Share This Article:

Bianchi Type-II, VIII & IX Perfect Fluid Cosmological Models in Brans Dicke Theory of Gravitation

Abstract Full-Text HTML XML Download Download as PDF (Size:193KB) PP. 1222-1228
DOI: 10.4236/jmp.2011.210151    4,787 Downloads   8,601 Views   Citations

ABSTRACT

Field equations in the presence of perfect fluid distribution are obtained in a scalar tensor theory of gravitation proposed by Brans and Dicke[1] with the aid of Bianchi type-II, VIII & IX metrics. Exact prefect fluid Bianchi type- IX cosmological model is presented since other models doesn’t exist in Brans-Dicke scalar tensor theory of gravitation. Some physical properties of the model are also discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

V. Rao and M. Santhi, "Bianchi Type-II, VIII & IX Perfect Fluid Cosmological Models in Brans Dicke Theory of Gravitation," Journal of Modern Physics, Vol. 2 No. 10, 2011, pp. 1222-1228. doi: 10.4236/jmp.2011.210151.

References

[1] H. Brans and R. H. Dicke, “Mach’s Principle and a Rela- tivistic Theory of Gravitation,” Physical Review A, Vol. 124, No. 3, 1961, pp.925-935. doi:10.1103/PhysRev.124.925
[2] C. Mathiazhagan and V. B. Johri, “An Inflationary Uni- verse in Brans-Dicke Theory: A Hopeful Sign of Theo- retical Estimation of the Gravitational Constant,” Classi- cal and Quantum Gravity, Vol. 1, No.2, 1984, pp. L29- L32. doi:10.1088/0264-9381/1/2/005
[3] L. O. Pimentel, “New Exact Vacuum Solutions in Brans- Dicke Theory,” Modern Physics Letters A, Vol. 12, No. 25, 1997, pp. 1865-1870. doi:10.1142/S0217732397001904
[4] A. D. Linde, “Extended Chaotic Inflation and Spatial Variations of the Gravitational Constant,” Physics Letters B, Vol. 238, No. 2-4, 1990, pp. 160-165. doi:10.1016/0370-2693(90)91713-L
[5] T. Singh and L. N. Rai, “Scalar-Tensor Theories of Gra- vitation: Foundations and Prospects,” General Relativity and Gravitation, Vol. 15, No. 9, 1983, pp. 875-902. doi:10.1007/BF00778798
[6] H. Nariai, “Hamiltonian Approach to the Dynamics of Expanding Homogeneous Universes in the Brans-Dicke Cosmology,” Progress of Theoretical Physics, Vol. 47, No. 6, 1972, pp. 1824-1843. doi:10.1143/PTP.47.1824
[7] V. A. Belinskii and I. M. Khalatnikov, “Effect of Scalar and Vector Fields on the Nature of the Cosmological Singularity,” Soviet Physics–JETP, Vol. 36, No. 4, 1973, pp. 591-597.
[8] D. R. K. Reddy and V. U. M. Rao, “Field of a Charged Particle in Brans-Dicke Theory of Gravitation,” Journal of Physics A: Mathematical and General, Vol. 14, No. 8, 1981, pp. 1973-1976. doi:10.1088/0305-4470/14/8/021
[9] A. Banerjee and N.O. Santos, “Bianchi Type-II Cosmo- logical Models in Brans-Dicke Theory,” Il Nuovo Cimento B, Vol. 67, No. 1, 1982, pp. 31-40. doi:10.1007/BF02721068
[10] T. Singh, L. N. Rai and T. Singh, “An Anisotropic Cos- mological Model in Brans-Dicke Theory,” Astrophysics and Space Science, Vol. 96, No. 1, 1983, pp. 95-105.
[11] S. Ram, “Spatially Homogeneous and Anisotropic Cosmological Solution in Brans-Dicke Theory,” General Relativity and Gravitation, Vol. 15, No. 7, 1983, pp. 635- 640. doi:10.1007/BF00759040
[12] S. Ram and D. K. Singh, “LRS Bianchi Type-V Vacuum Cosmological Solution in Brans-Dicke Theory,” Astrophysics and Space Science, Vol. 98, No. 1, 1984, pp. 193- 196. doi:10.1007/BF00651959
[13] M. S. Berman, M. M. Som and F. M. Gomide, “Brans- Dicke Static Universes,” General Relativity and Gravita- tion, Vol. 21, No. 3, 1989, pp. 287-292. doi:10.1007/BF00764101
[14] D. R. K. Reddy, “A String Cosmological Model in a Sca- lar-Tensor Theory of Gravitation,” Astrophysics and Space Science, Vol. 286, No. 3-4, 2003, pp. 359-363. doi:10.1023/A:1026370732619
