Synthesis and Humidity Sensing Investigations of Nanostructured ZnSnO3
Rama Singh, Avadhesh Kumar Yadav, Chandkiram Gautam
.
DOI: 10.4236/jst.2011.14016   PDF    HTML     6,412 Downloads   15,300 Views   Citations

Abstract

In this paper zinc stannate (ZnSnO3) nanoparticles was synthesized by a chemical precipitation method. The synthesized samples were characterized using X-ray powder diffraction (XRD), Differential scanning calorimetry (DSC) and UV-Visible absorption spectroscopy. Sensing material was made as pellet by hydraulic press machine under uniform pressure of 616 MPa. Then the material was annealed at 600C. Surface morphologies of the samples were analyzed using Scanning electron microscopy (SEM) for pellet of different weight ratio annealed at 600C. The XRD pattern indicates that ZnSnO3 has a perovskite phase with an orthorhombic structure having minimum crystallite size 4 nm. Further, humidity sensing investigations of these sensing materials were done. Our result indicate that ZnSnO3 in form of pellet annealed at 600C for 1:4 weight ratio was most sensitive of humidity in comparison to pure SnO2 under same conditions. Maximum sensitivity of the sample was 3 GΩ/% RH which is better in comparison to pure SnO2. The results were reproducible up to ± 77% after 2 months of observations.

Share and Cite:

R. Singh, A. Yadav and C. Gautam, "Synthesis and Humidity Sensing Investigations of Nanostructured ZnSnO3," Journal of Sensor Technology, Vol. 1 No. 4, 2011, pp. 116-124. doi: 10.4236/jst.2011.14016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Y. Lee, S. Y. Li, P. Lin and T. Y. Tseng, “ZnO Nanowires Hydrothermally Grown on PET Polymer Substrates and Their Characteristics,” Journal of Nanoscience and Nanotechnology, Vol. 5, No. 7, 2005, pp. 1088-1094.
[2] Y. J. Chen, Q. H. Li, X. Y. Lang, T. H. Wang, Q. Zhao and D. P. Yu, “Field-Emission from Long SnO2 Nanobelt Arrays,” Applied Physics Letters, Vol. 85, No. 23, 2004, pp. 5682-5684. doi:10.1063/1.1833557
[3] S. Hofmann, C. Ducati, B. Kleinsorge and J. Robertson, “Low-Temperature Growth of Carbon Nanotubes by Plasma-Enhanced Chemical Vapor Deposition,” Applied Physics Letters, Vol. 83, No. 1, 2003, pp. 135-137. doi:10.1063/1.1589187
[4] O. J. Lee and K. H. Lee, “Fabrication of Flexible Field Emitter Arrays of Carbon Nanotubes Using Self-Assembly Monolayers,” Applied Physics Letters, Vol. 82, No. 21, 2003, pp. 3770-3772. doi:10.1063/1.1578520
[5] N. C. Xu, J. Tamaki, N. Miura and N. Yamazoe, “Grain Size Effects on Gas Sensitivity of Porous SnO2 Based Elements,” Sensors and Actuators B, Vol. 3, No. 2, 1991, pp. 147-155. doi:10.1016/0925-4005(91)80207-Z
[6] G. Zhang and M. Liu, “Effect of Particle Size and Dopant on Properties of SnO2 Based Gas Sensors,” Sensors and Actuators B, Vol. 69, No. 1-2, 2000, pp. 144-152. doi:10.1016/S0925-4005(00)00528-1
[7] N. Yamazoe and Y. Shimizu, “Humidity Sensors: Principles and Applications,” Sensors and Actuators, Vol.10, No. 3-4, 1986, pp. 379-398. doi:10.1016/0250-6874(86)80055-5
[8] H. Arai and T. Seiyama, “Sensors: A Comprehensive Survey,” VCH, Weinheim, Vol. 3, 1992, pp. 981-1012.
[9] G. J. C. Verdijck, H. A. Preisig and G. Van Straten, “Direct Product Quality Control for Energy Efficient Climate Controlled Transport of Agro-Material,” Journal of Process Control, Vol. 15, No. 2, 2005, pp. 235-246.
[10] C. Chen, “Humidity in Plant Tissue Culture Vessels,” Biosystems Engineering, Vol. 88, No. 2, 2004, pp. 231- 241. doi:10.1016/j.biosystemseng.2004.02.007
[11] M. Pelino, C. Cantalini and M. Faccio, “Principles and Applications of Ceramic Humidity Sensors,” Active and Passive Electronic Components, Vol.16, No. 2, 1994, pp. 69-87.
