Effect of temperature on crossing over in the mus309 mutant, deficient in DNA double-strand break repair, of Drosophila melanogaster suggests a mechanism for crossover interference
Petter Portin
.
DOI: 10.4236/ojgen.2011.13008   PDF    HTML     3,890 Downloads   8,048 Views   Citations

Abstract

Crossing-over frequencies, crossover interference, recombination frequencies and map distances were compared in the cv-v-f region of the X chromosome of Drosophila melanogaster in females bearing either wild type 3rd chromosomes (control) or having the DNA double-strand break repair deficient mus309D2/mus309D3 mutant constitution in the 3rd chromosomes (experiment), and raised in three different temperatures viz. 18C, 25C and 29C. In addition, the fecundity of the females was also measured. In the control crosses none of the mean values of the parameters measured was dependent on the temperature, whereas in the experimental crosses all the parameters, except for the frequency of true single crossovers in the cv-v interval, the recombination frequency of the v and f markers, and the coefficient of coincidence, changed due to the effect of temperature. When comparing the genotypes studied, a significant difference between them was observed in all the parameters measured, apart from the frequency of the true single cross-overs in the cv-v interval. These results support the counting number model of the mechanism of interference based on the genetic distance, but are in contradiction with the models based on physical distance.

Share and Cite:

Portin, P. (2011) Effect of temperature on crossing over in the mus309 mutant, deficient in DNA double-strand break repair, of Drosophila melanogaster suggests a mechanism for crossover interference. Open Journal of Genetics, 1, 38-47. doi: 10.4236/ojgen.2011.13008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Sturtevant, A.H. (1915) The behavior of the chromosomes as studied through linkage. Zeitschrift für Inductive Abstammuns und Vererbungslehre, 13, 234-287.
[2] Muller, H.J. (1916) The mechanism of crossing over. American Naturalist, 50, 193-221. doi:10.1086/279534
[3] Hillers, K.J. (2004) Crossover interference. Current Biology, 14, R1036-R1037. doi:10.1016/j.cub.2004.11.038
[4] Foss, E., Lande, R., Stahl, F.W. and Steinberg, C.M. (1993) Chiasma interference as a function of genetic distance. Genetics, 133, 681-691.
[5] Mortimer, R.K. and Fogel, S. (1974) Genetical interference and gene conversion. In: Grell, R.F. Ed., Mechanims in Recombination, Plenum Press, New York, 263-275.
[6] Bridges, C.B. (1915) A linkage variation in Drosophila. Journal of Experimental Zoology, 19, 1-21. doi:10.1002/jez.1400190102
[7] Sandler, L. and Lindsley, D.L. (1974) Some observations on the study of the genetic control of meiosis in Drosophila melanogaster. Genetics, 78, 289-297.
[8] Lifschytz, E. (1975) Differential sensitivities and the target of heat-induced recombination at the base of the X chromosome of Drosophila melanogaster. Genetics, 79, 283-294.
[9] McKim, K.S. and Hayashi-Hagihara, A. (1998) Mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes and Development, 12, 2932-2942. doi:10.1101/gad.12.18.2932
[10] Keeney, S., Giroux, C.N. and Kleckner, N. (1997) Meio- sis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell, 88, 375-384. doi:10.1016/S0092-8674(00)81876-0
[11] Keeney, S. (2001) Mechanism and control of meiotic recombination. Current Topics in Developmental Biology, 52, 1-53. doi:10.1016/S0070-2153(01)52008-6
[12] Keeney, S. and Neale, M.J. (2006) Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochemical Society Transactions, 34, 523-525. doi:10.1042/BST0340523
[13] Joyce, E.F. and McKim, K.S. (2009) Drosophila PCH2 is required for a pachytene checkpoint that monitors double-strand-break-independent events leading to meiotic crossover formation. Genetics, 181, 39-51. doi:10.1534/genetics.108.093112
[14] Olsen-Krogh, B. and Symington, L.S. (2004) Recombination proteins in yeast. Annual Reviews of Genetics, 38, 233-271. doi:10.1146/annurev.genet.38.072902.091500
[15] Lorenz, A. and Whitby, M.C. (2006) Crossover promotion and prevention. Biochemical Society Transactions, 34, 537-541. doi:10.1042/BST0340537
[16] Heyer W.-D., Ehmsen, K.T. and Solinger, J.A. (2003) Holliday junctions in eukaryotic nucleus: resolution in sight? Trends in Biochemical Sciences, 28, 548-557. doi:10.1016/j.tibs.2003.08.011
[17] Heyer, W-D. (2004) Recombination: Holliday junction resolution and crossover formation. Current Biology, 14, R56-R58. doi:10.1016/j.cub.2003.12.043
[18] Ellis, N.A., Groden, J., Ye, T-Z., Staughen, J., Lennon, D.J., Ciocci, S., Proytcheva, M. and German, J. (1995) The Bloom’s syndrome gene-product is homologous to RecQ helicases. Cell, 83, 655-666. doi:10.1016/0092-8674(95)90105-1
[19] Karow, J.K., Chakraverty, R.K. and Hickson, J.D. (1997) The Bloom’s syndrome gene product is a 3’- 5’ DNA helicase. Journal of Biological Chemistry, 272, 30611-30614. doi:10.1074/jbc.272.49.30611
[20] Mohaghegh, P., Karow, J.K., Brosh, R.M. Jr., Bohr, V.A. and Hickson, I.D. (2001) The Bloom’s and Werner’s syndrome proteins are DNA structure-specific homologues. Nucleic Acids Research, 29, 2843-2849. doi:10.1093/nar/29.13.2843
[21] Wu, L., Davies, S.L., Levitt, N.C. and Hickson, I.D. (2001) Potential role for the BLM helicase in recombinetional repair via a conserved interaction with RAD51. Journal of Biological Chemistry, 276, 19375-19381. doi:10.1074/jbc.M009471200
[22] Brabant, A.J., van Stan, R. and Ellis, N.A. (2000) DNA helicases, genome instability, and human genetic disease. Annual Reviews of Genomics and Human Genetics, 1, 409-459.
[23] Adams, M.D., McVey, M. and Sekelsky, J.J. (2003) Dro- sophila BLM in double-strand break repair by synthe- sis-dependent strand annealing. Science, 299, 265-267. doi:10.1126/science.1077198
[24] Laurencon, A., Orme, C.M., Peters, H.K., Boulton, C.L., Vladar, E.K., Langley, S.A., Bakis, E.P., Harris, D.T., Harris, N.J., Wayson, S.M., Hawley, R.S. and Burtis, K.C. (2004) A large-scale screen for mutagen sensitive loci in Drosophila. Genetics, 167, 217-231. doi:10.1534/genetics.167.1.217
[25] Portin, P. (2005) mus309 mutation, defective in DNA double-strand break repair, affects intergenic but not intragenic meiotic recombination in Drosophila melanogaster. Genetical Research, 86, 185-191. doi:10.1017/S0016672305007883
[26] Rockmill, B., Fung, J.C., Branda, S.S. and Roeder, G.S. (2003) The Sgs1 helicase regulates chromosome synapsis and meiotic crossing over. Current Biology, 13, 1954- 1962. doi:10.1016/j.cub.2003.10.059
[27] Kusano, K., Johnson-Schlitz, D.M. and Engels, W.R. (2001) Sterility of Drosophila with mutations in the Bloom syndrome gene complementation by Ku70. Science, 291, 2600-2602. doi:10.1126/science.291.5513.2600
[28] Boyd, J.B., Golino, M.D., Shaw, K.E.S., Osgood, C.J. and Green, M.M. (1981) Third-chromosome mutagen- sensitive mutants of Drosophila melanogaster. Genetics, 97, 607-623.
[29] Beal, E.L. and Rio, D.C. (1996) Drosophila IRBP / Ku p70 corresponds to the mutagen-sensitive mus309 gene and is involved in P-element excision in vivo. Genes and Development, 10, 921-933. doi:10.1101/gad.10.8.921
[30] Weinstein, A. (1936) The theory of multiple-strand crossing over. Genetics, 21, 155-199.
[31] Stevens, W.L. (1936) The analysis of interference. Journal of Genetics, 32, 51-64. doi:10.1007/BF02982501
[32] Ghabrial, A. and Schüpbach, T. (1999) Activation of meiotic checkpoint regulates translation of Gurken during Drosophila oogenesis. Nature Cell Biology, 1, 354- 357. doi:10.1038/14046
[33] Ghabrial, A., Ray, R.P. and Schüpbach, T. (1998) Okra and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Genes and Development, 12, 2711- 2713. doi:10.1101/gad.12.17.2711
[34] Abdu, U., Gonzalez-Reyes, A., Ghabrial, A. and Schüpbach, T. (2003) The Drosophila spn-D gene encodes a RAD51C-like protein that is required exclusively during meiosis. Genetics, 165, 197-204.
[35] Staeva-Vieira, E., Yoo, S. and Lehmann, R. (2003) An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control. EMBO Journal, 22, 5863- 5874. doi:10.1093/emboj/cdg564
[36] Baker, B.S. and Hall, J.C. (1976) Meiotic mutants: Genetic control of meiotic recombination and chromosome segregation. In: Ashburner, M. and Novitski, E., Ed., The Genetics and Biology of Drosophila, Academic Press, San Francisco, 351-434.
[37] Sandler, L., Lindsley, D.L., Nicoletti, B. and Trippa, G. (1968) Mutants affecting meiosis in natural populations of Drosophila melanogaster. Genetics, 60, 525-558.
[38] McVey, M., Andersen, S.L., Broze, Y. and Sekelsky, J.J. (2007) Multiple functions of Drosophila Blm helicase in maintenance of genome stability. Genetics, 176, 1979-1992. doi:10.1534/genetics.106.070052
[39] Baker, B.S. and Carpenter, A.T.C. (1972) Genetic analysis of sex chromosomal meiotic mutants in Drosophila melanogaster. Genetics, 71, 255-286.
[40] Fujitani, Y., Mori, S. and Kobayashi, I. (2002) A reaction-diffusion model for interference in meiotic crossing over. Genetics, 161, 365-372.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.