0964-4
|
[65]
|
Meesuk, L., Tantrawatpan, C., Kheolamai, P. and Manochantr, S. (2016) The Immunosuppressive Capacity of Human Mesenchymal Stromal Cells Derived from Amnion and Bone Marrow. Biochemistry and Biophysics Reports, 8, 34-40. https://doi.org/10.1016/j.bbrep.2016.07.019
|
[66]
|
Xiao, G., Liu, I., Cheng, C., Chang, C., Lee, Y., Cheng, W.T., et al. (2014) Amniotic Fluid Stem Cells Prevent Follicle Atresia and Rescue Fertility of Mice with Premature Ovarian Failure Induced by Chemotherapy. PLOS ONE, 9, e106538. https://doi.org/10.1371/journal.pone.0106538
|
[67]
|
Liu, R., Zhang, X., Fan, Z., Wang, Y., Yao, G., Wan, X., et al. (2019) Human Amniotic Mesenchymal Stem Cells Improve the Follicular Microenvironment to Recover Ovarian Function in Premature Ovarian Failure Mice. Stem Cell Research & Therapy, 10, Article No. 299. https://doi.org/10.1186/s13287-019-1315-9
|
[68]
|
Ding, C., Zou, Q., Wang, F., Wu, H., Chen, R., Lv, J., et al. (2018) Human Amniotic Mesenchymal Stem Cells Improve Ovarian Function in Natural Aging through Secreting Hepatocyte Growth Factor and Epidermal Growth Factor. Stem Cell Research & Therapy, 9, Article No. 55. https://doi.org/10.1186/s13287-018-0781-9
|
[69]
|
Labunskyy, V.M. and Gladyshev, V.N. (2013) Role of Reactive Oxygen Species-Mediated Signaling in Aging. Antioxidants & Redox Signaling, 19, 1362-1372. https://doi.org/10.1089/ars.2012.4891
|
[70]
|
Naeem, A., Gupta, N., Naeem, U., Elrayess, M.A. and Albanese, C. (2022) Amniotic Stem Cells as a Source of Regenerative Medicine to Treat Female Infertility. Human Cell, 36, 15-25. https://doi.org/10.1007/s13577-022-00795-1
|
[71]
|
Liu, T., Huang, Y., Guo, L., Cheng, W. and Zou, G. (2012) CD44+/CD105+ Human Amniotic Fluid Mesenchymal Stem Cells Survive and Proliferate in the Ovary Long-Term in a Mouse Model of Chemotherapy-Induced Premature Ovarian Failure. International Journal of Medical Sciences, 9, 592-602. https://doi.org/10.7150/ijms.4841
|
[72]
|
Assou, S., Al-edani, T., Haouzi, D., Philippe, N., Lecellier, C.H., Piquemal, D., et al. (2013) Micrornas: New Candidates for the Regulation of the Human Cumulus-Oocyte Complex. Human Reproduction, 28, 3038-3049. https://doi.org/10.1093/humrep/det321
|
[73]
|
Jiang, W., Kong, L., Ni, Q., Lu, Y., Ding, W., Liu, G., et al. (2014) Mir-146a Ameliorates Liver Ischemia/Reperfusion Injury by Suppressing IRAK1 and TRAF6. PLOS ONE, 9, e101530. https://doi.org/10.1371/journal.pone.0101530
|
[74]
|
Mashayekhi, M., Mirzadeh, E., Chekini, Z., Ahmadi, F., Eftekhari-Yazdi, P., Vesali, S., et al. (2021) Evaluation of Safety, Feasibility and Efficacy of Intra-Ovarian Transplantation of Autologous Adipose Derived Mesenchymal Stromal Cells in Idiopathic Premature Ovarian Failure Patients: Non-Randomized Clinical Trial, Phase I, First in Human. Journal of Ovarian Research, 14, Article No. 5. https://doi.org/10.1186/s13048-020-00743-3
|
[75]
|
Su, J., Ding, L., Cheng, J., Yang, J., Li, X., Yan, G., et al. (2016) Transplantation of Adipose-Derived Stem Cells Combined with Collagen Scaffolds Restores Ovarian Function in a Rat Model of Premature Ovarian Insufficiency. Human Reproduction, 31, 1075-1086. https://doi.org/10.1093/humrep/dew041
