Effect of Ethylene Carbonate (EC) Plasticizer on Poly (Vinyl Chloride)-Liquid 50% Epoxidised Natural Rubber (LENR50) Based Polymer Electrolyte
M. Y. A. Rahman, A. Ahmad, T. K. Lee, Y. Farina, H. M. Dahlan
.
DOI: 10.4236/msa.2011.27111   PDF    HTML     6,311 Downloads   11,613 Views   Citations

Abstract

In this research, new thin film of a free standing electrolyte film containing poly(vinyl) chloride (PVC), 50% liquid epoxidized natural rubber (LENR50), Ethylene carbonate (EC) blends as a host for the electrolyte which was doped with lithium perchlorate (LiClO4) as the dopant salt was successfully prepared with solution casting technique. The polymer electrolyte of PVC-LENR50-EC-LiClO4 was characterized using impedance spectroscopy (EIS), scanning electron microscopy (SEM) and Fourier transform infrared (ATR-FTIR). From the EIS results shows that electrolyte exhibited the highest ionic conductivity of 2.1 × 10–7 S●cm–1 at the 30 wt.% of LiClO4. The ionic conductivity result was supported by the morphological studies which revealed the good homogeneity of the PVC-LENR50-EC blends as no phase separation was observed. The smooth surface can ease the mobility of ions in the system complexes. In addition, the formation of micro-pores by introducing lithium salts to the electrolyte also improved the transportation properties of L+ ions in the electrolyte system and hence improving its ionic conductivity. The features of complexation of the electrolytes were studied by ATR-FTIR.

Share and Cite:

