Electrochemical and Quantum Chemical Studies of 5-Substituted Tetrazoles as Corrosion Inhibitors for Copper in Aerated 0.5 M H2SO4 Solution
Pengju Liu, Xia Fang, Yongming Tang, Chunning Sun, Cheng Yao
.
DOI: 10.4236/msa.2011.29171   PDF    HTML     6,867 Downloads   13,870 Views   Citations

Abstract

Two 5-substituted tetrazoles, 5-(2-thienyl)-1,2,3,4-tetrazole (2-THTT) and 5-(4-pyridyl)-1,2,3,4-tetrazole (4-PYTT), as copper corrosion inhibitors in aerated 0.5 M H2SO4 solution were studied by using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and quantum chemical calculation. Polarization curves indicate that inhibition efficiencies of tetrazoles increase with increasing inhibitors concentration. The electrochemical results show that the inhibition efficiency of 2-THTT is higher than that of 4-PYTT. Inhibition efficiency of 2-THTT reached 98.9% at very low concentrations (0.25 mM) by EIS, which makes 2-THTT an efficient inhibitor in aerated 0.5 M H2SO4 solution. The adsorption of 5-substituted tetrazoles on copper surface obeys the Langmuir isotherm. All the computed quantum chemical parameters are found to correlate well with experimental inhibition efficiencies of inhibitors.

Share and Cite:

P. Liu, X. Fang, Y. Tang, C. Sun and C. Yao, "Electrochemical and Quantum Chemical Studies of 5-Substituted Tetrazoles as Corrosion Inhibitors for Copper in Aerated 0.5 M H2SO4 Solution," Materials Sciences and Applications, Vol. 2 No. 9, 2011, pp. 1268-1278. doi: 10.4236/msa.2011.29171.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. K. Gomma, “Effect of Azole Compounds on Corrosion of Copper in Acid Medium,” Materials Chemistry and Physics, Vol. 56, No. 1, September 1998, pp. 27-34. doi:10.1016/S0254-0584(98)00086-8
[2] M. A. Elmorsi and A. M. Hassanien, “Corrosion Inhibition of Copper by Heterocyclic Compounds,” Corrosion Science, Vol. 41, No. 12, December 1999, pp. 2337-2352. doi:10.1016/S0010-938X(99)00061-X
[3] J. M. Bastidas, P. Pinilla, E. Cano, J. L. Polo and S. Miguel, “Copper Corrosion Inhibition by Triphenylmethane Derivatives in Sulphuric Acid Media,” Corrosion Science, Vol. 45, No. 2, February 2003, pp. 427-449. doi:10.1016/S0010-938X(02)00123-3
[4] S. A. Abd El-Maksoud, “The Effect of Hexadecyl Pyridinium Bromide and Hexadecyl Trimethyl Ammonium Bromide on the Behaviour of Iron and Copper in Acidic Solutions,” Journal of Electroanalytical Chemistry, Vol. 565, No. 2, April 2004, pp. 321-328. doi:10.1016/j.jelechem.2003.10.026
[5] A. G. Christy, A. Lowe, V. Otieno-Alego, M. Stoll and R. D. Webster, “Voltammetric and Raman Microspectroscopic Studies on Artificial Copper Pits Grown in Simulated Potable Water,” Journal of Applied Electrochemistry, Vol. 34, No. 2, 2004, pp. 225-233. doi:10.1023/B:JACH.0000009923.35223.f8
[6] E. M. Sherif, R. M. Erasmus and J. D. Comins, “Corrosion of Copper in Aerated Acidic Pickling Solutions and Its Inhibition by 3-Amino-1,2,4-Triazole-5-Thiol,” Journal of Colloid and Interface Science, Vol. 306, No. 1, February 2007, pp. 96-104. doi:10.1016/j.jcis.2006.10.029
[7] Y. M. Tang, W. Z. Yang, X. S. Yin, Y. Liu, R. Wan and J. T. Wang, “Phenyl-Substituted Amino Thiadiazoles as Corrosion Inhibitors for Copper in 0.5 M H2SO4,” Materials Chemistry and Physics, Vol. 116, No. 2-3, August 2009, pp. 479-483.
