A New Thioamide Derivative for Separation and Preconcentration of Multi Elements in Aquatic Environment by Cloud Point Extraction
Mohamed M. Hassanien, Ali M. Hassan, Wael I. Mortada, Ahmed A. El-Asmy
.
DOI: 10.4236/ajac.2011.26080   PDF    HTML     5,413 Downloads   10,276 Views   Citations

Abstract

2-(pyridine-2-yl)-N-p-chlorohydrazinecarbothioamide (HCPTS) was synthesized, characterized and successfully applied for the preconcentration of Cu(II), Ni(II), Zn(II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II) in water, blood, and urine samples prior to graphite furnace atomic absorption determination (GFAAS); Hg was determined by cold vapor technique. Under the optimum experimental conditions (i.e. pH = 8, 10–4 M of HCPTS, 0.05% w/v of Triton X-114), calibration graphs were linear in the range of 0.02 to 200 ng?mL–1 for Co(II), Cd(II), Pb(II) and Ni(II); 0.03 to 200 ng?mL–1 for Cu(II); 0.07 to 200 ng?mL–1 for Fe(II) and Zn(II) and 0.02 to 150 ng?mL–1 for Hg(II). The enrichment factors were 43, 51, 41, 46, 54, 40, 45 and 52 for Cu(II), Ni(II),Zn (II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II), respectively. The limit of detection were found to be 0.019, 0.094, 0.0514, 0.052, 0.0165, 0.047, 0.068 and 0.041 ng?mL–1 for Cu(II), Ni(II), Zn(II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II), respectively. The developed method was applied to the determination of these metal ions in water, blood and urine samples with satisfactory results.

Share and Cite:

M. Hassanien, A. Hassan, W. Mortada and A. El-Asmy, "A New Thioamide Derivative for Separation and Preconcentration of Multi Elements in Aquatic Environment by Cloud Point Extraction," American Journal of Analytical Chemistry, Vol. 2 No. 6, 2011, pp. 697-709. doi: 10.4236/ajac.2011.26080.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. O. Duruibe, M. O. C. Ogwuegbu and J. N. Egwurugwu, “Heavy Metal Pollution and Human Biotoxic Effects,” International Journal of Physical Sciences, Vol. 2, No. 5, 2007, pp. 112-118.
[2] M. Valko, H. Morris and M. Cronin, “Metals, Toxicity and Oxidative Stress,” Current Medicinal Chemistry, Vol. 12, No. 10, 2005, pp. 1161-1208. doi:10.2174/0929867053764635
[3] K. Jankowski, J. Yao, K. Kasiura, A. Jackowska and A. Sieradzka, “Multielement Determination of Heavy Metals in Water Samples by Continuous Powder Introduction Microwave-Induced Plasma Atomic Emission Spectro-metry after Preconcentration on Activated Carbon,” Spectrochimica Acta Part B, Vol. 60, No. 3, 2005, pp. 369-375. doi:10.1016/j.sab.2004.11.002
[4] S. Ceratti, S. Moyano, J. Marrero, P. Smichowski and L. D. Martinez, “On-Line Preconcentration of Nickel on Activated Carbon Prior to Its Determination by Vapor Generation Associated to Inductively Coupled Plasma Optical Emission Spectrometry,” Journal of Analytical Atomic Spectrometry, Vol. 20, No. 6, 2005, pp. 559-561. doi:10.1039/b500467p
[5] V. Umashankar, R. Radhamani, K. Ramadoss and D. S. R. Murty, “Simultaneous Separation and Preconcentration of Trace Elements in Water Samples by Coprecipitation on Manganese Dioxide Using D-Glucose as Reductant for KMnO4,” Talanta, Vol. 57, No. 6, 2002, pp. 1029-1038. doi:10.1016/S0039-9140(02)00150-9
