Synthesis of Amine-type Adsorbents with Emulsion Graft Polymerization of 4-hydroxybutyl Acrylate Glycidylether
Hongjuan Ma, Kazuaki Morita, Hiroyuki Hoshina, Noriaki Seko
.
DOI: 10.4236/msa.2011.27107   PDF    HTML     6,115 Downloads   10,633 Views   Citations

Abstract

Radiation induced graft polymerization on polymeric matrix followed by functionalization is widely accepted for the preparation of metal adsorbents. In this paper, a pre-irradiation method was used for emulsion graft polymerization of 4-hydroxybutyl acrylate glycidylether (4-HB) onto polyethylene/polypropylene (PE/PP) nonwoven fabric. The degree of grafting (Dg) which can be calculated by weight increment was determined as a function of reaction time, irradiation dose, and monomer concentration. After 30 kGy irradiation, with 4-HB concentration of 5%, surfactant Span 20 of 0.5% at 40°C for 2 h, the trunk polymer was made grafted at a Dg of 135%. 4-HB-grafted PE/PP nonwoven fabric was modified by ethylenediamine (EDA) in isopropyl alcohol (IPA) as a solvent at 60°C. With a Dg of 135%, the amine group density of the adsorbent is 2.8 mmol/g. The adsorption test was carried out by batch experiment in several metal ion solutions, and the removal ratio from the EDA modified adsorbent of the metal ions is in the order of Cu2+ > Pb2+ > Zn2+ > Ni2+ > Li+. Compared with glycidyl methacrylate (GMA) which is a typical functional monomer for graft polymerization, 4-HB-grafted adsorbent exhibited not only better mechanical property but also higher adsorption capacity of Cu2+ and Pb2+.

Share and Cite:

H. Ma, K. Morita, H. Hoshina and N. Seko, "Synthesis of Amine-type Adsorbents with Emulsion Graft Polymerization of 4-hydroxybutyl Acrylate Glycidylether," Materials Sciences and Applications, Vol. 2 No. 7, 2011, pp. 776-784. doi: 10.4236/msa.2011.27107.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Molinari, T. Poerio, R. Cassano, N. Picci and P. Argurio, “Copper(II) Removal from Wastewaters by a New Synthesized Selective Extractant and SLM viability,” Industrial & Engineering Chemistry Research, Vol. 43, No. 2, 2004, pp. 623-628.
[2] M. M. Beppu, E. J. Arruda, R. S. Vieira and N. N. Santos, “Adsorption of Cu(II) on Porous Chitosan Membranes Functionalized with Histidine,” Journal of Membrane Science, Vol. 240 No. 1-2, 2004, pp. 227-235. doi:10.1016/j.memsci.2004.04.025
[3] I. Renberg, M. L. Br?nnval, R. Bindler and O. Emteryd, “Stable Lead Isotopes and Lake Sediments—A Useful Combination for the Study of Atmospheric Lead Pollution History,” Science of the Total Environment, Vol. 292, No. 1-2, 2002, pp. 45-54. doi:10.1016/S0048-9697(02)00032-3
[4] O. Andersen, “Principles and Recent Developments in Chelation Treatment of Metal Intoxication,” Chemical Review, Vol. 99, No. 9, 1999, pp. 2683-2710. doi:10.1021/cr980453a
[5] S. Manahan, “Environmental Chemistry,” Brooks/Colei, California, USA, 1984.
[6] US Environmental Protection Agency (USEPA), “Guidelines for Drinking Water,” March 2001.
[7] K. V. S. G. Muralikrishna, “Chemical Analysis of Water and Soil—A Laboratory Manual, Environmental Protection Society,” National Institute of Ecology and Environment, Kakinada, India, 1997.
[8] IS: 10500, Drinking Water Standards, Bureau of Indian Standards (BIS), 1995.
[9] R. Günd?gan, B. Acemi?glu and M. H. Alma, “Copper (II) Adsorption from Aqueous Solution by Herbaceous Peat,” Journal of Colloid and Interface Science, Vol. 269, No. 2, 2004, pp. 303-309. doi:10.1016/S0021-9797(03)00762-8
[10] T. A. Garcia and L. Corredor, “Biochemical Changes in the Kidneys after Perinatal Intoxication with Lead and/or Cadmium and Their Antagonistic Effects When Coadministered,” Ecotoxicology Environmental Safety, Vol. 57, No. 2, 2004, pp. 184-189. doi:10.1016/S0147-6513(03)00063-0
[11] J. Goel, K. Kadirvelu, C. Rajagopal, and V. K. Garg, “Removal of Lead(II) from Aqueous Solution by Adsorption on Carbon Aerogel Using a Response Surface Methodological Approach,” Industrial & Engineering Chemistry Research, Vol. 44, No. 7, 2005, pp. 1987-1994. doi:10.1021/ie0490684
[12] T. Tokimoto, N. Kawasaki, T. Nakamura, J. Akutagawa and S. Tanada, “Removal of Lead Ions in Drinking Water by Coffee Grounds as Vegetable Biomass,” Journal of Colloid and Interface Science, Vol. 281, No. 1, 2005, pp. 56-61. doi:10.1016/j.jcis.2004.08.083
[13] C. Huang, Y. C. Chung and M.R. Liou, “Adsorption of Cu(II) and Ni(II) by Pelletized Biopolymer,” Journal of Hazardous Materials, Vol. 45, No. 2-3, 1996, pp. 265-277. doi:10.1016/0304-3894(95)00096-8
[14] G. Issabayeva, M. K. Aroua and N. M. Nik Sulaiman, “Removal of Lead from Aqueous Solutions on Palm Shell Activated Carbon,” Bioresource Technology, Vol. 97, No. 18, 2006, pp. 2350-2355. doi:10.1016/j.biortech.2005.10.023
[15] K. Chandra Sekhar, C. T. Kamala, N.S. Chary, A. R. K. Sastry, T. Nageswara Rao and M. Vairamani, “Removal of Lead from Aqueous Solutions Using an Immobilized Biomaterial Derived from a Plant Biomass,” Journal of Hazardous Materials, Vol. 108, No. 1-2, 2004, pp. 111-117. doi:10.1016/j.jhazmat.2004.01.013
[16] A. Janin, J. F. Blais, G. Mercier and P. Drogui, “Selective Recovery of Cr and Cu in Leachate from Chromated Copper Arsenate Treated Wood Using Chelating and Acidic Ion Exchange Resins,” Journal of Hazardous Materials, Vol. 169, No. 1-3, 2009, pp. 1099-1105. doi:10.1016/j.jhazmat.2009.04.066
[17] M. M. Beppu, E. J. Arruda, R. S. Vieira and N. N. Santos, “Adsorption of Cu(II) on Porous Chitosan Membranes Functionalized with Histidine,” Journal of Membrane Science, Vol. 240, No. 1-2, 2004, pp. 227-235.
[18] A. Saeed, M. Iqbal and M. W. Akhtar, “Removal and Recovery of Lead(II) from Single and Multimetal (Cd, Cu, Ni, Zn) Solutions by Crop Milling Waste (Black Gram Husk),” Journal of Hazardous Materials, Vol. 117, No. 1, 2005, pp. 65-73. doi:10.1016/j.jhazmat.2004.09.008
[19] R. S. Yeh, Y. Y. Wang and C. C. Wan, “Removal of Cu-EDTA Compounds Via Electrochemical Process With Coagulation,” Water Research, Vol. 29, No. 2, 1995, pp. 597-599. doi:10.1016/0043-1354(94)00169-8
[20] H. Cheng, “Cu(II) Removal from Lithium Bromide Refrigerant by Chemical Precipitation and Electrocoagulation,” Separation and Purification Technology, Vol. 52, No. 1, 2006, pp. 191-195. doi:10.1016/j.seppur.2006.03.021
[21] M. Q. Jiang, X. Y. Jin, X. Q. Lu and Z. L. Chen, “Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto Natural Kaolinite Clay,” Desalination, Vol. 252, No. 1-3, 2010, pp. 33-39. doi:10.1016/j.desal.2009.11.005