[8] S. Kertit, H. Es-Soufi, B. Hammouti and M. Benkaddour, “1-Phenyl-5-Mercapto-l,2,3,4-téTrazole (PMT): Un Nouvel Inhibiteur de Corrosion de L'alliage Cu-Zn Efficace à trEs Faible Concentration,” Journal de Chimie Physique et de Physico-Chimie Biologique, Vol. 95, No. 9, 1998, pp. 2070-2082.
[9] X. R. Ye, X. Q. Xin, J. J. Zhu and Z. L. Xue, “Coordination Compound Films of 1-Phenyl-5-Mercapto Tetrazole on Copper Surface,” Applied Surface Science, Vol. 135, No. 1-4, 1998, pp. 307-317. doi:10.1016/S0169-4332(98)00301-8
[10] M. Mihit, S. El Issami, M. Bouklah, L. Bazzi, B. Hammouti, E. Ait Addi, R. Salghi and S. Kertit, “The Inhibited Effect of Some Tetrazolic Compounds towards the Corrosion of Brass in Nitric Acid Solution,” Applied Surface Science, Vol. 252, No. 6, 2006, pp. 2389-2395. doi:10.1016/j.apsusc.2005.04.009
[11] E. Sz?cs, Gy. Vastag, A. Shaban and E. Kálmán, “Electrochemical Behaviour of an Inhibitor Film Formed on Copper Surface,” Corrosion Science, Vol. 47, No. 4, 2005, pp. 893-908.
[12] J. Telegdi, A. Shaban and E. Kálmán, “EQCM Study of Copper and Iron Corrosion Inhibition in Presence of Organic Inhibitors and Biocides,” Electrochimica Acta, Vol. 45, No. 22-23, 2000, pp. 3639-3647. doi:10.1016/S0013-4686(00)00447-3
[13] M. Mihit, R. Salghi, S. El Issami, L. Bazzi, B. Hammouti, El. Ait Addi and S. Kertit, “A Study of Tetrazoles Derivatives as Corrosion Inhibitors of Copper in Nitric Acid,” Pigment & Resin Technology, Vol. 35, No. 3, 2006, pp. 151-157.
[14] E.-S. M. Sherif, R. M. Erasmus and J. D. Comins, “Inhibition of Copper Corrosion in Acidic Chloride Pickling Solutions by 5-(3-Aminophenyl)-Tetrazole as a Corrosion Inhibitor,” Corrosion Science, Vol. 50, No. 12, 2008, pp. 3439-3445. doi:10.1016/j.corsci.2008.10.002
[15] T. Arslan, F. Kandemirli, E. E. Ebenso, I. Love and H. Alemu, “Quantum Chemical Studies on the Corrosion Inhibition of Some Sulphonamides on Mild Steel in Acidic Medium,” Corrosion Science, Vol. 51, No. 1, January 2009, pp. 35-47. doi:10.1016/j.corsci.2008.10.016
[16] M. J. Bahrami, S. M. A. Hosseini and P. Pilvar, “Experimental and Theoretical Investigation of Organic Compounds as Inhibitors for Mild Steel Corrosion in Sulfuric Acid Medium,” Corrosion Science, Vol. 52, No. 9, September 2010, pp. 2793-2803.
[17] F. Kandemirli and S. Sagdinc, “Theoretical Study of Corrosion Inhibition of Amides and Thiosemicarbazones,” Corrosion Science, Vol. 49, No. 5, May 2007, pp. 2118-2130. doi:10.1016/j.corsci.2006.10.026
[18] D. Wang, S. Li, Y. Ying, M. Wang, H. Xiao and Z. Chen, “Theoretical and Experimental Studies of Structure and Inhibition Efficiency of Imidazoline Derivatives,” Corrosion Science, Vol. 41, No. 10, October 1999, pp. 1911-1919. doi:10.1016/S0010-938X(99)00027-X
[19] G. Bereket, C. Ogretir and A. Yurt, “Quantum Mechanical Calculations on Some 4-Methyl-5-Substituted Imidazole Derivatives as Acidic Corrosion Inhibitor for Zinc,” Journal of Molecular Structure: THEOCHEM, Vol. 571, No. 1-3, August 2001, pp. 139-145. doi:10.1016/S0166-1280(01)00552-8
[20] N. Khalil, “Quantum Chemical Approach of Corrosion Inhibition,” Electrochimica Acta, Vol. 48, No. 18, August 2003, pp. 2635-2640. doi:10.1016/S0013-4686(03)00307-4
[21] J. Zhang, J. Liu, W. Yu, Y. Yan, L. You and L. Liu, “Molecular Modeling of the Inhibition Mechanism of 1-(2-Aminoethyl)-2-Alkyl-Imidazoline,” Corrosion Science, Vol. 52, No. 6, June 2010, pp. 2059-2065. doi:10.1016/j.corsci.2010.02.018
[22] M. Lebrini, F. Bentiss, H. Vezin and M. Lagrenée, “The Inhibition of Mild Steel Corrosion in Acidic Solutions by 2,5-Bis(4-Pyridyl)-1,3,4-Thiadiazole: Structure-Activity Correlation,” Corrosion Science, Vol. 48, No. 5, May 2006, pp. 1279-1291. doi:10.1016/j.corsci.2005.05.001
[23] H. Ashassi-Sorkhabi, B. Shaabani and D. Seifzadeh, “Effect of Some Pyrimidinic Shciff Bases on the Corrosion of Mild Steel in Hydrochloric Acid Solution,” Electrochimica Acta, Vol. 50, No. 16-17, May 2005, pp. 3446- 3452.
