Cyclooxygenase-2 S-nitrosylation in salivary gland acinar cell inflammatory responses to Porphyromonas gingivalis: modulatory effect of ghrelin
Bronislaw L. Slomiany, Amalia Slomiany
.
DOI: 10.4236/abb.2011.26064   PDF    HTML   XML   3,872 Downloads   7,108 Views  

Abstract

Disturbances in nitric oxide synthase (NOS) system and the excessive prostaglandin (PGE2) generation are well-recognized features of oral mucosal inflammatory responses to periodontopathic bacterium, P. gingivalis. Employing rat sublingual gland acinar cells, we show that P. gingivalis LPS-induced up-regulation in PGE2 generation and the enhancement in inducible (i) iNOS activity was associated with COX-2 activation through S-nitrosylation, and accompanied by the suppression in cSrc activity and the impairment in constitutive (c) cNOS phosphorylation. Further, we demonstrate that the countering effect of peptide hormone, ghrelin, on the LPS-induced changes was reflected in the increased cNOS activation through phosphorylation, repression in iNOS induction, and the reduction in PGE2 generation associated with the loss of COX-2 protein S-nitrosylation. Moreover, the effect of ghrelin on cNOS phosphorylation and the LPS-induced COX-2 S-nitrosylation was susceptible to the blockage by cSrc inhibition. Our findings suggest that P. gingivalis-induced up-regulation in iNOS leads to COX-2 S-nitrosylation and up-regulation in PGE2 generation, and that the countering effect of ghrelin is mediated through Src-dependent cNOS activation that is obligatory for the maintenance of iNOS gene suppression.

Share and Cite:

