ITS and pB2.5 gene expression of Naegleria fowleri in drug resistance

Abstract

Naegleria fowleri was causative agent of primary amoebic meningoencephalitis (PAM). Accroding to the failure of treatment, several researches reported the activity of chemotherapeutic drugs against N.fowleri but we did not know the drug resistance of the amoebae. The purpose of this study was to examine the effects of drugs (amphotericin B, artesunate, azithromycin, voriconazole, chlorpromazine, fluconazole and gentamicin sulphate) on ITS and pB2.3 genes of Naegleria fowleri trophozoites. Our study demonstrated gene expression of treated N.fowleri by RT-PCR. The results reviewed that ITS gene of N. fowleri showed up regulate to amphotericin B, azithromicin and gentamicin sulphate, while pB2.3 gene showed up regulate to artesunate. These results compared with beta actin (house keeping gene) expression at time intervals 15 - 120 min. The change of gene expression of treated N.fowleri was possibly to cause of drug resistance. The mechanism of drug resistance genes ITS and pB2.3 of N.fowleri should be clarified in further study.

Share and Cite:

Rabablert, J. , Tiewcharoen, S. and Junnu, V. (2011) ITS and pB2.5 gene expression of Naegleria fowleri in drug resistance. Health, 3, 529-533. doi: 10.4236/health.2011.38088.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Hebbar, S., Bairy, I., Bhaskaranand, N., Upadhyaya, S., Sarma, M.S., Shetty, A.K.(2005) Fatal case of Naegleria fowleri meningo-encephalitis in an infant: Case report. Annals of Tropical Paediatrics, 25, 223-226. doi:10.1179/146532805X58166
[2] Soltow, S.M. and Brenner, G.M. (2007) Synergistic activities of azithromycin and amphotericin B against Naegleria fowleri in vitro and in a mouse model of primary amebic meningoencephalitis. Antimicrobial Agents and Chemotherapy, 51, 23-27. doi:10.1128/AAC.00788-06
[3] Donadio, S., Maffioli, S., Monciardini, P., Sosio, M. and Jabes, D. (2010) Antibiotic discovery in the twenty-first century: current trends and future perspectives. The Journal of Antibiotics, 63, 423-430. doi:10.1038/ja.2010.62
[4] Barker, K.S. and Rogers, P.D. (2006) Recent insights into the mechanisms of antifungal resistance. Current Infectious Disease Reports, 8, 449-456. doi:10.1007/s11908-006-0019-3
[5] Akins, R.A. (2005) An update on antifungal targets and mechanisms of resistance in Candida albicans. Medical Mycology, 43, 285-318. doi:10.1080/13693780500138971
[6] Vermitsky, J.P. and Edlind, T.D. (2004) Azole resistance in Candida glabrata: Coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrobial Agents and Chemotherapy, 48, 3773-3781. doi:10.1128/AAC.48.10.3773-3781.2004
[7] Tiewcharoen, S., Rabablert, J., Worawirunwong, D., Pratumsrikajorn, T., Limsangurai, S. and Junnu, V. (2011) Activity of chlorpromazine on nfa1 and Mp2CL5 genes of Naegleria fowleri trophozoites. Health, 3, 166-177. doi:10.4236/health.2011.33032
[8] Robinson, B.S, Monis, P.T. and Dobson, P.J (2006) Rapid, sensitive, and discriminating identification of Naegleria spp. by real-time PCR and melting-curve. Applied and Environmental Microbiology, 72, 5857-5863. doi:10.1128/AEM.00113-06
[9] Tsvetkova, N., Schild, M., Panaiotov, S., et al. (2004) The identification of free-living environmental isolates of amoebae from Bulgaria. Parasitology Research, 92, 405-413.
[10] Tiewcharoen, S., Rabablert, J. and Junnu, V. (2009) In vitro susceptibility of Naegleria fowleri trophozoites to, amphotericin B-combined chlorpromazine. Research Journal of Microbiology, 4, 320-333. doi:10.3923/jm.2009.320.333