[24] J. J. Shie and J. M. Fang, “Direct Conversion of Aldehydes to Amides, Tetrazoles, and Triazines in Aqueous Media by One-Pot Tandem Reactions,” Journal of Organic Chemistry, Vol. 68, No. 3, 2003, pp. 1158-1160. doi:10.1021/jo026407z
[25] B. El Mehdi, B. Mernari, M. Traisnel, F. Bentiss and M. Lagrenée, “Synthesis and Comparative Study of the Inhibitive Effect of Some New Triazole Derivatives towards Corrosion of Mild Steel in Hydrochloric Acid Solution,” Materials Chemistry and Physics, Vol. 77, No. 2, January 2003, pp. 489-496. doi:10.1016/S0254-0584(02)00085-8
[26] O. L. Riggs Jr., “Corrosion Inhibitors (2nd Edition),” C. C. Nathan, Houston, 1973.
[27] E. S. Ferreira, C. Giancomelli, F. C. Giacomelli and A. Spinelli, “Evaluation of the Inhibitor Effect of L-Ascorbic Acid on the Corrosion of Mild Steel,” Materials Chemistry and Physics, Vol. 83, No. 1, 2004, pp. 129-134. doi:10.1016/j.matchemphys.2003.09.020
[28] G. Lyberatos and L. Kobotiatis, “Inhibition of Aluminum 7075 Alloy Corrosion by the Concerted Action of Nitrate and Oxalate Salts,” Corrosion, Vol. 47, No. 11, 1991, pp. 820-824.
[29] S. Magaino, “Corrosion Rate of Copper Rotating-Disk- Electrode in Simulated Acid Rain,” Electrochimica Acta, Vol. 42, No. 3, 1997, pp. 377-382. doi:10.1016/S0013-4686(96)00225-3
[30] Y. Lu, W. Wang, H. Xu, X. Kong and J. Wang, “Copper Corrosion and Anodic Electrodissolution Mechanisms in Naturally Aerated Stagnant 0.5 M H2SO4,” Corrosion Science, Vol. 52, No. 3, 2010, pp. 780-787. doi:10.1016/j.corsci.2009.10.037
[31] F. Bensajjay, S. Alehyen, M. El Achouri and S. Kertit, “Corrosion Inhibition of Steel by 1-Phenyl 5-Mercapto 1,2,3,4-Tetrazole in Acidic Environments (0.5 M H2SO4 and 1/3 M H3PO4),” Anti-Corrosion Methods and Materials, Vol. 50, No. 6, 2003, pp. 402-409.
[32] M. S. Morad and A. M. Kamal El-Dean, “2,2’-Dithiobis (3-Cyano-4,6-Dimethylpyridine): A New Class of Acid Corrosion Inhibitors for Mild Steel,” Corrosion Science, Vol. 48, No. 11, 2006, pp. 3398-3412. doi:10.1016/j.corsci.2005.12.006
[33] A. Zarrouk, I. Warad, B. Hammouti, A. Dafali, S. S. Al-Deyab and N. Benchat, “The Effect of Temperature on the Corrosion of Cu/HNO3 in the Presence of Organic Inhibitor: Part-2,” International Journal of Electrochemical Science, Vol. 5, No. 10, 2010, pp. 1516-1526.