[22] J. Oliva, J. De Pablo, J. L. Cortina, J. Cama and C. Ayora, “The Use of Patite II to Remove Divalent Metal Ions Zinc(II), Lead(II), Manganese(II) and Iron(II) from Water in Passive Treatment Systems: Column Experiments,” Journal of Hazardous Materials, Vol. 184, No. 1-3, 2010, pp. 364-374. doi:10.1016/j.jhazmat.2010.08.045
[23] Y. Xu and D. Zhao, “Removal of Lead from Contaminated Soils Using Poly(Amidoamine) Dendrimers,” Industrial & Engineering Chemistry Research, Vol. 45 No. 5, 2006, pp. 1758-1765.
[24] H. Chen and A. Wang, “Adsorption Characteristics of Cu(II) from Aqueous Solution onto Poly(Acrylamide)/ Attapulgite Composite,” Journal of Hazardous Materials, Vol. 165, No. 1-3, 2009, pp. 223-231. doi:10.1016/j.jhazmat.2008.09.097
[25] A. Nagendran, A. Vijayalakshmi, D. Lawrence Arockiasamy, K. H. Shobana and D. Mohan, “Toxic Metal Ion Separation by Cellulose Acetate/Sulfonated Poly(Ether Imide) Blend Membranes: Effect of Polymer Composition and Additive Original Research Article,” Journal of Hazardous Materials, Vol. 155, No. 3, 2008, pp. 477-485. doi:10.1016/j.jhazmat.2007.11.088
[26] K. Saito, S. Yamada, S. Furusaki, T. Sugo and J. Okamoto, “Characteristics of Uranium Adsorption by Amidoxime Membrane Synthesized by Radiation-Induced Graft Polymerization,” Journal of Membrane Science, Vol. 34, No. 1, 1987, pp. 307-315. doi:10.1016/S0376-7388(00)83171-3
[27] M. M. Nasef, H. Saidi and H. Mohd Nor, “Radiation-Induced Graft Copolymerization for Preparation of Cation Exchange Membranes: A Review,” Malaysia Nuclear Science Journal, Vol. 17, 1999, pp. 27-43.
[28] T. Kawai, K. Sugita, K. Saito and T. Sugo, “Extension and Shrinkage of Polymer Brush Grafted onto Porous Membrane Induced by Protein Binding,” Macromolecules, Vol. 33, No. 4, 2000, 1306-1309. doi:10.1021/ma9819642
[29] F. Cardona, G. A. George, D. J. T. Hill, F. Rasoul and J. Maeji, “Copolymers Obtained by the Radiation-Induced Grafting of Styrene onto Poly(Tetrafluoroethylene-Co-Perfluoropropylvinyl Ether) Substrates. 1. Preparation and Structural Investigation,” Macromolecules, Vol. 35, No. 2, 2002, pp. 355-364. doi:10.1021/ma0022295
[30] M. Tamada, N. Seko and F.Yoshii, “Application of Radiation-Graft Materials for Metal Adsorbent and Cross-linked Natural Polymer for Healthcare Products,” Radiation Physics and Chemistry, Vol. 71, No. 1-2, 2004, pp. 223-227. doi:10.1016/j.radphyschem.2004.03.044
[31] N. Seko, A. Katakai, S. Hasegawa, M. Tamada, N. Kasai, H. Takeda, T. Sugo and K. Saito, “Aquaculture of Uranium in Seawater by a Fabric-Adsorbent Submerged System,” Nuclear Technology, Vol. 144, No. 2, 2003, pp. 274-278.
[32] N. Seko, M. Tamada and F. Yoshii, “Current Status of Adsorbents for Metal Ions with Radiation Grafting and Crosslinking Technique,” Nuclear Instrument and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 236, No. 1, 2005, pp. 21-29. doi:10.1016/j.nimb.2005.03.244
[33] H. Kawakita, K. Uezu, S. Tsuneda, K. Saito, M. Tamada and T. Sugo, “Recovery of Sb(V) Using a Functional-Ligand-Containing Porous Hollow-Fiber Membrane Prepared by Radiation-Induced Graft Polymerization,” Hydrometallurgy, Vol. 81, No. 3-4, 2006, pp. 190-196. doi:10.1016/j.hydromet.2005.12.010
[34] A. W. Eckert, D. Grobe and U. Rothe, “Surface-Modification of Polystylene-Microtitre Plates via Grafting of Glycidylmethacrylate and Coating of Poly-Glycidylmethacrylate,” Biomaterials, Vol. 21, No. 5, 2000, pp. 441-447. doi:10.1016/S0142-9612(99)00098-8
[35] H. Hoshina, N. Seko, Y. Ueki and M. Tamada, “Synthesis of Graft Adsorbent with N-methyl-D-glucamine for Boron Adsorption,” Journal of Ion Exchange, Vol. 18, No. 1-2, 2007, pp. 236-239.
[36] C. A. Flemming and J. T. Trevors, “Copper Toxicity and Chemistry in the Environment: A Review,” Water Air Soil Pollution, Vol. 44, No. 1-2, 1989, 143-158. doi:10.1007/BF00228784
[37] A. Sekine, N. Seko, M. Tamada and Y. Suzuki, “Biodegradable Metal Adsorbent Synthesized by Graft Polymerization onto Nonwoven Cotton Fabric,” Radiation Physics and Chemistry, Vol. 79, No. 1, 2010, pp. 16-21. doi:10.1016/j.radphyschem.2009.08.007
[38] M. M. Nasef, H. Saidi and K. Z. M. Dahlan, “Kinetic Investigations of Graft Copolymerization of Sodium Styrene Sulfonate onto Electron Beam Irradiated Poly(Vinylidene Fluoride) Films,” Radiation Physics and Chemistry, Vol. 80, No. 1, 2011, pp. 66-75. doi:10.1016/j.radphyschem.2010.08.010
[39] N. Seko, L. T. Bang and M. Tamada, “Synthesis of Amine-Type Adsorbents with Emulsion Graft Polymerization of Glycidyl Methacrylate,” Nuclear Instrument and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 265, No. 1, 2007, pp. 146-149. doi:10.1016/j.nimb.2007.08.041

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.