[12] Z. M. Rittersma, “Recent Achievements in Miniaturized Humidity Sensor—A Review of Transduction Techniques,” Sensors and Actuators A, Vol. 96, No. 2-3, 2002, pp. 196-210. doi:10.1016/S0924-4247(01)00788-9
[13] G. Gusmano, G. Montesperelli, B. Morten, M. Prudenziati, A. Pumo and E. Traversa, “Thick Films of MgFe2O4 for Humidity Sensors,” Journal of Materials Processing Technology, Vol. 56, No. 1-4, 1996, pp. 589-599. doi:10.1016/0924-0136(96)85112-0
[14] K. I. Arshak and K. Twomey, “Investigation into a Novel Humidity Sensor Operating at Room Temperature,” Microelectronics Journal, Vol. 33, No. 2, 2002, pp. 213-220. doi:10.1016/S0026-2692(01)00150-1
[15] Y. Le, M. J. Yang and Y. She, “Humidity Sensors Using in Situ Synthesized Sodium Polysterene Sulfonate/ZnO,” Talanta, Vol. 62, No. 4, 2004, pp. 707-712. doi:10.1016/j.talanta.2003.09.011
[16] R. V. Dabhade, D. S. Bodas and S. A. Gangal, “Plasmatreated Polymer as Humidity Sensing Materials: A Feasibility Study,” Sensors and Actuators B, Vol. 98, No. 1, 2004, pp. 37-40. doi:10.1016/j.snb.2003.08.020
[17] B. M. Kulwicki, “Humidity Sensors,” Journal of American Ceramic Society, Vol. 74, No. 4, 1991, pp. 697-708. doi:10.1111/j.1151-2916.1991.tb06911.x
[18] I. Bearzotti, L. Fratoddi, S. Palummo, A. Petrocco, C. Fulrani, Lo. Sterzo and M. V. Russo, “Highly Ethynylated Polymers: Synthesis and Application for Humidity Sensors,” Sensors and Actuators B, Vol. 76, No. 1-3, 2001, pp. 316-321. doi:10.1016/S0925-4005(01)00607-4
[19] Y. Sakai, Y. Sadaoka and M. Matsuguchi, “Humidity Sensors Based on Polymer Thin Films,” Sensors and Actuators B, Vol. 35, No. 1-3, 1996, pp. 85-90. doi:10.1016/S0925-4005(96)02019-9
[20] C. A. Grimes and D. Kouzoudis, “Remote Query Measurement of Pressure, Fluid Flow Velocity and Humidity Using Magneto Elastic Thick Film Sensors,” Sensors and Actuators A, Vol. 84, No. 3, 2000, pp. 205-212. doi:10.1016/S0924-4247(00)00306-X
[21] K. G. Ong, C. A. Grimes, C. L. Robbins and R. S. Singh, “Design and Application of a Wireless, Passive, Resonant-Circuit Environmental Monitoring Sensor,” Sensors and Actuators A, Vol. 93, No. 1, 2001, pp. 33-43. doi:10.1016/S0924-4247(01)00624-0
[22] T. Seiyama, N. Yamazoe and H. Arai, “Ceramic Humidity Sensors,” Sensors and Actuators, Vol. 4, No. 1983, pp. 85-96.
[23] L. Ketron, “Ceramic Sensor,” Ceramic Bulletin, Vol. 68, 1989, pp. 860-865.
[24] E. Traversa, G. Gusmano and A. Monteneero, “Innovative Humidity Sensitive Electrical Properties of Sol-Gel Processed Ceramic Thin Films,” European Journal of Solid State & Inorganic Chemistry, Vol. 32, 1995, pp. 719-729.
[25] G. Sberveglieri, R. Murri and N. Pinto, “Characterization of Porous Al2O3-SiO2/Si Sensor for Low and Medium Ranges,” Sensors and Actuators B, Vol. 23, No. 2-3, 1995, pp. 177-180. doi:10.1016/0925-4005(94)01270-R
[26] K. S. Chou, T. K. Lee and F. J. Liu., “Sensing Mechanism of a Porous Ceramic as a Humidity Sensor,” Sensors and Actuators B, Vol. 56, No. 1-2, 1999, pp. 106- 111. doi:10.1016/S0925-4005(99)00187-2
[27] E. Traversa, G. Gnappi, A. Montenero and G. Gusmano, “Ceramic Thin Films by Sol-Gel Processing as Novel Materials for Integrated Humidity Sensors,” Sensors and Actuators B, Vol. 31, No. 1-2, 1996, pp. 59-70. doi:10.1016/0925-4005(96)80017-7
[28] C. Wang, X. Wang, J. Zhao, B. Mai, G. Sheng, P. Peng and J. Fu, “Synthesis, Characterization and Phtocatalytic Property Of Nano-Sized Zn2SnO4,” Journal of Materials Science, Vol. 37, No. 14, 2002, pp. 2989-2996. doi:10.1023/A:1016077216172
[29] D. L. Young, D. L. Williamson and T. J. Coutts, “Structural Characterization of Zinc Stannate Thin Films,” Journal of Applied Physics, Vol. 91, No. 3, 2002, p. 1464. doi:10.1063/1.1429793
[30] I. Stambolova, K. Konstantinov, D. Kovacheva, P. Peshev and T. Donchev, “Spray Pyrolysis Preparation and Humidity Sensing Characterstics of Spinel Zinc Stannate Thin Films,” Journal of Solid State Chemistry, Vol. 128, No. 2, 1997, pp. 305-309. doi:10.1006/jssc.1996.7174
