Share This Article:

Elements of Real Hilbert Spaces Theory

DOI: 10.4236/oalib.1101554    970 Downloads   1,331 Views  
Author(s)    Leave a comment

ABSTRACT

We discuss an alternative version of non-relativistic Newtonian mechanics in terms of real Hilbert space mathematical framework. It is demonstrated that the physics of this scheme is in accordance with the standard formulation. Heisenberg-Schrodinger non-relativistic quantum mechanics is considered adequate and complete. Since the suggested theory is dispersion free, linear superposition principle is not violated but cannot affect results of measurements due to spectral decomposition theorem for self-adjoint operators (the collapse of wave function).

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Sepunaru, D. (2015) Elements of Real Hilbert Spaces Theory. Open Access Library Journal, 2, 1-9. doi: 10.4236/oalib.1101554.

References

[1] Aharonov, Y. and Vaidman, L. (1990) Properties of a Quantum System during the Time Interval between Two Measurements. Physical Review A, 41, 11.
http://dx.doi.org/10.1103/PhysRevA.41.11
[2] von Neumann, J. (1931) Mathematische Grundlagen der Quantenmechanik. Berlin.
[3] Schrödinger, E. (1935) Die gegenwartige situation in der quantenmechanik. Die Naturwissenschaften, 23, 807, 823, 844.
[4] Courant, R. and Hilbert, D. (1931) Methoden der Mathematischen Physik. Berlin.
http://dx.doi.org/10.1007/978-3-642-47436-1
[5] von Neumann, J. (1931) über Funktionen von Funktionaloperatoren. Annals of Mathematics, 32.
[6] Eckart, C. (1926) Operator Calculus and the Solution of the Equation of Quantum Dynamics. Physical Review, 28, 71.
[7] Schrödinger, E. (1926) Quantizierungals Eigenwert Problem (Erste Mitteilung). Annalen der Physik, 79, 361-376;
Schrödinger, E. (1926) Quantizierungals Eigenwert Problem (Zweite Mitteilung). Annalen der Physik, 79, 489-527;
Schrödinger, E. (1926) über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanikzu der meinen. Annalen der Physik, 79, 734-756;
Schrödinger, E. (1926) Quantisierungals Eigenwert Problem (Dritte Mitteilung). Annalen der Physik, 80, 437-490;
Schrödinger, E. (1926) Quantisierungals Eigenwert Problem (Vierte Mitteilung). Annalen der Physik, 81, 109-139.
[8] Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T. and Exawa, H. (1989) Demonstration of Single-Electron Buildup of an Interference Pattern. American Journal of Physics, 57, 117.
http://dx.doi.org/10.1119/1.16104
[9] Carruthers, P. and Nieto, M. (1968) Phase and Angle Variables in Quantum Mechanics. Reviews of Modern Physics, 40, 411.
http://dx.doi.org/10.1103/RevModPhys.40.411
[10] Bouwmeester, D. and Zeilinger, A. (2000) The Physics of Quantum Information. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-662-04209-0
[11] Silverman, M.P. (1995) More than One Mystery. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-1-4612-2504-1

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.