Photoelectrochemical Production of Hydrogen in Aqueous Suspensions Nanoparticles Composites of CdS/ZnS
Kasem K. Kasem, Melissa Dahn, Nida Zia, Aubrey Finney
.
DOI: 10.4236/msa.2011.211217   PDF    HTML     5,149 Downloads   9,055 Views   Citations

Abstract

Aqueous solutions of mixed CdS/ZnS semiconductor (SC) nanoparticle suspensions in phosphate buffers containing 10 mM [Fe(CN)6]4– were used for photochemical production of hydrogen via hydrated electron intermediates. CdS was doped with varying percentages of ZnS to expand the absorption range of the composite to the UV region. Results show that maximum generation of hydrated electrons by [Fe(CN)6]4– occurs at pH 6. Furthermore, native CdS amorphous nanoparticles give the greatest photocurrent. Studies also show that, in phosphate buffer, the steady state photocurrent was directly proportional to the CdS content in the mixture of CdS/ZnS. The aqueous nano-systems sustained their stability as indicated by the reproducibility of their photocatalytic activities. Solar radiated assemblies of CdS/ZnS/ [Fe(CN)6]4– sustained cyclic systems for continuous hydrogen production.

Share and Cite:

K. Kasem, M. Dahn, N. Zia and A. Finney, "Photoelectrochemical Production of Hydrogen in Aqueous Suspensions Nanoparticles Composites of CdS/ZnS," Materials Sciences and Applications, Vol. 2 No. 11, 2011, pp. 1631-1638. doi: 10.4236/msa.2011.211217.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. J. Zhang, W. Yan, Y. P. Wu and Z. H. Wang, “Synthesis of TiO2 Nanotubes Coupled with CdS.,” Materials Letters, Vol. 62, No. 23, 2008, pp. 3846-3848. doi:10.1016/j.matlet.2008.04.084
[2] P. L. Gentili, M. Penconi, F. Ortica, F. Cotana, F. Rossis and F. Elisei, “Synergistic Effects in Hydrogen Production through Water Sonophotolysis Catalyzed by New La2xGa2yIn2(1–x–y)O3 Solid Solutions,” International Jour- nal of Hydrogen Energy, Vol. 34, No. 22, 2009, pp. 9042- 9049. doi:10.1016/j.ijhydene.2009.09.027
[3] K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue and K. Domen, “Noble-Metal/Cr2O3 Core/Shell Nanoparticle as a Cocatalyst,” Angewandte Chemie, International Edition, Vol. 45, No. 6, 2006, pp. 7806-7809. doi:10.1002/anie.200602473
[4] T. Lindgren, L. Vayssieres, H. Wang and S. E. Lindquist, “The Emergence of a New Generation of Smart Materials,” Chemical Physics of Nanostructured Semiconductors, Vol. 83, 2003, pp. 110-116.
[5] J. S. Jang, H. G. Kim, V. R. Reddy, S. W. Bae, S. M. Ji and J. S. Lee, “Highly Donor-Doped (110) Layered Perovskite as Novel Photocatalysts,” Journal of Catalysis, Vol. 231, No. 1, 2005, pp. 213-222. doi:10.1016/j.jcat.2005.01.026
[6] C. Huang, C. A. Linkous, O. Adebiyi and A. T-Raissi, “Hydrogen Production via Photolytic Oxidation of Aqueous Sodium Sulfite Solutions,” Environmental Science & Technology, Vol. 44, No. 13, 2010, pp. 5283- 5288. doi:10.1021/es903766w
[7] J. A. Villoria, Y. Navarro, M. Rufino, S. M. Al-Zahrani and J. L. G. Fierro, “Photocatalytic Hydrogen Production on Cd1-xZnxS Solid Solutions under Visible Light: Influence of Thermal Treatment,” Industrial & Engineering Chemistry Research, Vol. 49, No. 15, 2010, pp. 6854- 6861. doi:10.1021/ie901718r
[8] C. J. Sartoretti, B. D. Alexander, R. Slarska, I. A. Rutkowska, J. Augustynski and R. Cerny, “Photoelectrochemical Oxidation of Water at Transparent Ferric Oxide Film Electrodes,” The Journal of Physical Chemistry, B, Vol. 109, No. 28, 2005, pp. 13685-13692. doi:10.1021/jp051546g
[9] C. J. Sartoretti, M. Ulmann, B. D. Alexander and B. D. Augustynski, “Nanostructured α-Fe2O3 Electrodes for Solar Driven Water Splitting,” The Journal of Chemical Physics Letters, Vol. 376, 2003. pp. 194-200.