[11] Zhang, L., Zhang, Y., Zhoul, Y., et al. (2002) Response of gene expression in Saccharomyces cerevisiae to amphotericin B and nystatin measured by microarrays. Journal Antimicrobial Chemotheapy, 49, 905-915. doi:10.1093/jac/dkf001
[12] Manfredi, R., Fulgaro, C., Sabbatani, S., Legnani, G. and Fasulo G. (2006) Emergence of amphotericin B-resistant Cryptococcus laurentii meningoencephalitis shortly after treatment for Cryptococcus neoformans meningitis in a patient with aids. Aids Patient Care and STDs, 20, 227-232. doi:10.1089/apc.2006.20.227
[13] Orozco, E., Marchat, L.A, Gómez, C., López-Camarillo, C. and Pérez, D.G. (2009) Drug resistance mechanisms in Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, and opportunistic anaerobic protozoa. Antimicrobial Drug Resistance Infectious Disease, F, 549-559.
[14] Singh, A.K, Papadopoulou, B., Ouellette, M (2009) Gene Amplification in Amphotericin B-Resistant Leishmania tarentolae. Experimental Parasitology, 99, 141-147. doi:10.1006/expr.2001.4663
[15] O'Shaughnessy, E.M, Lyman, C.A. and Walsh, T.J. (2009) Amphotericin B: Polyene resistance mechanisms. Antimicrobial Drug Resistance Infectious Disease, D, 295-305.
[16] Mandell, G.L. and Coleman, E.J. (2000) Activities of antimicrobial agents against intracellular pneumococci. Antimicrobial Agents and Chemotherapy, 44, 2561-2563. doi:10.1128/AAC.44.9.2561-2563.2000
[17] Mulet, X., Maciá, M.D., Mena, A., Juan, C., Pérez, J.L., Oliver, A. (2009) Azithromycin in Pseudomonas aeruginosa biofilms: Bactericidal activity and selection of nfxB mutants. Antimicrobial Agents and Chemotherapy, 53, 1552-1560. doi:10.1128/AAC.01264-08
[18] Galarza, P.G., Abad, R., Canigia, L.F, et al. (2010) New mutation in 23S rRNA gene associated with high level of azithromycin resistance in Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 54, 1652-1653.
[19] Gillis, R.J., White, K.G., Choi, K.H., et al. (2005) Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 49, 3858-3867. doi:10.1128/AAC.49.9.3858-3867.2005
[20] Chow, J.W. (2000) Aminoglycoside resistance in enterococci. Clinical Infectious Diseases, 31, 586-589. doi:10.1086/313949
[21] Livermore, D.M. (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clinical Infectious Diseases, 34, 634-640. doi:10.1086/338782
[22] Heuer, H., Kr?gerrecklenfort, E., Wellington, E.M., et al. (2002) Gentamicin resistance genes in environmental bacteria: Prevalence and transfer. FEMS Microbioogy Ecology, 42, 289-302.
[23] Hartwig, C.L, Rosenthal, A.S, D'Angelo, J., et al. (2009) Accumulation of artemisinin trioxane derivatives within neutral lipids of Plasmodium falciparum malaria parasites is endoperoxide-dependent. Biochemistry Pharmacology, 77, 322-336. doi:10.1016/j.bcp.2008.10.015
[24] Li, W., Mo, W., Shen, D., et al. (2005) Yeast model uncovers dual roles of mitochondria in the action of artemisinin. PLoS Genetics, 1, 329. doi:10.1371/journal.pgen.0010036
[25] Kaptein, S.J., Efferth, T., Leis, M., et al. (2006) The anti-malaria drug artesunate inhibits replication of cytomegalovirus in vitro and in vivo. Antiviral Research, 69, 60-69. doi:10.1016/j.antiviral.2005.10.003
[26] Meshnick, S.R. (2002) Artemisinin: Mechanisms of action, resistance and toxicity. International Journal for Parasitology, 32, 1655-1660. doi:10.1016/S0020-7519(02)00194-7
[27] Afonso, A., Hunt, P., Cheesman, S., et al. (2006) Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (Encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrobial Agents and Chemo-therapy, 50, 480-489. doi:10.1128/AAC.50.2.480-489.2006

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.