[6] G. Doner and A. Ege, “Determination of Copper, Cad-mium and Lead in Seawater and Mineral Water by Flame Atomic Absorption Spectrometry after Coprecipitation with Aluminum Hydroxide,” Analytica Chimica Acta, Vol. 547, No. 1, 2005, pp. 14-17. doi:10.1016/j.aca.2005.02.073
[7] M. Kumar, D. P. S. Rathore and A. K. Singh, “Precon-centration of Lead with Amberlite XAD-2 and Amberlite XAD-7 Based Chelating Resins for Its Determination by Flame Atomic Absorption Spectrometry,” Talanta, Vol. 56, No. 4, 2002, pp. 735-744. doi:10.1016/S0039-9140(01)00606-3
[8] V. K. Jain, H. C. Mandalia, H. S. Gupte and D. J. Vyas, “Azocalix[4]pyrrole Amberlite XAD-2: New Polymeric Chelating Resins for the Extraction, Preconcentration and Sequential Separation of Cu(II), Zn(II) and Cd(II) in Natural Water Samples,” Talanta, Vol. 79, No. 5, 2009, pp. 1331-1340. doi:10.1016/j.talanta.2009.05.047
[9] M. B. Gholivand, M. Mohammadi, M. Khodadadian and M. K. Rofouei, “Novel Platinum(II) Selective Membrane Electrode Based on 1,3-bis(2-cyanobenzene)triazene,” Talanta, Vol. 78, No. 3, 2009, pp. 922-928. doi:10.1016/j.talanta.2008.12.070
[10] X. G. Li, X. L. Ma and M. R. Huang, “Lead(II) Ion-Se- lective Electrode Based on Polyaminoanthraquinone Par- ticles with Intrinsic Conductivity,” Talanta, Vol. 78, No. 2, 2009, pp. 498-505. doi:10.1016/j.talanta.2008.11.045
[11] M. Camino, M. G. Bagur, M. Sandchez-Vinas, D. Gaz-quez and R. Romero, “Multivariate Optimization of Sol-vent Extraction of Cd(II), Co(II), Cr(VI), Cu(II), Ni(II), Pb(II) and Zn(II) as Dibenzyldithiocarbamates and De-tection by AAS,” Journal of Analytical Atomic Spectro-metry, Vol. 16, No. 6, 2002, pp. 638-642. doi:10.1039/b101590g
[12] E. L. Silva, P. dos S. Roldan, M. F. Gin, “Simultaneous Preconcentration of Copper, Zinc, Cadmium, and Nickel in Water Samples by Cloud Point Extraction Using 4-(2- Pyridylazo)-Resorcinol and Their Determination by In-ductively Coupled Plasma Optic Emission Spectrometry,” Journal of Hazardous Materials, Vol. 171, No. 1-3, 2009, pp. 1133-1138. doi:10.1016/j.jhazmat.2009.06.127
[13] M. Ghaedi, A. Shokrollahi, K. Niknam, E. Niknam, S. Derki and M. Soylak, “Cloud Point Extraction Procedure for Preconcentration/Flame Atomic Absorption Spectro-metric Determination of Silver, Zinc, and Lead at Subtrace Levels in Environmental Samples,” The Journal of AOAC International, Vol. 92, No. 3, 2009, pp. 907-913.
[14] H. Filik, T. Cengel and R. Apak, “Selective Cloud Point Extraction and Graphite Furnace Atomic Absorption Spectrometric Determination of Molybdenum (VI) Ion in Seawater Samples,” Journal of Hazardous Materials, Vol. 169, No. 1-3, 2009, pp. 766-771. doi:10.1016/j.jhazmat.2009.04.017
[15] M. Ghaedi, A. Shokrollahi, K. Niknam, E. Niknam, A. Najibi and M. Soylak, “Cloud Point Extraction and Flame Atomic Absorption Spectrometric Determination Of Cadmium(II), Lead(II), Palladium(II) and Silver(I) in En-vironmental Samples,” Journal of Hazardous Materials, Vol. 168, No. 2-3, 2009, pp. 1022-1027. doi:10.1016/j.jhazmat.2009.02.130
[16] S. Candir, I. Narin, M. Soylak, “ligandless Cloud Point Extraction of Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II) Ions in Environmental Samples with Tween 80 and Flame Atomic Absorption Spectrometric Determination,” Talanta, Vol. 77, No. 1, 2008, pp. 289-293. doi:10.1016/j.talanta.2008.06.024