M. Rahman, A. Ahmad, T. Lee, Y. Farina and H. Dahlan, "Effect of Ethylene Carbonate (EC) Plasticizer on Poly (Vinyl Chloride)-Liquid 50% Epoxidised Natural Rubber (LENR50) Based Polymer Electrolyte," Materials Sciences and Applications, Vol. 2 No. 7, 2011, pp. 817-825. doi: 10.4236/msa.2011.27111.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Ramesh and A. K. Arof, Strutural, “Thermal and Electrochemical Cell Characteristics of Poly(Vinyl Chloride)-Based Polymer Electrolytes,” Journal of Power Sources, Vol. 99, No. 1-2, 2001, pp. 41-47. doi:10.1016/S0378-7753(00)00690-X
[2] S. A. M. Noor, A. Ahmad, I. A Talib and M. Y. A. Rahman, “Morphology, Chemical Interaction, and Conductivity of a PEO-ENR50 Based on Solid Polymer Electrolyte,” Ionics, Vol. 16, No. 2, 2010, pp. 161-170. doi:10.1007/s11581-009-0385-6
[3] S. P. Low, A. Ahmad and M. Y. A. Rahman, “Effect of Ethylene Carbonate Plasticizer and TiO2 Nanoparticles on 49% (Methyl Methacrylate) Grafted Natural Rubber-Based Polymer Electrolytes,” Ionics, Vol. 16, No. 9, 2010, pp. 821-826. doi:10.1007/s11581-010-0470-x
[4] Z. Xuping, S. Lianyong, H. Hua, L. Hongli, L. Zuhong, “Investigation on Polyvinyl Chloride-Based Gel Electrolytes for an All-Solid-State Electrochromic System,” Journal of Materials Science Letters, Vol. 18, No. 21, 1999, pp. 1745-1747. doi:10.1023/A:1006614824598
[5] L. Famiza, M. Aziz, N. Katun, A. M. M. Ali and M. Z. Yahya, “The Role and Impact of the Rubber in Poly(Methyl Methacrylate)/Lithium Triflate Electrolyte,” Journal of Power Sources, Vol. 159, No. 2, 2006, pp.1401-1404. doi:10.1016/j.jpowsour.2005.12.007
[6] M. Y. A. Rahman, A. Ahmad and S. A. Wahab, “Electrical Properties of a Solid Polymeric Electrolyte of PVC-ZnO-LiClO4,” Ionics, Vol. 15, No. 2, 2009, pp. 221-225. doi:10.1007/s11581-008-0262-8
[7] M. D. Glasses, R. Idris, R. J. Latnam, R. G. Linford, W. S. Schlindwein, “Polymer Electrolytes Based on Modified Natural Rubber,” Solid State Ionics, Vol. 147, No. 3-4, 2002, pp. 289-294. doi:10.1016/S0167-2738(02)00024-3
[8] T. J. R. Reddy, V. B. S. Achari, A. K. Sharma, V. V. R. N. Rao, “Preparation and Electrical Characterization of (PV+KBrO3) Polymer Electrolytes for Solid State Battey Applications,” Ionics, Vol. 13, No. 6, 2007, pp. 435-439. doi:10.1007/s11581-007-0129-4
[9] H.M. Dahlan, Z.M.D. Khairul, A. Ibrahim, “Liquid Natural Rubber (LNR) as a Compatibilizer in NR/LLDPE Blends,” Journal of Applied Science, Vol. 78, No. 10, 2000, pp. 1776-1782. doi:10.1002/1097-4628(20001205)78:10<1776::AID-APP90>3.0.CO;2-G
[10] H. M. Dahlan, A.G. Harun, R. Mamat, “Production of Liquid Epoxidised Natural Rubber (ENR) by Photochemical Technique,” Journal Sains Nuklear Malaysia, Vol. 17, No.1, 1999, pp. 1-13.
[11] S. A. M. Noor, A. Ahmad, M. Y. A Rahman and I. A. Talib, “Solid Polymeric Electrolyte of the Poly(Ethylene) Oxide-50% Epeoxidized Natural Rubber-Lithium Triflate,” Natural Science, Vol. 2, No. 3, 2010, pp. 190-196. doi:10.4236/ns.2010.23029
[12] S. Rajendran and T. Uma, “FTIR and Conductivity Studies of PVC Based Polymer Electrolyte Systems,” Ionics, Vol. 7, No. 1-2, 2001, pp. 122-125. doi:10.1007/BF02375478
[13] S. Ramesh and M. F. Chai, “Conductivity, Dielectric Behaviour and FTIR Studies of High Molecular Weight Poly(Vinylchloride)-Lithium Triflate Polymer Electrolytes,” Materials Science and Engineering B, Vol. 139, No. 2-3, 2007, pp. 240-245. doi:10.1016/j.mseb.2007.03.003
[14] J. P. Soo, A. R. Han, S. S. Jae and S. Kim, “Influence of Crystallinity in the Ion Conductivity of PEO-Based Solid Electrolytes for Lithium Batteries,” Macromolecular Research, Vol. 18, No. 4, 2010, pp. 336-240. doi:10.1007/s13233-010-0407-2
[15] C.T. Rahman and K. Zaman, “Modification of PVC/ENR Blend by Electron Beam Irradiation: Effect of Crosslinking Agents,” Nuclear Instruments and Methods in Physics Research Section B, Vol. 152, No. 2-3, 1999, pp. 335-342. doi:10.1016/S0168-583X(99)00017-8
[16] C. T. Rahman, S. Kamaruddin, Y. Sivachalam, M. Talib and N. Yahya, “Radiation Crosslinking of Rubber Phase in Poly(Vinyl Chloride)/Epoxidized Natural Rubber Blend: Effect on Mechanical Properties,” Polymer Testing, Vol. 25, No. 4, 2006, pp. 475-480. doi:10.1016/j.polymertesting.2006.01.012
[17] H. M. Dahlan, Z. M. D Khairul and I. Abdullah, “Degradation of the Natural Rubber via Ultra-Violet (UV) Irradiation,” Journal Sains Nuklear Malaysia, Vol. 18, No. 1, 2000, pp. 9-21.
[18] G. B. Peter, “Solid State Electrochemistry,” Cambridge University Press, Cambridge, 1995.
[19] A. Ahmad, M. Y. A. Rahman, M. L. M Ali and H. Hashim, “Solid Polymeric Electrolyte of PVC-ENR-LiClO4,” Ionics, Vol. 13, No. 2, 2007, pp. 67-70. doi:10.1007/s11581-007-0074-2
[20] S. Rajendran, P. Sivakumar and S. B. Ravi, “Studies on the Salt Concentration of a PVdF-PVC Based Polymer Blend Electrolyte,” Journal of Power Sources, Vol. 164, No. 2, 2007, pp. 815-821. doi:10.1016/j.jpowsour.2006.09.011
[21] M. S. Su’ait, A. Ahmad, H. Hamzah and M. Y. A. Rahman, “Preparation and Characterization of PMMA-MG49-LiClO4 Solid Polymeric Electrolyte,” Journal of Physics D: Applied Physics, Vol. 42, No. 5, 2009, p. 055410. doi:10.1088/0022-3727/42/5/055410
[22] E. Z. Monikowska, Z. Florja’nczyk, E. R. Jo’nska, A. Werbanowska, A. Tomaszewka, N. Langwald, D. Golodnitsky, E. Peled, R. Kovarsky, S. H. Chung and S. G. Greenbaum, “Lithium Ion Transport of Solid Electrolytes Based on PEO/CF3SO3Li and Aluminum Carboxylate,” Journal of Power Sources, Vol. 173, No. 2, 2007, pp. 734-742. doi:10.1016/j.jpowsour.2007.05.059
[23] A. Ahmad, M. Y. A. Rahman, M. S. Su’ait, “Preparation and Characterization of PVC-LiClO4 Based Composite Polymer Electrolyte,” Physica B: Condensed Matter, Vol. 403, No. 21-22, 2008, pp. 4128-4131. doi:10.1016/j.physb.2008.08.021
[24] S. Ramesh, W. L. Chiam, M. Ezra and R. Durairaj, “Effect If the PVC on Ionic Conductivity, Crystallographic Structural, Morphologica and Thermal Characterizations in PMMA-PVC Blend-Based Polymer Electrolytes,” Thermochimica Acta, Vol. 511, No. 1-2, 2010, pp. 140-146. doi:10.1016/j.tca.2010.08.005
[25] C. Watchanida, “Preparation and Characterization of an Asymmetric Porous Poly(Vinyl Chloride)/Poly(Methyl Methacrylate-Co-Methacrylic Acid) Membrane,” Science Asia, Vol. 34, No. 4, 2008, pp. 385-389. doi:10.2306/scienceasia1513-1874.2008.34.385
[26] Razali, N. H. N. Mohd and N. M. Arjan, “Preparation and Characterization of the Polymer Electrolyte System ENR50/PVC/EC/PC/LiN(CF3SO2)2 for Electrochemical Device Applications,” Ionics, Vol. 13, No. 4, 2007, pp. 227-230. doi:10.1007/s11581-007-0096-9

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.