|
[76]
|
Song, K., Cai, H., Zhang, D., Huang, R., Sun, D. and He, Y. (2018) Effects of Human Adipose-Derived Mesenchymal Stem Cells Combined with Estrogen on Regulatory T Cells in Patients with Premature Ovarian Insufficiency. International Immunopharmacology, 55, 257-262. https://doi.org/10.1016/j.intimp.2017.12.026
|
[77]
|
Kilic, S., Yuksel, B., Pinarli, F., Albayrak, A., Boztok, B. and Delibasi, T. (2014) Effect of Stem Cell Application on Asherman Syndrome, an Experimental Rat Model. Journal of Assisted Reproduction and Genetics, 31, 975-982. https://doi.org/10.1007/s10815-014-0268-2
|
[78]
|
Luan, X., Li, G., Wang, G., Wang, F. and Lin, Y. (2013) Human Placenta-Derived Mesenchymal Stem Cells Suppress T Cell Proliferation and Support the Culture Expansion of Cord Blood CD34+ Cells: A Comparison with Human Bone Marrow-Derived Mesenchymal Stem Cells. Tissue and Cell, 45, 32-38. https://doi.org/10.1016/j.tice.2012.09.002
|
[79]
|
Yin, N., Zhao, W., Luo, Q., Yuan, W., Luan, X. and Zhang, H. (2018) Restoring Ovarian Function with Human Placenta-Derived Mesenchymal Stem Cells in Autoimmune-Induced Premature Ovarian Failure Mice Mediated by TREG Cells and Associated Cytokines. Reproductive Sciences, 25, 1073-1082. https://doi.org/10.1177/1933719117732156
|
[80]
|
Hong, I. (2024) Endometrial Stem Cells: Orchestrating Dynamic Regeneration of Endometrium and Their Implications in Diverse Endometrial Disorders. International Journal of Biological Sciences, 20, 864-879. https://doi.org/10.7150/ijbs.89795
|
[81]
|
Wang, Z., Wang, Y., Yang, T., Li, J. and Yang, X. (2017) Study of the Reparative Effects of Menstrual-Derived Stem Cells on Premature Ovarian Failure in Mice. Stem Cell Research & Therapy, 8, Article No. 11. https://doi.org/10.1186/s13287-016-0458-1
|
[82]
|
Tan, J., Li, P., Wang, Q., Li, Y., Li, X., Zhao, D., et al. (2016) Autologous Menstrual Blood-Derived Stromal Cells Transplantation for Severe Asherman’s Syndrome. Human Reproduction, 31, 2723-2729. https://doi.org/10.1093/humrep/dew235
|
[83]
|
Domnina, A., Novikova, P., Obidina, J., Fridlyanskaya, I., Alekseenko, L., Kozhukharova, I., et al. (2018) Human Mesenchymal Stem Cells in Spheroids Improve Fertility in Model Animals with Damaged Endometrium. Stem Cell Research & Therapy, 9, Article No. 50. https://doi.org/10.1186/s13287-018-0801-9
|
[84]
|
Wang, C., Sun, Q., Li, S., Liu, G., Ren, J., Li, Y., et al. (2023) Isolation of Female Germline Stem Cells from Neonatal Piglet Ovarian Tissue and Differentiation into Oocyte-Like Cells. Theriogenology, 197, 186-197. https://doi.org/10.1016/j.theriogenology.2022.12.004
|
[85]
|
Stimpfel, M., Cerkovnik, P., Novakovic, S., Maver, A. and Virant-Klun, I. (2014) Putative Mesenchymal Stem Cells Isolated from Adult Human Ovaries. Journal of Assisted Reproduction and Genetics, 31, 959-974. https://doi.org/10.1007/s10815-014-0254-8
|
[86]
|
Wang, Z., Wei, Q., Wang, H., Han, L., Dai, H., Qian, X., et al. (2020) Mesenchymal Stem Cell Therapy Using Human Umbilical Cord in a Rat Model of Autoimmune-Induced Premature Ovarian Failure. Stem Cells International, 2020, Article ID: 3249495. https://doi.org/10.1155/2020/3249495