[34] S. Aloui, I. Forsal, M. Sfaira, M. Ebn Touhami, M. Taleb, M. Filali Baba and M. Daoudi, “New Mechanism Synthesis of 1,4-Benzothiazine and Its Inhibition Performance on Mild Steel in Hydrochloric Acid,” Portugaliae Electrochimica Acta, Vol. 27, No. 5, 2009, pp. 599-613. doi:10.4152/pea.200905599
[35] M. Behpour, S. M. Ghoreishi, A. Gandomi-Niasar, N. Soltani and M. Salavati-Niasari, “The Inhibition of Mild Steel Corrosion in Hydrochloric Acid Media by Two Schiff Base Compounds,” Journal of Materials Science, Vol. 44, No. 10, 2009, pp. 2444-2453. doi:10.1007/s10853-009-3309-y
[36] E. E. Oguzie, “Adsorption and Corrosion Inhibitive Properties of Azadirachta Indica in Acid Solutions,” Pigment & Resin Technology, Vol. 35, No. 6, 2006, pp. 334-340.
[37] S. Martinez and I. ?tern, “Inhibitory Mechanism of Low- Carbon Steel Corrosion by Mimosa Tannin in Sulphuric Acid Solutions,” Journal of Applied Electrochemistry, Vol. 31, No. 9, 2001, pp. 973-978. doi:10.1023/A:1017989510605
[38] M. Behpour, S. M. Ghoreishi, N. Soltani and M. Salavati-Niasari, “The Inhibitive Effect of Some bis-N,S-bidentate Schiff Bases on Corrosion Behaviour of 304 Stainless Steel in Hydrochloric Acid Solution,” Corrosion Science, Vol. 51, No. 5, 2009, pp. 1073-1082.
[39] I. Ahamad, R. Prasad and M. A. Quraishi, “Thermodynamic, Electrochemical and Quantum Chemical Investigation of Some Schiff Bases as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solutions,” Corrosion Science, Vol. 52, No. 3, 2010, pp. 933-942. doi:10.1016/j.corsci.2009.11.016
[40] S. Martinez and I. Stern, “Thermodynamic Characterization of Metal Dissolution and Inhibitor Adsorption Processes in the Low Carbon Steel/Mimosa Tannin/Sulfuric Acid System,” Applied Surface Science, Vol. 199, No. 1-4, 2002, pp. 83-89. doi:10.1016/S0169-4332(02)00546-9
[41] T. Szauer and A. Brandt, “Influence of Bromide and Thiourea Additions on the Reduction of Metal Ions from Molten Ca(NO3)2?4H2O at the Mercury Electrode—I. Complex Formation,” Electrochimica Acta, Vol. 26, No. 2, 1981, pp. 203-209. doi:10.1016/0013-4686(81)85004-9
[42] Y. Tang, X. Yang, W. Yang, Y. Chen and R. Wan, “Experimental and Molecular Dynamics Studies on Corrosion Inhibition of Mild Steel by 2-Amino-5-Phenyl-1,3,4- Thia-Diazole,” Corrosion Science, Vol. 52, No. 1, 2010, pp. 242-249. doi:10.1016/j.corsci.2009.09.010
[43] Y. Abboud, A. Abourriche, T. Saffaj, M. Berrada, M. Charrouf, A. Bennamara and H. Hannache, “A Novel Azo Dye, 8-Quinolinol-5-Azoantipyrine as Corrosion Inhibitor for Mild Steel in Acidic Media,” Desalination, Vol. 237, No. 1-3, 2009, pp. 175-189.
[44] A. M. Shams El Din, M. E. El Dahshan and A. M. Taj El Din, “Dissolution of Copper and Copper-Nickel Alloys in Aerated Dilute HCl Solutions,” Desalination, Vol. 130, No. 1, 2000, pp. 89-97.