[10] L. M. Peter, K. G. U. Wijayantha, D. J. Riley and J. P. Waggett, “Band-Edge Tuning in Self-Assembled Layers of Bi2S3 Nanoparticles Used to Photosensitize Nanocrystalline TiO2,” Journal of Physical Chemistry B, Vol. 107, No. 33, 2003, pp. 8378-8381. doi:10.1021/jp030334l
[11] R. Vogel, P. Hoyer and H. Weller, “Quantum-Sized PbS, CdS, AgzS, Sb&, and Bi& Partic as Sensitizers for Various Nanoporous. Wide-Bandgap Semiconductors,” The Journal of Physical Chemistry, Vol. 98, 1994, pp. 3183- 3188. doi:10.1021/j100063a022
[12] R. Plass, S. Pelet, J. Krueger, M. Gratzel and U. Bach, “Quantum Dots Sensitization of Organic/Inorganic Hybrid Solar Cells,” Journal of Physical Chemistry B, Vol. 106, No. 31, 2002, pp. 7578-7580. doi:10.1021/jp020453l
[13] K. Park, H. J. Yu, W. K. Chung, B.-J. Kim and S. H. Kim, “Effect of Heat-Treatment on CdS and CdS/ZnS Nano- particles,” Journal of Materials Science, Vol. 44, No. 16, 2009, pp. 4315-4320. doi:10.1007/s10853-009-3641-2
[14] D. Liu and P. V. Kamat, “Photoelectrochemical Behavior of Thin Cadmium Selenide Semiconductor Films,” The Journal of Physical Chemistry, Vol. 97, No. 41, 1993, pp. 10769-10773. doi:10.1021/j100143a041
[15] M. J. Chen; Y. W. Tang, B. H. Li and L. J. Luo, “Nanocrystalline CdS/ZnO Thin Films: Fabrication and Application to Solar Cells,” Journal of Nanoscience and Nanotechnology, Vol. 9, No. 2, 2009, pp. 1505-1508. doi:10.1166/jnn.2009.C189
[16] T. Peng, D. Zhao, H. Song and C. Yan, “Preparation of Lanthana-Doped Titania Nanoparticles with Anatase Mesoporous Walls and High Photocatalytic Activity,” Journal of Molecular Catalysis A: Chemical, Vol. 238, No. 1-2, 2005, pp. 119-122. doi:10.1016/j.molcata.2005.04.066
[17] D. L. Liao and B. Q. Liao, “Shape, Size and Photocatalytic Activity Control of TiO2 Nanoparticles with Surfactants,” Journal of Photochemistry and Photobiology, A: Chemistry, Vol. 87, No. 2-3, 2007, pp. 363-369. doi:10.1016/j.jphotochem.2006.11.003
[18] C. C. Trapalis, P. Keivanidis, G. Kordas, M. Zaharescu, M. Crisan, A. Szatvanyi and M. Gartner, “TiO2(Fe3+) Nanostructured Thin Films with Antibacterial Properties,” Thin Solid Films, Vol. 433, No. 1-2, 2003, pp. 186- 190. doi:10.1016/S0040-6090(03)00331-6
[19] X. X. Yan, G. Liu, L. Z. Wang, Y. Wang, X. F. Zhu, J. Zou and G. Q. Lu, “Antiphotocorrosivephotocatalysts Containing CdS Nanoparticles and Exfoliated TiO2 Nano- sheets,” Journal of Materials Research, Vol. 25, No. 1, 2010, pp. 182-188. doi:10.1557/JMR.2010.0007
[20] D. Dung, J. Ramsden and M. Graetzel, “Dynamics of Interfacial Electron-Transfer Processes in Colloidal Semi Conductor Systems,” Journal of the American Chemical Society, Vol. 104, No. 11, 1982, pp. 2977-2985. doi:10.1021/ja00375a006
