Synthesis and Characterization of (Ru-Sn)O2 Nanoparticles for Supercapacitors

Abstract

The electrode materials SnO2, RuO2 and (Sn-Ru)O2 were synthesized through precipitation method from SnCl2·2H2O and RuCl2·2H2O solutions. The obtained nano-sized pristine products were characterized using X-ray diffractometry, Scanning Electron Microscopy (SEM), differential scanning calorimetry (DSC)-thermogravimetric analysis (TGA) and cyclic voltammetry (CV). The Debye–Scherrer formula was used to estimate the average size of the nanoparticles SnO2 (36 nm), RuO2(24 nm), and (Sn-Ru)O2 (19 nm). Electrochemical studies were carried out to examine the capacitance of SnO2, RuO2, (Sn-Ru)O2 electrodes in 0.5 M H2SO4 at various scan rates. The estimated electrode capacitance was de-termined to decrease with an increase of scan rate.

Share and Cite:

V. Channu, R. Holze, S. Sr., E. Jr., Q. Williams and R. Kalluru, "Synthesis and Characterization of (Ru-Sn)O2 Nanoparticles for Supercapacitors," Materials Sciences and Applications, Vol. 2 No. 9, 2011, pp. 1175-1179. doi: 10.4236/msa.2011.29158.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. E. Conway, “Transition from ‘Supercapacitor’ to ‘Battery’ Behavior in Electrochemical Energy Storage,” Journal of the Electrochemical Society, Vol. 138, No. 6, 1991, pp. 1539-1548. doi:10.1149/1.2085829
[2] S. Trasatti and P. Kurzweil, “Electrochemical Supercapacitors as Versatile Energy Stores,” Platinum Metals Review, Vol. 38, 1994, pp. 46-56.
[3] S. Sarangapani, B. V. Tilak and C. P. Chen, “Materials for Electrochemical Capacitors,” Journal of the Electrochemical Society, Vol. 143, 1996, pp. 3791-3799. doi:10.1149/1.1837291
[4] J. M. Miller, B. Dunn, T. D. Tran and R. W. Pekala, “Deposi-tion of Ruthenium Nanoparticles on Carbon Aerogels for High Energy Density Supercapacitor Electrodes,” Journal of the Electrochemical Society, Vol. 144, No. 12, 1997, pp. L309-L311. doi:10.1149/1.1838142
[5] J. P. Zheng, P. J. Cygan and T. R. Zow, “Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors,” Journal of the Electrochemical Society, Vol. 142, 1995, pp. 2699- 2703. doi:10.1149/1.2050077
[6] K.C. Liu and M. A. Anderson, “Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors,” Journal of the Electrochemical Society, Vol. 143, No. 1, 1996, pp. 124-130. doi:10.1149/1.1836396
[7] V. Srinivasan and J. W. Weinder, “An Electrochemical Route for Making Porous Nickel Oxide Electrochemical Capacitors,” Journal of the Electrochemical Society, Vol. 144, No. 8, 1997, pp. L210-L213. doi:10.1149/1.1837859
[8] V. Srinivasan and J. W. Weinder, “Studies on the Capacitance of Nickel Oxide Films: Effect of Heating Temperature and Electrolyte Concentration,” Journal of the Electrochemical Society, Vol. 147, No. 3, 2000, pp. 880- 885. doi:10.1149/1.1393286
[9] C. Lin, J. A. Ritter and B. N. Popov, “Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors,” Journal of the Electrochemical Society, Vol. 145, No. 12, 1998, pp. 4097-4103. doi:10.1149/1.1838920
[10] S. C. Pang, M. A. Anderson and T. W. Chapman, “Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide,” Journal of the Electrochemical Society, Vol.147, No. 2, 2000, pp. 444- 450. doi:10.1149/1.1393216