[17] E. Kilinc, A. Cetin, M. Togrul and H. Hosgoren, “Syn-thesis of Bis(Amino Alcohol)Oxalamides and Their Usage for the Preconcentration of Trace Metals by Cloud Point Extraction,” Analytical Sciences, Vol. 24, No. 6, 2008, pp. 763-768. doi:10.2116/analsci.24.763
[18] S. Shariati, Y. Yamini and M. K. Zanjani, “Simultaneous Preconcentration and Determination of U(VI), Th(IV), Zr(IV) and Hf(IV) Ions in Aqueous Samples Using Mi-celle-Mediated Extraction Coupled to Inductively Coupled Plasma-Optical Emission Spectrometry,” Journal of Hazardous Materials, Vol. 156, No. 1-3, 2008, pp 583- 590. doi:10.1016/j.jhazmat.2007.12.061
[19] A. Beiraghi and S. Babaee, “Separation and Preconcen-tration of Ultra Trace Amounts of Beryllium in Water Samples Using Mixed Micelle-Mediated Extraction and Determination by Inductively Coupled Plasma-Atomic Emission Spectrometry,” Analatica Chimica Acta, Vol. 607, No. 2, 2008, pp. 183-190. doi:10.1016/j.aca.2007.11.028
[20] A. Ohashi, T. Hashimoto, H. Imura and K. Ohashi, “Cloud Point Extraction Equilibrium of Lanthanum(III), Europium(III) and Lutetium(III) Using Di(2-Ethylhexyl) Phosphoric Acid and Triton X-100,” Talanta, Vol. 73, No. 5, 2007, pp. 893-898. doi:10.1016/j.talanta.2007.05.012
[21] N. Shokoufi and F. Shemirani, “Laser Induced-Thermal Lens Spectrometry after Cloud Point Extraction for the Determination of Trace Amounts of Rhodium,” Talanta, Vol. 73, No. 4, 2007, pp. 662-667. doi:10.1016/j.talanta.2007.04.035
[22] Y. Li and B. Hu, “Cloud Point Extraction with/without Chelating Agent on-Line Coupled with Inductively Coupled Plasma Optical Emission Spectrometry for the Determination of Trace Rare Earth Elements in Biological Samples,” Journal of Hazardous Materials, Vol. 174, No. 1-3, 2010, pp. 534-540. doi:10.1016/j.jhazmat.2009.09.084
[23] P. Anastas and N. Eghbali, “Green Chemistry: Principles and Practice,” Chemical Society Reviews, Vol. 39, No. 1, 2010, pp. 301-312. doi:10.1039/b918763b
[24] C. B. Ojeda and F. S. Rojas, “Separation and Preconcen-tration by a Cloud Point Extraction Procedure for Deter-mination of Metals: An Overview,” Analytical and Bio-analytical Chemistry, Vol. 394, No. 3, 2009, pp. 759-782. doi:10.1007/s00216-009-2660-9
[25] F. H. Quina and W. L. Hinze, “Surfactant-Mediated Cloud Point Extractions: An Environmentally Benign Alternative Separation Approach,” Industrial & Engineer- ing Chemistry Research, Vol. 38, No. 11, 1999, pp. 4150- 4168. doi:10.1021/ie980389n
[26] B. A. Gingras, R. L. Somorjai and C. H. Bayley, “The Preparation of Some Thiosemicarbazones and Their Copper Complexes,” Canadian Journal of Chemistry, Vol. 39, No. 5, 1961, pp. 973-985. doi:10.1139/v61-122
[27] A. A. Abu-Hussen and W. Linert, “Redox, Thermody-namic and Spectroscopic of Some Transition Metal Complexes Containing Heterocyclic Schiff Base Ligands,” Spectrochimica Acta A Molecular and Biomolecular Spectroscopy, Vol. 74, No. 1, 2009, pp. 214- 223.
[28] M. M. Hassanien, I. M. Gabr, M. H. Abdel-Rhman and A. A. El-Asmy, “Synthesis and Structural Investigation of Monoand Polynuclear Copper Complexes of 4-Ethyl-1- (Pyridin-2-Yl) Thiosemicarbazide” Spectrochimica Acta A Molecular and Biomolecular Spectroscopy, Vol. 71, No. 1, 2008, pp. 73-79.