|
[87]
|
Umer, A., Khan, N., Greene, D.L., Habiba, U.E., Shamim, S. and Khayam, A.U. (2022) The Therapeutic Potential of Human Umbilical Cord Derived Mesenchymal Stem Cells for the Treatment of Premature Ovarian Failure. Stem Cell Reviews and Reports, 19, 651-666. https://doi.org/10.1007/s12015-022-10493-y
|
[88]
|
Zhang, L., Li, Y., Dong, Y., Guan, C., Tian, S., Lv, X., et al. (2022) Transplantation of Umbilical Cord-Derived Mesenchymal Stem Cells Promotes the Recovery of Thin Endometrium in Rats. Scientific Reports, 12, Article No. 412. https://doi.org/10.1038/s41598-021-04454-7
|
[89]
|
Yin, N., Wu, C., Qiu, J., Zhang, Y., Bo, L., Xu, Y., et al. (2020) Protective Properties of Heme Oxygenase-1 Expressed in Umbilical Cord Mesenchymal Stem Cells Help Restore the Ovarian Function of Premature Ovarian Failure Mice through Activating the JNK/Bcl-2 Signal Pathway-Regulated Autophagy and Upregulating the Circulating of CD8+CD28− T Cells. Stem Cell Research & Therapy, 11, Article No. 49. https://doi.org/10.1186/s13287-019-1537-x
|
[90]
|
Yang, Y., Lei, L., Wang, S., Sheng, X., Yan, G., Xu, L., et al. (2019) Transplantation of Umbilical Cord-Derived Mesenchymal Stem Cells on a Collagen Scaffold Improves Ovarian Function in a Premature Ovarian Failure Model of Mice. In Vitro Cellular & Developmental Biology—Animal, 55, 302-311. https://doi.org/10.1007/s11626-019-00337-4
|
[91]
|
Liu, T., Li, Q., Wang, S., Chen, C. and Zheng, J. (2016) Transplantation of Ovarian Granulosa-Like Cells Derived from Human Induced Pluripotent Stem Cells for the Treatment of Murine Premature Ovarian Failure. Molecular Medicine Reports, 13, 5053-5058. https://doi.org/10.3892/mmr.2016.5191
|
[92]
|
Hayashi, K. and Saitou, M. (2013) Generation of Eggs from Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells. Nature Protocols, 8, 1513-1524. https://doi.org/10.1038/nprot.2013.090
|
[93]
|
Duan, C., Han, J., Zhang, C., Wu, K. and Lin, Y. (2019) UA Promotes Epithelialmesenchymal Transition in Peritoneal Mesothelial Cells. Molecular Medicine Reports, 20, 2396-2402. https://doi.org/10.3892/mmr.2019.10476
|
[94]
|
Mirzaeian, L., Eftekhari-Yazdi, P., Esfandiari, F., Eivazkhani, F., Rezazadeh Valojerdi, M., Moini, A., et al. (2019) Induction of Mouse Peritoneum Mesenchymal Stem Cells into Germ Cell-Like Cells Using Follicular Fluid and Cumulus Cells-Conditioned Media. Stem Cells and Development, 28, 554-564. https://doi.org/10.1089/scd.2018.0149
|
[95]
|
Lai, D., Wang, F., Dong, Z. and Zhang, Q. (2014) Skin-Derived Mesenchymal Stem Cells Help Restore Function to Ovaries in a Premature Ovarian Failure Mouse Model. PLOS ONE, 9, e98749. https://doi.org/10.1371/journal.pone.0098749
|
[96]
|
Aghabozorgi, A.S., Ahangari, N., Eftekhaari, T.E., Torbati, P.N., Bahiraee, A., Ebrahimi, R., et al. (2019) Circulating Exosomal Mirnas in Cardiovascular Disease Pathogenesis: New Emerging Hopes. Journal of Cellular Physiology, 234, 21796-21809. https://doi.org/10.1002/jcp.28942
|