[45] E. M. Sherif, R. M. Erasmus and J. D. Comins, “Effects of 3-Amino-1,2,4-Triazole on the Inhibition of Copper Corrosion in Acidic Chloride Solutions,” Journal of Colloid and Interface Science, Vol. 311, No. 1, 2007, pp. 144-151. doi:10.1016/j.jcis.2007.02.064
[46] M. El Achouri, S. Kertit, H. M. Gouttaya, B. Nciri, Y. Bensouda, L. Perez, M. R. Infante and K. Elkacemi, “Corrosion Inhibition of Iron in 1 M HCl by Some Gemini Surfactants in the Series of Alkanediyl-α,ω-Bis-(Di- methyl Tetradecyl Ammonium Bromide),” Progress in Organic Coatings, Vol. 43, No. 4, 2001, pp. 267-273. doi:10.1016/S0300-9440(01)00208-9
[47] A. Chetouani, A. Aouniti, B. Hammouti, N. Benchat, T. Benhadda and S. Kertit, “Corrosion Inhibitors for Iron in Hydrochloride Acid Solution by Newly Synthesised Pyridazine Derivatives,” Corrosion Science, Vol. 45, No. 8, 2003, pp. 1675-1684. doi:10.1016/S0010-938X(03)00018-0
[48] S. Li, S. Chen, S. Lei, H. Ma, R. Yu and D. Liu, “Investigation on Some Schiff Bases as HCl Corrosioninhibitors for Copper,” Corrosion Science, Vol. 41, No. 7, 1999, pp. 1273-1287. doi:10.1016/S0010-938X(98)00183-8
[49] X. Wu, H. Ma, S. Chen, Z. Xu and A. Sui, “General Equivalent Circuts for Faradic Electrode Processes under Electrochemical Reaction Control,” Journal of The Electrochemical Society, Vol. 146, No. 5, May 1999, pp. 1847-1853. doi:10.1149/1.1391854
[50] C. H. Hsu and F. Mansfeld, “Technical Note: Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance,” Corrosion, Vol. 57, No. 9, 2001, pp. 747-748.
[51] R. G. Kelly, J. R. Scully, D. W. Shoesmith and R. G. Buchheit, “Electrochemical Techniques in Corrosion Science and Engineering,” Marcel Dekker Inc., New York, 2002.
[52] M. Lebrini, M. Lagrenee, M. Traisnel, L. Gengembre, H. Vezin and F. Bentiss, “Enhanced Corrosion Resistance of Mild Steel in Normal Sulfuric Acid Medium by 2,5-Bis (n-Thienyl)-1,3,4-Thiadiazoles: Electrochemical, X-Ray Photoelectron Spectroscopy and Theoretical Studies,” Applied Surface Science, Vol. 253, No. 23, 2007, pp. 9267-9276. doi:10.1016/j.apsusc.2007.05.062
[53] F. M. Donahue and K. Nobe, “Theory of Organic Corrosion Inhibitors,” Journal of the Electrochemical Society, Vol. 112, No. 9, 1965, pp. 886-891. doi:10.1149/1.2423723
[54] M. Behpour , S. M. Ghoreishi, N. Soltani, M. Salavati- Niasari, M. Hamadanian and A. Gandomi, “Electroche- mical and Theoretical Investigation on the Corrosion Inhibition of Mild Steel by Thiosalicylaldehyde Derivatives in Hydrochloric Acid Solution,” Corrosion Science, Vol. 50, No. 8, 2008, pp. 2172-2181. doi:10.1016/j.corsci.2008.06.020
[55] D. Q. Zhang, Z. X. An, Q. Y. Pan, L. X. Gao and G. D. Zhou, “Comparative Study of Bis-Piperidiniummethyl Urea and Mono-Piperidiniummethyl-Urea as Volatile Corrosion Inhibitors for Mild Steel,” Corrosion Science, Vol. 48, No. 6, 2006, pp. 1437-1448. doi:10.1016/j.corsci.2005.06.007
[56] I. Ahamad, R. Prasad and M. A. Quraishi, “Adsorption and Inhibitive Properties of Some New Mannich Bases of Isatin Derivatives on Corrosion of Mild Steel in Acidic Media,” Corrosion Science, Vol. 52, No. 4, 2010, pp. 1472-1481. doi:10.1016/j.corsci.2010.01.015
[57] P. Zhao, Q. Liang and Y. Li, “Electrochemical, SEM/ EDS and Quantum Chemical Study of Phthalocyanines as Corrosion Inhibitors for Mild Steel in 1 mol/l HCl,” Applied Surface Science, Vol. 252, No.5, 2005, pp. 1596- 1607. doi:10.1016/j.apsusc.2005.02.121

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.