Slomiany, B. and Slomiany, A. (2011) Cyclooxygenase-2 S-nitrosylation in salivary gland acinar cell inflammatory responses to Porphyromonas gingivalis: modulatory effect of ghrelin. Advances in Bioscience and Biotechnology, 2, 434-442. doi: 10.4236/abb.2011.26064.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Ximenz-Fyvie, L.A., Haffajee, A.D. and Socransky, S. (2000) Micorbial composition of supra- and subgingival plaque in subjects with adult periodontitis. Journal of Clinical Periodontology, 27, 722-732. doi:10.1034/j.1600-051x.2000.027010722.x
[2] Nonnenmacher, C., Mutters, R. and deJacoby, L.F. (2001) Microbiological characteristics of subgingival microbiota in adult periodontitis, localized juvenile periodontitis and rapidly progressive periodontitis subjects. Clinical Microbiology and Infection, 7, 213-221. doi:10.1046/j.1469-0691.2001.00210.x
[3] Wang, P.L. and Ohura, K. (2002) Porphyromonas gingivalis lipopolysaccharide signaling in gingival fibroblasts- CD14 and Toll-like receptors. Critical Reviews in Oral Biology and Medicine, 13, 132-142. doi:10.1177/154411130201300204
[4] Slomiany, B.L. and Slomiany, A. (2005) Role of leptin in modulation of Porphyromonas gingivalis lipopolysaccha- ride-induced up-regulation of endothelin-1 in salivary gland acinar cells. IUBMB Life, 57, 591-595. doi:10.1080/15216540500215598
[5] Slomiany, B.L. and Slomiany, A. (2006) Leptin modulates the detrimental effect of Porphyromonas gingivalis lipopolysaccharide-induced cytosolic phospholipase A2 activation on salivary mucin synthesis via ERK-signal transduction. Inflammopharmacology, 14, 250-255. doi:10.1007/s10787-006-1525-5
[6] Slomiany, B.L. and Slomiany, A. (2010) Suppression by ghrelin of Porphyromonas gingivalis-induced constitutive nitric oxide synthase S-nitrosylation and apoptosis in salivary gland acinar cells. Journal of Signal Transduction, 2010, 643642.
[7] Molace, V., C. Muscoli, C., Masini, E., Cuzocrea, S. and Salvemini, D. (2005) Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacological Reviews, 57, 217-252. doi:10.1124/pr.57.2.1
[8] Cuzzocrea, S. and Salvemini, D. (2007) Molecular mechanisms involved in reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney International, 71, 290-297. doi:10.1038/sj.ki.5002058
[9] Marnett, L.J., Wright, T.L., Crews, B.C., Tannenbaum, S.R. and Morrow, J.D. (2000) Regulation of prostaglandin biosynthesis by nitric oxide is revealed by targeted deletion of inducible nitric-oxide synthase. Journal of Biological Chemistry, 275, 13427-3430. doi:10.1074/jbc.275.18.13427
[10] Kim, S.F., Huri, D.A. and Snyder, S.H. (2005) Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science, 310, 1966-1970. doi:10.1126/science.1119407
[11] Tsatsanis, C., Androulidaki, A., Venihaki, M. and Margioris, A.N. (2006) Signaling networks regulating cyclo-oxygenase-2. International Journal of Biochemistry & Cell Biology, 38, 2006,1654-1661. doi:10.1016/j.biocel.2006.03.021
[12] Korhonen, R., Lahti, A., Kankaanranta, H. and Moilanen, E. (2005) Nitric oxide production and signaling in inflammation. Current Drug Targets: Inflammation & Allergy, 4, 471-479. doi:10.2174/1568010054526359
[13] Skill, N.J., Theodorakis, N.G., Wang, Y.N., Wu, J.M., Redmond, E.M. and Sitzmann, J. (2008) Role of cycloo- xygenase isoforms in prostacyclin biosynthesis and murine prehepatic portal hypertension. American Journal of PhysiologyGastrointestinal and liver Physiology, 295, G953-964. doi:10.1152/ajpgi.00013.2008
[14] Slomiany, B.L. and Slomiany, A. (2010) Constitutive nitric oxide synthase-mediated caspase-3 S-nitrosylation in ghrelin protection against Porphyromonas gingivalis- induced salivary gland acinar cell apoptosis. Inflammo- pharmacology, 18, 119-125. doi:10.1007/s10787-010-0035-7
[15] Ma, M.C., Chang, M.Y., Chen, Y.T., et al. (2008) Requirement of inducible nitric-oxide synthase in lipopolysaccharide-mediated Src induction and macrophage migration. Journal of Biological Chemistry, 283, 31408- 31416. doi:10.1074/jbc.M801158200
[16] Slomiany, B.L. and Slomiany, A. (2010) Role of ghrelin in modulation of S-nitrosylation-dependent Akt inactivation induced in salivary gland acinar cells by Porphyro- monas gingivalis. Health, 2, 2010, 1448-1455. doi:10.4236/health.2010.212215
[17] Joo, M., J.G. Wright, J.G., Hu, N.N., et al. (2007) Yin yang 1 enhances cyclooxygenease-2 gene expression in macrophages. American Journal of Physiology Lung and Cell Molecular Physiology, 292, L1219-1226. doi:10.1152/ajplung.00474.2006
[18] Ye, Y., Martinez, J.D., Perez-Polo, R.J., Lin, Y., Uretsky, B.F. and Brinbaum, Y. (2008)The role of eNOS, iNOS, and NF-kB in upregulation and activation of cyclooxy- genase-2 and infarct size reduction by atorvastin. American Journal of Physiology Heart and Circulatory Physiology, 295, H343-351. doi:10.1152/ajpheart.01350.2007