[21] M. AshaJhonsi, A. Kathiravan and R. Renganathan, “Photoinduced Interaction between Xanthene Dyes and Colloidal CdS Nanoparticles,” Journal of Molecular Structure, Vol. 921, No. 1-3, 2009, pp. 279-284. doi:10.1016/j.molstruc.2009.01.006
[22] S. Drouard, S. G. Hickey and R. D. Jason, “CdS Nano- particle-Modified Electrodes for Photoelectrochemical Studies,” Chemical Communications, No. 1, 1999, pp. 67-68. doi:10.1039/a808572b
[23] S. G. Hickey and D. J. Riley, “Photoelectrochemical Studies of CdS Nanoparticle-Modified Electrodes,” Jour- nal of Physical Chemistry B, Vol. 103, No. 22, 1999, pp. 4599-4602. doi:10.1021/jp990020r
[24] H. Yildiz, R. Tel-Vered and I. Willner, “Solar Cells with Enhanced Photocurrent Efficiencies Using Oligoaniline- Crosslinked Au/CdS Nanoparticles Arrays on Electro- des,” Advanced Functional Materials, Vol. 18, No. 21, 2008, pp. 3497-3505. doi:10.1002/adfm.200800810
[25] M. Saif and M. S. A. Abdel-Mottaleb, “Titanium Dioxide Nanomaterial Doped with Trivalent Lanthanide Ions of Tb, Eu and Sm: Preparation, Characterization and Potential Applications,” Inorganica Chimica Act, Vol. 360, No. 9-10, 2007, pp. 2863-2874.
[26] S. A. Blanton, M. A. Hines and P. Guyot-Sionnest, “Photoluminescence Wandering in Single CdSe Nanocrystals,” Applied Physics Letters, 1996, Vol. 69, No. 25, pp. 3905- 3907.
[27] N. Serpone, D. Lawless and E. Pelizzetti, “Fine Particles Science and Technology,” E. Pelizzetti, Ed., Kluwer Academics Publishers, New York, 1996, pp. 657-662.
[28] A. HaqueSaif, T. Park, A. B. Holmes and J. R. Durrant, “Transient Optical Studies of Interfacial Energetic Disorder at Nanostructured Dye-Sensitised Inorganic/Organic Semiconductor Heterojunctions,” Chemphyschem: A Euro- pean Journal of Chemical Physics and Physical Chemistry, Vol. 4, No. 1, 2003, pp. 89-93.
[29] S. Gordon, E. J. Hars, M. S. Matheson, J. Rahani and J. K. Thomas, “Reaction Constants of the Hydrated Electron,” Journal of American Chemical Society, Vol. 85, No. 10, 1965, pp. 1375-1377. doi:10.1021/ja00893a002
[30] B. S. Amma, K. Manzoor, K. Ramakrishna and M. Pattabi, “Synthesis and Optical Properties of CdS/Zn Scoreshell Nanoparticles,” Materials Chemistry and Physics, Vol. 112, No. 3, 2008, pp. 789-792. doi:10.1016/j.matchemphys.2008.06.043
[31] J. J. Van Benschoten. J. Y. Lewis, W. R. Heineman, D. A. Roston and P. T. Klsslnger, “Cyclic Voltammetry Experiment,” Journal of Chemical Education, Vol. 60, No. 9, 1983, pp. 772-776. doi:10.1021/ed060p772
[32] M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solutions,” Pergamon Press, Brussels, 1966, pp. 359-363.
[33] L. G. Arriaga and A. M. Fernoandez, “Determination of Flat Band Potential and Photocurrent Response in (Cd,Zn)S Used in Photoelectrolysis Process,” International Journal of Hydrogen Energy, Vol. 27, No. 1, 2002, pp. 27-31. doi:10.1016/S0360-3199(01)00084-2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.