[11] S. C. Pang and M. A. Anderson, “Novel Electrode materials for Electrochemical Capacitors: Part II. Material Characterization of Sol-Gel-Derived and Electrodeposited Manganese Dioxide Thin Films,” Journal of Materials Research, Vol. 15, No. 10, 2000, pp. 2096-2106. doi:10.1557/JMR.2000.0302
[12] X. U. Jeong and A. Manthiram, “Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes,” Journal of the Electrochemical Society, Vol. 149, No. 11, 2002, pp. A1419-A1422. doi:10.1149/1.1511188
[13] N.-L. Wu and S.-Y. Wang, “Preparation of Tin Oxide Gels with Versatile Pore Structures,” Journal of Materials Science, Vol. 34, No. 12, 1999, pp. 2807-2812. doi:10.1023/A:1004618915020
[14] C.-C. Hu, K.-H. Chang and C.-C. Wang, “Two-Step Hydrothermal Synthesis of Ru-Sn Oxide Composites for Electrochemical Supercapacitors,” Electrochimica Acta, Vol. 52, No. 3, 2007, pp. 4411-4418. doi:10.1016/j.electacta.2006.12.022
[15] J. Zhu, Z. Lu, S. T. Aruna, D. Aurbach and A. Gedanken, “Sonochemical Synthesis of SnO2 Nanoparticles and Their Preliminary Study as Li Insertion Electrodes,” Chemistry of Materials, Vol. 12, No. 9, 2000, pp. 2557- 2566. doi:10.1021/cm990683l
[16] R. K. Selvan, I. Perelshtein, N. Perkas and A. Gedanken, “Synthesis of Hexagonal-Shaped SnO2 Nanocrystals and SnO2@C Nanocomposites for Electrochemical Redox Supercapacitors,” The Journal of Physical Chemistry C, Vol. 112, No. 6, 2008, pp. 1825-1830. doi:10.1021/jp076995q
[17] C.-C. Hu and K.-H. Chang, “Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors: Effects of Codepositing Iridium Oxide,” Electrochimica Acta, Vol. 45, No. 17, 2000, pp. 2685- 2696. doi:10.1016/S0013-4686(00)00386-8
[18] K.-H. Chang and C.-C. Hu, “Hydrothermal Synthesis of Binary Ru-Ti Oxides with Excellent Performances for Supercapacitors,” Electrochimica Acta, Vol. 52, No. 4, 2006, pp. 1749-1757. doi:10.1016/j.electacta.2006.01.076
[19] C.-C. Hu and K.-H. Chang, “Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Supercapacitors: Effects of the Chloride Precursor Transformation,” Journal of Power Sources, Vol. 112, No. 2, 2002, pp. 401-409. doi:10.1016/S0378-7753(02)00397-X
[20] C.-C. Hu, H.-Yi. Guo, K-H. Chang and C.-C. Huang, “Anodic Composite Deposition of RuO2?xH2O-TiO2 for Electrochemical Supercapacitors,” Electrochemistry Communications, Vol. 11, No. 8, 2009, pp. 1631-1634. doi:10.1016/j.elecom.2009.06.014
[21] J. Ribeiro and A. R. De Andrade, “Characterization of RuO2-Ta2O5 Coated Titanium Electrode,” Journal of the Electrochemical Society, Vol. 151, No. 10, 2004, pp. D106-D112. doi:10.1149/1.1787174
[22] C.-C. Hu, Yi-L. Yang and T.-C. Lee, “Microwave-As- sisted Hydrothermal Synthesis of RuO2?xH2O-TiO2 Nanocomposites for High Power Supercapacitors,” Electrochemical and Solid-State Letters, Vol. 13, No. 12, 2010, pp. A173-A176. doi:10.1149/1.3486437
[23] N.-L. Wu, “Nanocrystalline Oxide Supercapacitors,” Materials Chemistry and Physics, Vol. 75, No. 1, 2002, pp. 6-11.
[24] C. C. Hu, C. C. Wang and K. H. Chang, “A Comparison Study of the Capacitive Behavior for Sol-Gel-Derived and Co-annealed Ruthenium-Tin Oxide Composites,” Electrochimica Acta, Vol. 52, No. 7, 2007, pp. 2691-2700. doi:10.1016/j.electacta.2006.09.026

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.