[19] Lamon, B.D., Upmacis, R.K., Deeb, R.S., Koyuncu, H. and Hajjar, D. (2010) Inducible nitric oxide synthase gene deletion exaggerates MAPK-mediated cyclooxy- genase-2 induction by inflammatory stimuli. American Journal of Physiology Heart and Circulatory Physiology, 299, H613-623. doi:10.1152/ajpheart.00144.2010
[20] Bell, R.M., Smith, C.C. and Yellon, D.M. (2002) Nitric oxide as a mediator of delayed pharmacological (A1 receptor triggered) preconditioning; is eNOS masquerading as iNOS?. Cardiovascular Research, 53, 405-413. doi:10.1016/S0008-6363(01)00472-2
[21] Kojima, M., Hosoda, H., Date, Y., Nakazato, M. and Kangawa, K. (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 402, 656- 660. doi:10.1038/45230
[22] Groschl, M., Topf, H.G., Bohlender, J., et al. (2005) Identification of ghrelin in human saliva: Production by the salivary glands and potential role in proliferation of oral keratinocytes. Clinical Chemistry, 51, 997-1006. doi:10.1373/clinchem.2004.040667
[23] Slomiany, B.L. and Slomiany, A. (2003) Activation of peroxisome proliferator-activated receptor r impedes Porphyromonas gingivalis lipopolysaccharide interference with salivary mucin synthesis through phosphatidylino- sitol 3-kinase/ERK pathway. Journal of Physiology and Pharmacology, 54, 3-15.
[24] Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S. and Tannenbaum, S.R. (1982) Analysis of nitrte, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry, 126, 131-138. doi:10.1016/0003-2697(82)90118-X
[25] Slomiany, B.L. and Slomiany, A. (2007) Alterations by indomethacin in proinflammatory consequences of Sali-vary gland cytosolic phospholipase A2 activation by Porphyromonas gingivalis: role of leptin. Journal of Applied Research, 7,127-136.
[26] Lee, S., Lin, X., Nam, N.H., Parang, K. and Sun, G. (2003) Determination of the substrate-docking site of protein tyrosine kinase c-terminal Src kinase. Proceedings National Academy of Science USA, 100,14707-14712. doi:10.1073/pnas.2534493100
[27] Tamiya, S. and Delamere,N.A. (2005) Studies of tyrosine phosphorylation and Src family tyrosine kinases in the lens epithelium. Investigative Ophthalmology & Visual Science, 46, 2076-2081. doi:10.1167/iovs.04-1199
[28] Jaffrey, S.R., Erdjument-Bromage, H., Ferris, D., Tempst, P. and Snyder, S.H. (2001) Protein S-nitrosylation: A physiological signal for neuronal nitric acid. Nature Cell Biology, 3, 193-197. doi:10.1038/35055104
[29] Forrester, M.T., Foster, M.W. and Stamler, J.S. (2007) Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. Journal of Biological Chemistry, 282, 13977-13983. doi:10.1074/jbc.M609684200
[30] Xu, X., Jhun, B.S., Ha, C.H. and Jin, Z.G. (2008) Molecular mechanisms of ghrelin-mediated endothelial nitric- oxide synthase activation. Endocrinology, 149, 4183-4192. doi:10.1210/en.2008-0255
[31] Waseem, T., Duxbury, M., Ito, H., Ashley, S.W. and M.K. Robinson, M.K. (2008) Exogenous ghrelin modulates release of proinflammatory and anti-inflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. Surgery, 143, 334-342. doi:10.1016/j.surg.2007.09.039
[32] Lutrell, D.K. and Lutrell, L.M. (2004) Not so strange bedfellows: G-protein-coupled receptors and Src family kinases. Oncogene, 23, 7969-7978. doi:10.1038/sj.onc.1208162
[33] Lodeiro, P., Theodoropoulou, M., Pardo, M., Casanueva, F.F. and Camina, J.P. (2009) c-Src regulates Akt signa- ling in response to ghrelin via b-arrestin signaling-in- dependent and dependent mechanism. PLoS ONE, 4, e4686. doi:10.1371/journal.pone.0004686
[34] Haynes, M.P., Li, L., Sinha, D., et al. (2003) Src kinase mediates phosphatidylinositol3-kinase/Akt-dependent rapid endothelial nitric-oxide synthase activation by estrogen. Journal of Biological Chemistry, 278, 2118-2123. doi:10.1074/jbc.M210828200
[35] Yu, S.M., Wu, J.F., Lin, T.L. and Kuo, S.C. (1997) Inhibition of nitric oxide synthase expression by PPM-18, a novel anti-inflammatory agent, in vitro and in vivo. Biochemical Journal, 328, 363-369.
[36] Grishin, A.V., Wang, J., Potoka, D.A., et al. (2006) Lipopolysaccharide induces cyclooxygenase-2 in intestinal epithelium via a noncanonical p38 MAPK pathway. Journal of Immunology, 176, 580-588.
[37] Cho, I. and Kim, S.G. (2009) A novel mitogen-activated protein kinase phosphatase-1 and glucocorticoid receptor (GR) interacting protein-1-dependent combinatorial mechanism of gene transrepression by GR. Molecular Endocrinology, 23, 86-99.
[38] Park, S.K., Lin, H.L. and Murphy, S. (1997) Nitric oxide regulates nitric oxide synthase-2 gene expression by inhibiting NF-kB binding to DNA. Biochemical Journal, 22, 609-613.
[39] Reynaert, N.L., Ckless, K., S.H. Korn, S.H., et al. (2004) Nitric oxide represses inhibitory B kinase through S-nitrosylation. Proceedings of the National Academy of Sciences of the USA, 101, 8945-8950.
[40] Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E. and Stamler, J.S. (2005) Protein S-nitrosylation: purview and parameters. Nature Reviews/Molecular Cell Biology, 6, 150-166. doi:10.1038/nrm1569

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.