Share This Article:

Quasi-Degenerate Neutrino Masses with Normal and Inverted Hierarchy

Abstract Full-Text HTML Download Download as PDF (Size:182KB) PP. 1280-1284
DOI: 10.4236/jmp.2011.211158    3,830 Downloads   7,298 Views   Citations

ABSTRACT

The effects of CP-phases on the three absolute quasi-degenerate Majorana neutrino (QDN) masses are studied with neutrino mass matrices obeying µ – τ symmetry for normal as well as inverted hierarchical mass patterns. We have made further investigations on 1) the prediction of solar mixing angle which lies below tri-bimaximal mixing value in consistent with neutrino oscillation observational data, 2) the prediction on absolute neutrino mass parameter (mee) in 0νββ decay, and 3) cosmological bound on the sum of the three absolute neutrino masses . The numerical analysis is carried out through the parameterization of neutrino mass matrices using only two unknown parameters (ε, η) within µ – τ symmetry. The results show the validity of QDN mass models in both normal and inverted hierarchical patterns. These models are far from discrimination and hence not yet ruled out. The results presented in this article are new and have subtle ef- fects in the discrimination of neutrino mass models.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

N. Francis and N. Singh, "Quasi-Degenerate Neutrino Masses with Normal and Inverted Hierarchy," Journal of Modern Physics, Vol. 2 No. 11, 2011, pp. 1280-1284. doi: 10.4236/jmp.2011.211158.