[15] D. R. K. Reddy and R. L. Naidu, “Five Dimensional String Cosmological Models in a Scalar-Tensor Theory of Gravitation,” Astrophysics and Space Science, Vol. 307, No. 4, 2007, pp. 395-398. doi:10.1007/s10509-007-9387-x
[16] K. S. Adhav, A. S. Nimkar and M. V. Dawande, “N- Dimensional String Cosmological Model in Brans-Dicke Theory of Gravitation,” Astrophysics and Space Science, Vol. 310, No. 3-4, 2007, pp. 231-235. doi:10.1007/s10509-007-9506-8
[17] V. U. M. Rao, T. Vinutha, M. V. Shanthi and K. V. S. Sireesha, “Exact Bianchi Type-V Perfect Fluid Cosmo- logical Models in Brans-Dicke Theory of Gravitation,” Astrophysics and Space Science, Vol. 315, No. 1-4, 2008, pp. 211-214. doi:10.1007/s10509-008-9820-9
[18] V. U. M. Rao, T. Vinutha and M. V. Santhi, “Bianchi Type-V Cosmological Model with Perfect Fluid Using Negative Constant Deceleration Parameter in a Scalar Tensor Theory Based on Lyra Manifold,” Astrophysics and Space Science, Vol. 314, No. 1-3, 2008, pp. 213-216. doi:10.1007/s10509-008-9757-z
[19] S. Chakraborty, “A Study on Bianchi-IX Cosmological Model,” Astrophysics and Space Science, Vol. 180, No. 2, 1991, pp. 293-303. doi:10.1007/BF00648184
[20] R. Bali and S. Dave, “Bianchi Type IX String Cosmo- logical Model in General Relativity,” Pramana Journal of Physics, Vol. 56, No. 4, 2001, pp. 513-518. doi:10.1007/s12043-001-0100-2
[21] R. Bali and M. K. Yadav, “Bianchi Type-IX Viscous Fluid Cosmological Model in General Relativity,” Pra- mana Journal of Physics, Vol. 64, No. 2, 2005, pp. 187- 196. doi:10.1007/BF02704873
[22] D. R. K. Reddy, B. M. Patrudu and R. Venkateswarlu, “Exact Bianchi Type-II, VIII and IX Cosmological Mod- els in Scale-Covariant Theory of Gravitation,” Astro- physics and Space Science, Vol. 204, No. 1, 1993, pp. 155-160. doi:10.1007/BF00658101
[23] K. Shanthi and V. U. M. Rao, “Bianchi Type-II and III Models in Self-Creation Cosmology,” Astrophysics and Space Science, Vol. 179, No.1, 1991, pp. 147-153. doi:10.1007/BF00642359
[24] V. U. M. Rao and Y. V. S. S. Sanyasiraju, “Exact Bian- chi-Type VIII and IX Models in the Presence of Zero- Mass Scalar Fields,” Astrophysics and Space Science, Vol. 187, No. 1, 1992, pp.113-117. doi:10.1007/BF00642691
[25] Y. V. S. S. Sanyasiraju and V. U. M. Rao, “Exact Bian- chi-Type VIII and IX Models in the Presence of the Self-Creation Theory of Cosmology,” Astrophysics and Space Science, Vol. 189, No. 1, 1992, pp. 39-43. doi:10.1007/BF00642950
[26] F. Rahaman, S. Chakraborty, N. Begum, M. Hossain and M. Kalam, “Bianchi-IX String Cosmological Model in Lyra Geometry,” Pramana Journal of Physics, Vol. 60, No. 6, 2003, pp. 1153-1159. doi:10.1007/BF02704282
[27] D. K. Sen, “A Static Cosmological Model,” Zeitschrift for Physics A, Vol. 149, No. 3, 1957, pp. 311-323.
[28] G. Lyra, “über eine Modifikation der Riemannschen Geometrie,” Mathematische Zeitschrift, Vol. 54, No. 1, 1951, pp. 52-64. doi:10.1007/BF01175135
[29] V. U. M. Rao, M. V. Santhi and T. Vinutha, “Exact Bi- anchi Type-II, VIII and IX String Cosmological Models in Saez-Ballester Theory of Gravitation,” Astrophysics and Space Science, Vol. 314, No. 1-3, 2008, pp. 73-77. doi:10.1007/s10509-008-9739-1
[30] V. U. M. Rao, M. V. Santhi and T. Vinutha, “Exact Bi- anchi Type-II, VIII and IX Perfect Fluid Cosmological Models in Saez-Ballester Theory of Gravitation,” Astro- physics and Space Science, Vol. 317, No. 1-2, 2008, pp. 27-30. doi:10.1007/s10509-008-9849-9
[31] V. U. M. Rao, M. V. Santhi and T. Vinutha, “Exact Bi- anchi Type-II, VIII and IX String Cosmological Models in General Relativity and Self-Creation Theory of Gravi- tation,” Astrophysics and Space Science, Vol. 317, No. 1-2, 2008, pp. 83-88. doi:10.1007/s10509-008-9859-7

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.