[29] A. A. El-Asmy, M. M. Hassanian, M. H. Abdel-Rhman and I. M. Gabr, “Synthesis, Characterization and Antibac- Terial Activity of Pd(II), Pt(II) and Ag(I) Complexes of 4-ethyl and 4-(p-tolyl)-1-(pyridin-2-yl)thiosemicarba- zides,” Journal of Sulfur Chemistry, Vol. 31, No. 2, 2010, pp. 141-151. doi:10.1080/17415990903569569
[30] S. A. Ahmed, “Alumina Physically Loaded by Thiose-micarbazide for Selective Preconcentration of Mercury(II) Ion from Natural Water Samples,” Journal of Hazardous Materials, Vol. 156, No. 1-3, 2008, pp. 521- 529. doi:10.1016/j.jhazmat.2007.12.049
[31] R. Gao, Z. Hu, X. Chang, Q. He , L. Zhang, Z. Tu and J. Shi, “Chemically Modified Activated Carbon with 1-acylthio-semicarbazide for Selective Solid-Phase Ex-traction and Preconcentration of Trace Cu(II), Hg(II) and Pb(II) from Water Samples” Journal of Hazardous Mate-rials, Vol. 172, No. 1, 2009, pp. 324-329. doi:10.1016/j.jhazmat.2009.07.014
[32] M. E. Mahmoud, A. A. Yakout, S. B. Ahmed, M. M. Osman, “Speciation, Selective Extraction and Preconcen-tration of Chromium Ions via Alumina-Functionalized- Isatin-Thiosemicarbazone,” Journal of Hazardous Mate-rials, Vol. 158, No. 2-3, 2008, pp. 541-548. doi:10.1016/j.jhazmat.2008.01.114
[33] M. M. Hassanien, M. H. Abdel-Rhman and A. A. El- Asmy, “Cloud Point Extraction and Spectrophotometric Determination of Cu(II) in Saturated Saline Solutions Using 4-ethyl-1-(pyridin-2-yl) Thiosemicarbazide,” Transi- tion, Metal Chemistry, Vol. 32, No. 8, 2007, pp. 1025- 1029. doi:10.1007/s11243-007-0281-8
[34] N. Dallali, M. M. Zahedi and Y. Yamini, “Simultaneous Cloud Point Extraction and Determination of Zn, Co, Ni and Pb by Flame Atomic Absorption Spectrometry, Using 2-Guani-Dinobenzimidazole as the Complexing Agent,” Scientia Iranica, Vol. 14, No. 4, 2007, pp. 291-296.
[35] M. Ghaedi, K. Niknam, E. Niknamb and M. Soylak, “Application of Cloud Point Extraction for Copper, Nickel, Zinc and Iron Ions in Environmental Samples,” Journal of the Chinese Chemical Society, Vol. 56, No. 5, 2009, pp. 981-986.
[36] E. Kilinc, A. Cetin, M. Togrul and H. Hosgoren, “Syn-thesis of Bis(Amino Alcohol) Oxalamides and Their Usage for the Preconcentration of Trace Metals by Cloud Point Extraction,” Analytical Sciences, Vol. 24, No. 6, 2008, pp. 763-768. doi:10.2116/analsci.24.763
[37] C. A. ?ahin, M. Efe??nar and N. ?at?ro?lu, “Combination of Cloud Point Extraction and Flame Atomic Absorption Spectrometry for Preconcentration and Determination of Nickel and Manganese Ions in Water and Food Samples,” Journal of Hazardous Materials, Vol. 176, No. 1-3, 2010, pp. 672-677. doi:10.1016/j.jhazmat.2009.11.084
[38] C. B. Ojeda, F. S. Rojas and J. M. Pavón, “Preconcentra-tion of Cadmium in Environmental Samples by Cloud Point Extraction and Determination by FAAS,” American Journal of Analytical Chemistry, Vol. 1, No. 3, 2010, pp. 127-134. doi:10.4236/ajac.2010.13016
[39] M. M. Hassanien, “Silica Glass Modified with Flavonoid Derivatives for Preconcentration of Some Toxic Metal Ions in Water Samples and Their Determination with ICP-MS,” Environmental Monitoring and Assessment, Vol. 167, No. 1-4, 2010, pp. 587-598. doi:10.1007/s10661-009-1075-6
[40] K. Abou-El-Sherbini, I. M. Kenawy, R. M. Issa, M. A. Hamed and R. Elmorsi, “Separation and Preconcentration in a Batch Mode of Cd(II), Cr(III, VI), Cu(II), Mn(II, VII) and Pb(II) by Solidphase Extraction by Using of Silica Modified with N-Propylsalicylaldimine,” Talanta, Vol. 58, No. 2, 2002, pp. 289-300. doi:10.1016/S0039-9140(02)00248-5
[41] I. M. Kenawy, M. A. Hafez, M. A. Akl and R. R. Lashein, “Determination by AAS of Some Trace Heavy Metal Ions in Some Natural and Biological Samples after Their Preconcentration Using Newly Chemically Modified Chloromethylated Polystyrene-PAN Ion-Exchanger,” Analy- tical Sciences, Vol. 16, No. 5, 2000, pp. 493-500. doi:10.2116/analsci.16.493

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.