References

[1] T. Schwetz, M. Tortola and J. W. F. Valle, “Three- Flavour Neutrino Oscillation Update,” New Journal of Physics, Vol. 10, 2008, p. 113011. doi:10.1088/1367-2630/10/11/113011
[2] T. Schwetz, M. Tortola and J. W. F. Valle, “Global Neutrino Data and Recent Reactor Fluxes: Status of Three Flavour Oscillation Parameters,” New Journal of Physics, Vol. 13, 2011, p. 063004. doi:10.1088/1367-2630/13/6/063004
[3] M. C. Gonzales-Garcia, M. Maltoni and J. W. F. Valle, “Phenomenology with Massive Neutrinos,” Physics Reports, Vol. 460, No. 1-3, 2008, pp. 1-129. doi:10.1016/j.physrep.2007.12.004
[4] M. C. Gonzales-Garcia, M. Maltoni and J. W. F. Valle, “Understanding and Probing Neutrino Oscillations,” Invited Talk in Neutrino-2010, Athens, 14 June 2010;
[5] A. Bandyopadhyay, et al., “Physics at a Future Neutrino Factory and Super-Beam Facility,” Reports on Progress in Physics, Vol. 72, 2009, p. 106201. doi:10.1088/0034-4885/72/10/106201
[6] E. M. Lipmanov, “Quasi-Degenerate Neutrino Masses in Terms of Mass Squared Differences,” Physics Letters B, Vol. 567, 2003, pp. 268-272. doi:10.1016/j.physlettb.2003.06.052
[7] A. S. Joshipura, “Neutrino Spectrum from Theory and Experiments,” Pramana, Vol. 54, No. 1, 1994, pp. 119- 132. doi:10.1007/s12043-000-0011-7
[8] S. T. Petcov and A. Yu. Smirnov, “Neutrinoless Double Beta Decay and the Solar Neutrino Problem,” Physics Letters B, Vol. 322, 1994, pp. 109-118. doi:10.1016/0370-2693(94)90498-7
[9] A. S. Joshipura and K. M. Patel, “Quasi-degenerate Neutrinos in SO (10),” Physical Review D, Vol. 82, 2010, p. 031701. doi:10.1103/PhysRevD.82.031701
[10] A. S. Joshipura, K. M. Patel and S. K. Vempti, “Type I Seesaw Mechanism for Quasi-Degenerate Neutrinos,” Physics Letters B, Vol. 690, No. 3, 2010, pp. 289-295.
[11] S. Antusch and S. F. King, “From Hierarchical to Partially Degenerate Neutrinos via Type II Upgrade of Type I See-Saw Models,” Nuclear Physics B, Vol. 705, 2005, pp. 239-268. doi:10.1016/j.nuclphysb.2004.10.049
[12] P. Binetruy, S. Lavignac, S. T. Petcov and P. Ramond, “Quasi-Degenerate Neutrinos from an Abelian Family Symmetry,” Nuclear Physics B, Vol. 496, 1997, pp. 3-23.
[13] G. C. Branco, M. N. Rebelo and J. I. Silva-Marcos, “Degenerate and Quasi-Degenerate Majorana Neutrinos,” Physical Review Letters, Vol. 82, No. 4, 1999, pp. 683- 686. doi:10.1103/PhysRevLett.82.683
[14] G. C. Branco, M. N. Rebelo and J. I. Silva-Marcos, “Quasi-Degenerate neutrino Masses with Universal strength Yukawa Coupling,” Physics Letters B, Vol. 428, No. 1, 1998, pp. 136-142.
[15] I. M. Varzielas, G. G. Ross and M. Serna, “Quasi- degenerate Neutrinos and Tri-Bimaximal Mixing,” Physi- cal Review D, Vol. 80, 2009, p. 073002. doi:10.1103/PhysRevD.80.073002
[16] S. A. Thomas, F. B. Abdalla and O. Lahav, “Upper Bound on 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey,” Physical Review Letters, Vol. 105, 2010, p. 031301. doi:10.1103/PhysRevLett.105.031.301
[17] J. Lesgourgues, “Galaxies Weigh in on Neutrinos,” Physics, Vol. 3, 2010, pp. 57-59. doi:10.1103/Physics.3.57
[18] S. Pascoli and S. T. Petcov, “Majorana Neutrinos, Neutrino Mass Spectrum and the ~ 0.001 eV Frontier in Neutrinoless Double Beta Decay,” Physical Review D, Vol. 77, 2008, p. 113003. doi:10.1103/PhysRevD.77.113003
[19] P. F. Harrison and W. G. Scott, “Mu-Tau Reflection Symmetry in Lepton Mixing and Neutrino Oscillations,” Physics Letters B, Vol. 547, No. 3, 2002, pp. 219-228. doi:10.1016/S0370-2693(02)02772-7
[20] P. F. Harrison, D. H. Perkins and W. G. Scott, “Tri- Bimaximal Mixing and the Neutrino Oscillation Data,” Physics Letters B, Vol. 530, 2002, pp. 167-178. doi:10.1016/S0370-2693(02)01336-9
[21] P. F. Harrison and W. G. Scott, “Permutation Symmetry, Tri-Bimaximal Neutrino Mixing and S3,” Physics Letters B, Vol. 557, 2003, pp. 76-90. doi:10.1016/S0370-2693(03)00183-7
[22] G. Altarelli and F. Feruglio, “Neutrino Masses and Mixings: A Theoretical Perspective,” Physical Report, Vol. 320, 1999, pp. 295-325. doi:10.1016/S0370-1573(99)00067-8
[23] Z. Maki, M. Nakagawa and S. Sakata, “Remarks on the Unified Model of Elementary Particles,” Progress of Theoretical Physics, Vol. 28, No. 5, 1962, p. 870-880 doi:10.1143/PTP.28.870
[24] B. Pontecorvo, “Neutrino Experiments and the Problem of Conservation of Lepton Charge,” Soviet Physics— JETP, Vol. 26, 1968, pp. 984-988.
[25] N. Nimai-Singh, M. Rajkhowa and A. Borah, “Lowering Solar Mixing Angle in Inverted Hierarchy without Charged Lepton Corrections,” Journal of Physics G: Nuclear and Particle Physics, Vol. 34, No. 2, 2007, pp. 345-351. doi:10.1088/0988-3899/34/2/013
[26] N. Nimai-Singh, M. Rajkhowa and A. Borah, “Deviation From Tri-Bimaximal Mixing Through Flavour Twisters in Inverted and Normal Hierarchical Neutrino Mass Models,” Pramana, Vol. 69, No. 4, 2007, pp. 533-549. doi:10.1007/s12043-007-0154-x

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.