Role of Ion-Surface Interaction at the Entry Surface on the Energy Loss of Highly Charged Slow Ions in Solids
Tapan Nandi
.
DOI: 10.4236/ojm.2011.13009   PDF    HTML     3,487 Downloads   7,268 Views   Citations

Abstract

Evidence is obtained from the data of an earlier measurement that the effect of ion-surface interaction on the stopping power of highly charged slow ions is not at all tiny rather remarkably large, even it supersedes the bulk stopping power. The stopping power due to the surface interactions is directly proportional to the charge state of incident ions.

Share and Cite:

T. Nandi, "Role of Ion-Surface Interaction at the Entry Surface on the Energy Loss of Highly Charged Slow Ions in Solids," Open Journal of Microphysics, Vol. 1 No. 3, 2011, pp. 53-57. doi: 10.4236/ojm.2011.13009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. Bohr, “On the Theory of the Decrease of Velocity of Moving Electrified Particles on Passing through Matter,” Philosophical Magazine, Vol. 25, 1913, pp. 10-31.
[2] R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Physical Review, Vol. 106, No. 5, 1957, pp. 874- 881. doi:10.1103/PhysRev.106.874
[3] T. Nandi, “Measurement of Wakefield Intensity,” Journal of Physics B, Vol. 42, No. 22, 2009, Article ID 225402. doi:10.1088/0953-4075/42/22/225402
[4] F. J. G. de Abajo and P. M. Etchenique, “Wake-Potential Formation in a Thin Foil,” Physical Review B, Vol. 45, No. 15, 1992, pp. 8771-8774. doi:10.1103/PhysRevB.45.8771
[5] A. Koyama, et al., “Excitation of Electrons from an Al Surface by Grazing-Angle-Incident Fast Heavy Ions,” Physical Review Letter, Vol. 65, No. 25, 1990, pp. 3156- 3159. doi:10.1103/PhysRevLett.65.3156
[6] T. Iitaka, et al., “Acceleration of Convoy Electrons by Surface Image Charge,” Physical Review Letter, Vol. 65, No. 25, 1990, pp. 3160-3163. doi:10.1103/PhysRevLett.65.3160
[7] H. Winter, C. Auth, R. Schuch and E. Beebe, “Image Acceleration of Highly Charged Xenon Ions in Front of a Metal Surface,” Physical Review Letter, Vol. 71, No. 12, 1993, pp. 1939-1942. doi:10.1103/PhysRevLett.71.1939
[8] T. Schenkel, et al., “Charge State Dependent Energy Loss of Slow Heavy Ions in Solids,” Physical Review Letter, Vol. 79, No. 11, 1997, pp. 2030-2033. doi:10.1103/PhysRevLett.79.2030
[9] J. F. Ziegler, J. P. Biersack and U. Littmark, “The Stopping and Range of Ions in Solids,” Pergamon, New York, 1985.
[10] S. K. Srivastava, et al., “Counting Individual Atom Layers in Graphite € High-Resolution RBS Experiments on Highly Oriented Pyrolytic Graphite,” Nuclear Instruments and Methods B, Vol. 219-220, 2004, pp. 364-368. doi:10.1016/j.nimb.2004.01.083
[11] R. M. Papaléo, et al., “Direct Evidence for Projectile Charge-State Dependent Crater Formation Due to Fast Ions,” Physical Review Letter, Vol. 101, No. 16, 2008, Article ID 167601.
[12] P. Martens and Th. Krist, “Energy Loss of 300-keV He+ and N+ in 150- to 800- Carbon Foils,” Physical Review, Vol. 25, 1982, pp. 5591-5597. doi:10.1103/PhysRevB.25.5591
[13] B. L. Doyle and D. K. Brice, “Influence of Projectile Inner-Shell Vacancies on Stopping Power,” Physical Review A, Vol. 24, 1981, pp. 2232-2235. doi:10.1103/PhysRevA.24.2232
[14] R. Hermann, et al., “Charge-State Equilibration Length of a Highly Charged Ion Inside a Carbon Solid,” Physical Review A, Vol. 50, No. 2, 1994, pp. 1435-1444. doi:10.1103/PhysRevA.50.1435
[15] M. A. Abdallah, et al., “Single and Double Electron Capture from He by Ar16+ Studied Using Cold-Target Recoil-Ion Momentum Spectroscopy,” Physical Review A, Vol. 58, No. 4, 1998, pp. 2911-2919. doi:10.1103/PhysRevA.58.2911
[16] H.-D. Betz, “Electron Capture,” In: P. Richard, Ed., Atomic Physics Accelerators, Vol. 17, Academic Press, New York, 1980, pp. 89-109.
[17] M. Hattas, et al., “Charge Equilibration Time of Slow, Highly Charged Ions in Solids,” Physical Review Letter, Vol. 82, No. 24, 1999, pp. 4795-4798. doi:10.1103/PhysRevLett.82.4795
[18] O. Schemelmer, et al., “Energy Straggling of 60 MeV 58Niq+ ions in Thin Carbon Foils and Gases,” Nuclear Instruments and Methods B, Vol. 145, No. 3, 1998, pp. 261-270. doi:10.1016/S0168-583X(98)00526-6
[19] H. Weick, et al., “Drastic Enhancement of Energy-Loss Straggling of Relativistic Heavy Ions due to Charge-State Fluctuations,” Physical Review Letter, Vol. 85, No. 13, 2000, pp. 2725-2728. doi:10.1103/PhysRevLett.85.2725
[20] S. P. M?ller, et al., “Antiproton Stopping at Low Energies: Confirmation of Velocity-Proportional Stopping Power,” Physical Review Letter, Vol. 88, No. 19, 2002, Article ID 193201.
[21] D. Ward, et al., “Systematics for the Z1-Oscillation in Stopping Powers of Various Solid Materials,” Canadian Journal of Physics, Vol. 57, 1979, pp. 645-656. doi:10.1139/p79-092
[22] G. Schiwietz and P. L. Grande, “Introducing Electron Capture into the Unitary-Convolution-Approximation Energy-Loss Theory at Low Velocities,” Physical Review A, Vol. 84, No. 5, 2011, Article ID 052703. doi:10.1103/PhysRevA.84.052703
[23] F. Grüner, F. Bell, W. Assmann and M. Schubert, “Integrated Approach to the Electronic Interaction of Swift Heavy Ions with Solids and Gases,” Physical Review Letter, Vol. 93, No. 21, 2004, Article ID 213201.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.