[31] C. G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G. A. Niklasson, D. Ronnow, M. S. Mattssonb, M. Veszelei and G. Vaivars, “Recent Advances in Electrochromics for Smart Windows Applications,” Solar Energy, Vol. 63, No. 4, 1998, pp. 199-216. doi:10.1016/S0038-092X(98)00074-7
[32] W. J. Moon, J. H. Yu and G. M. Choi, “Selective CO Gas Detection of SnO2-Zn2SnO4 Composite Gas Sensor,” Sensors and Actuators B, Vol. 80, No. 1, 2001, pp. 21-27. doi:10.1016/S0925-4005(01)00884-X
[33] Y. S. Shen and T. S. Zhang, “Preparation, Structure and Gas-Sensing Properties of Ultramicro ZnSnO3 Powder,” Sensors and Actuators B, Vol. 12, No.1, 1993, pp. 5-9. doi:10.1016/0925-4005(93)85003-S
[34] M. S. Wagh, L. A. Patil, T. Seth and D. P. Amalnerkar, “Surface Cupricated SnO2-ZnO Thick Film as a H2S Gas Sensor,” Materials Chemistry and Physics, Vol. 84, No. 2-3, 2004, pp. 228-233. doi:10.1016/S0254-0584(03)00232-3
[35] P. Ehrhart and R. Waser, “New Thin Film Technologies,” In: S. Somiya, F. Aldinger, N. Claussen, R. M. Spriggs, K. Uchino, K. Koumoto and M. Kaneno, Eds., Handbook of Advanced Ceramics: Materials Science, Academic Press (Elsevier), New Delhi, 2006, pp. 515-533.
[36] R. W. Schwartz, “Chemical Solution Deposition of Perovskite Thin Films,” Chemistry of Materical, Vol. 9, No. 11, 1997, pp. 2325-2340. doi:10.1021/cm970286f
[37] D. Meyerhofer, “Characteristics of Resist Films Produced by Spinning,” Journal of Applied Physics, Vol. 49, No. 7, 1978, pp. 3993-3997. doi:10.1063/1.325357
[38] G. Carcano, M. Ceriani and F. Soglio, “Spin Coating with High Viscosity Photo Resist on Square Substrates- Application in the Thin Hybrid Microwave Integrated Circuit Field,” Microelectronics International, Vol. 10, No. 3, 1993, pp. 12-20. doi:10.1108/eb044507
[39] H. M. Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Y. H. Cho and K. S. Chung, “Growth and Characterization of Single-Crystal GaN Nanorods by Hydride Vapor Phase Epitaxy,” Applied Physics Letters, Vol. 81, No. 12, 2002, pp. 2193-2195. doi:10.1063/1.1507617
[40] K. P. Biju and M. K. Jain, “Sol-Gel Derived TiO2:ZrO2 Multilayer Thin Films for Humidity Sensing Application,” Sensors and Actuators B, Vol.128, No. 2, 2008, pp. 407-413. doi:10.1016/j.snb.2007.06.029
[41] A. Chowdhri, P. Sharma, V. Gupta, K. Sreenivas and K. V. Rao, “H2S Gas Sensing Mechanism of SnO2 Films with Ultrathin CuO Dotted Islands,” Journal of Applied Physics, Vol. 92, No. 4, 2002, pp. 2172. doi:10.1063/1.1490154
[42] I. C. Cosentino, E. N. S. Muccillo and R. Muccillo, “The Influence of Fe2O3 in the Humidity Sensor Performance of ZrO2:TiO2-Based Porous Ceramics,” Materials Chemistry and Physics, Vol. 103, No. 2-3, 2007, pp. 407-414. doi:10.1016/j.matchemphys.2007.02.051
[43] G. Fu, H. Chen, Z. Chen, J. Zhang and H. Kohler, “Humidity Sensitive Characteristics of Zn2SnO4-LiZnVO4 Thick Films Prepared by the Sol-Gel Method,” Sensors and Actuators B, Vol. 81, No. 2-3, 2002, pp. 308-312. doi:10.1016/S0925-4005(01)00971-6
[44] J. H. Anderson and G. A. Parks, “The Electrical Conductivity of Silica Gel in the Presence of Adsorbed Water,” Journal of Physics and Chemistry, Vol. 72, No. 10, 1968, pp. 3362-3368. doi:10.1021/j100856a051
[45] E. McCafferty and A. C. Zettlemoyer, “Adsorption of Water Vapor on α-Fe2O3,” Discussions of Faraday Society, Vol. 52, No. 10, 1971, pp. 239-254. doi:10.1039/df9715200239
[46] E. Traversa, “Ceramic Sensors for Humidity Detection: The State-of-Art and Future Developments,” Sensors and Actuators B, Vol. 23, No. 2-3, 1995, pp. 135-156. doi:10.1016/0925-4005(94)01268-M
[47] W. J. Fleming, “A Physical Understanding of Solid State Humidity Sensors,” Society of Automotive Engineers Transactions, Vol. 90, No. 2, 1981, pp. 1656-1667.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.